Применение производных 4-бифенилкарбоновой кислоты в качестве органического механолюминесцентного материала и механолюминесцентная композиция

Изобретение относится к новым органическим материалам, способным генерировать световое излучение при механических воздействиях. Предложены производные 4-бифенилкарбоновой кислоты формулы

в качестве органического механолюминесцентного материала. Предложена также механолюминесцентная композиция, содержащая эффективное количество механолюминесцентного вещества формулы 1 и люминесцентное вещество. Изобретение обеспечивает создание новых эффективных механолюминесцентных материалов на основе недорогих и нетоксичных органических веществ. 2 н. и 1 з.п. ф-лы, 2 ил., 1 табл., 2 пр.

 

Изобретение относится к новым органическим материалам, способным генерировать световое излучение при механических воздействиях. Также изобретение относится к композициям, принцип работы которых заключается в преобразовании механической энергии в световую.

Явление механо- или триболюминесценции широко распространено - согласно литературным оценкам, около 50% кристаллических веществ способны к триболюминесценции [Walton, A.J. Adv. Phys. 1977, 26, 887-948]. На основе механолюминесцентных материалов могут быть созданы различные оптоэлектронные устройства: сенсоры удара, трения, растяжения или давления [Nakayama, K.; Hashimoto, Н. Wear 1995, 185, 183-188], детекторы разрушения материалов [I.C. Sage, N.J. Geddes, Triboluminescent damage sensors, патент США №5905260 от 18.05.1999; S.A.Mastro, V.K.Mathur, A.W.Jarett, Fiber optic composite damage sensor, патент США №6710328 от 23.03.2004] и др. Кроме того, триболюминесцентные материалы могут найти применение в производстве товаров народного потребления, например спортивных мячей [J.Lee, H.J.Kim, H.G.Jeon, D.A.Snell, M.Ferris, Triboluminescent materials and golf balls made from such materials, патент США №7772315 от 10.08.2010], детских игрушек и полиграфических изделий [N.J.Geddes, I.C.Sage, C.F.Rozelaar, I.R.Mason, G.H.Bourhill, Triboluminescent materials in adhesive compositions for use in adhesive tape, международный патент WO 02/062915 от 15.08.2002]. Очень низкая эффективность и малая стабильность свечения существующих триболюминесцентных материалов препятствует их широкому использованию.

Наиболее известными триболюминесцентными материалами являются неорганические соединения на основе алюминатов, силикатов и алюмосиликатов, танталатов и ниобатов щелочноземельных и редкоземельных металлов (например, SrAl2O4 или Sr3Аl2О6, допированные европием) [М. Akiyama, Ch.-N. Xu, К. Nonaka, Mechanoluminescent material and process for producing the same, патент США №7258817 от 21.08.2007; J.S.Kim, K.S.Sohn, Mechanoluminescent (ML) paint employing urethane resin, curing agent, and strontium aluminum oxide-base ML ceramic powder, патент KR №20070056850A от 04.06.2007], халькогенидных кристаллов, таких как ZnS, ZnTe, ZnCuS, активированные марганцем [7 - Ch.-N. Xu, M. Akiyama, W. Shi, Highly bright mechanoluminescence material and process for producing the same, патент США №7297295 от 20.11.2007] и другие. Механолюминесценцией, достаточно интенсивной для практических приложений, обладают β-дикетонатные комплексы редкоземельных элементов, особенно европия [8 - V.Hall-Goulle, Triboluminescent lanthanide (III) complexes, патент США №6071632 от 06.06.2000; V.K.Mathur, J.L.Price, Color switchable stress-fracture sensor for damage control, патент США №7307702 от 11.12.2007; I.C.Sage, G.H.Bourhill, I.Oswald, Triboluminescent materials and devices, патент США №7270770 от 18.09.2007]. Однако известные механолюминофоры обладают рядом существенных недостатков. Так, неорганические кристаллы весьма прочны и потому требуют приложения высоких нагрузок для активации механолюминесценции, которая часто сопровождается необратимым разрушением кристаллов и потерей триболюминесцентных свойств. Комплексы редкоземельных металлов отличаются высокой стоимостью; все указанные материалы содержат в своем составе тяжелые металлы, вредные для человека и окружающей среды. Эффективность свечения большинства триболюминесцентных веществ является очень низкой, и их люминесценция с трудом наблюдается невооруженным глазом.

Наиболее близким структурным прототипом защищаемых механолюминесцентных материалов являются описанные ранее соединения на основе диоксидифенилсульфонов 2, проявляющих триболюминесцентные свойства [R.Kinishi, Triboluminescent molecular compound and method for emitting light thereof, патент Японии JP 2001131140 от 15.05.2001].

В опубликованных ранее работах отмечено, что эффективной можно считать механолюминесценцию, которая детектируется невооруженным глазом, адаптированным к полной темноте в течение 15 минут [10 - C.R.Hurt, N.McAvov, S.Bjorklund, N.Filipescu, Nature, 1966, 212, 179-180]. Основным преимуществом разработанных нами материалов является необычно высокая эффективность проявляемой ими триболюминесценции. Например, при измельчении или сдавливании этих веществ с помощью шпателя в стеклянной пробирке наблюдаются вспышки света, легко заметные даже при рассеянном солнечном свете. Видимая в темноте механолюминесценция соединений общей формулы 1 наблюдается при аккуратном встряхивании или даже простом пересыпании порошков этих веществ в стеклянной колбе или пробирке.

Сильное встряхивание круглодонной колбы на 250 мл с 15 граммами метилового эфира 4-бифенилкарбоновой кислоты 1а позволяет читать в темном помещении надписи, выполненные крупным шрифтом (60-80 пунктов), и видеть окружающие предметы. Яркость свечения колбы в этих условиях превышает 4 кд/м2. Точная оценка затруднительна из-за неоднородностей свечения колбы с порошком, связанных с неравномерным распределением возникающей при встряхивании механической нагрузки. Характерным является также возникновение синих молниеподобных вспышек в объеме колбы при встряхивании порошка 1а.

Задачей заявляемого изобретения является создание новых эффективных механолюминесцентных материалов на основе недорогих и нетоксичных органических веществ.

Также задачей заявляемого изобретения является новая механолюминесцентная композиция, содержащая эффективное количество механолюминесцентного материала.

Поставленная задача решается производными 4-бифенилкарбоновой кислоты общей формулы 1:

где в общей формуле 1 X, R1, R2, R3 обозначают, но не ограничиваются следующими определениями:

- X - кислород (О), сера (S) или остаток амина (NR); в последнем случае заместитель R - атом водорода (Н), линейный или разветвленный алифатический радикал, содержащий от 1 до 30 атомов углерода; алициклический радикал, содержащий от 1 до 30 атомов углерода; ароматический или гетероароматический радикал, содержащий от 1 до 30 атомов углерода;

- R1 и R2 - независимо атом водорода (Н); атом галогена (F, Cl, Br, I); гидроксильная (ОН) или аминная (NH2) группа; нитрогруппа (NO2); линейный или разветвленный алифатический радикал, содержащий от 1 до 30 атомов углерода; алициклический радикал, содержащий от 1 до 30 атомов углерода; ароматический или гетероароматический радикал, содержащий от 1 до 30 атомов углерода; R1 и R2 могут быть одинаковыми или разными; n может изменяться от 1 до 5, m может изменяться от 1 до 4;

- R3 - линейный или разветвленный алифатический радикал, содержащий от 1 до 30 атомов углерода; алициклический радикал, содержащий от 1 до 30 атомов углерода; ароматический или гетероароматический радикал, содержащий от 1 до 30 атомов углерода, которые могут быть применены в качестве органического механолюминесцентного материала.

Также задача решается механолюминесцентной композицией, содержащей эффективное количество механолюминесцентного материала общей формулы 1 и люминесцентное вещество. Механолюминесцентная композиция может содержать от 0,01 до 99,99 вес.% механолюминесцентного материала и люминесцентное вещество - остальное.

Важным свойством патентуемых материалов общей формулы 1 является стабильность люминесценции при длительном механическом воздействии. Так, периодическое встряхивание колбы с порошками веществ в течение нескольких недель не приводит к какому-либо снижению эффективности механолюминесценции, хотя при этом наблюдается сильное измельчение материала.

В данном изобретении защищается также использование соединений общей формулы 1 в смесях или иного рода комбинациях с одним или несколькими люминесцирующими соединениями. Высокоэффективный перенос энергии в таких системах позволяет контролируемым образом менять цветность и спектральные характеристики возникающего свечения (см. пример 2).

Заявляемое изобретение иллюстрируется, но никак не ограничивается следующими примерами.

Пример 1.

В качестве примеров механолюминесцентных материалов, соответствующих общей формуле 1, могут быть приведены метиловый эфир 4-бифенилкарбоновой кислоты 1а и этиловый эфир 4-бифенилкарбоновой кислоты 1б, N,N-диметиламид 4-бифенилкарбоновой кислоты 1в, этиловый эфир 4-метоксибифенилтиокарбоновой кислоты 1г, а также этиловый эфир 4-метилбифенилкарбоновой кислоты 1д.

Соединения 1а, 1б, 1д были получены из соответствующих бифенилкарбоновых кислот при кипячении с двадцатикратным избытком метилового (в случае соединения 1а) или этилового (в случае соединений 1б и 1д) в присутствии каталитического количества серной кислоты и очищены перекристаллизацией из соответствующего спирта. Состав полученных веществ установлен по данным элементного анализа, строение доказано методом спектроскопии ЯМР на ядрах 1Н и 13С. Чистота подтверждена хроматографически (высокоэффективная жидкостная хроматография на обращенной фазе С18, элюент - метанол) и составила более 99%.

Соединение 1в было получено взаимодействием хлорангидрида 4-бифенилкарбоновой кислоты с диметиламином в присутствии триэтиламина в качестве основания. Продукт реакции очищен перекристаллизацией из метилового спирта.

Соединение 1 г было получено из 4-метилбифенилкарбоновой кислоты и этантиола с помощью стандартного карбодиимидного метода (к раствору карбоновой кислоты и тиола в ацетонитриле прибавляли каталитическое количество 4-диметиламинопиридина, а затем небольшой избыток - 1,1 эквивалента - дициклогексилкарбодиимида в качестве реагента для образования тиоэфирной связи).

1а. 1Н ЯМР спектр (CDCl3, 300 МГц, δ, м. д.): 8,13 (м, 2Н), 7,68-7,61 (м, 4Н), 7,50-7,38 (м, 3Н), 3,95 (с, 3Н). Элементный анализ: С 79,01%, Н 5,73%.

1б. 1Н ЯМР спектр (CDCl3, 300 МГц, δ, м. д.): 8,14 (д, 2Н), 7,64 (м, 4Н), 7,47 (м, 2Н), 7,40 (м, 1Н), 4,43 (м, 2Н), 1,44 (т, 3Н). Элементный анализ: С 79,68%, Н 6,23%.

1в. 1Н ЯМР спектр (CDCl3, 300 МГц, δ, м. д.): 7,65-7,57 (м, 4Н), 7,52-7,43 (м, 4Н), 7,39-7,33 (м, 1Н), 3,10 (с, 3Н), 3,08 (с, 3Н). Элементный анализ: С 80,11%, Н 6,59%, N 6,20%.

1г. 1Н ЯМР спектр (CDCl3, 300 МГц, δ, м. д.): 8,01-8,03 (м, 2Н), 7,61-7,64 (м, 2Н), 7,56-7,59 (м, 2Н), 7,00-7,01 (м, 2Н), 3,87 (с, 3Н), 3,11 (м, 2Н), 1.38 (т, 3Н). Элементный анализ: С 70,31%,Н 6,05%.

1д. 1Н ЯМР спектр (CDCl3, 300 МГц, δ, м. д.): 8,10 (д, 2Н), 7,62 (д, 2Н), 7,52 (д, 2Н), 7,26 (д, 2Н), 4,40 (м, 2Н), 2,39 (с, 3Н), 1,41 (т, 3Н). Элементный анализ: С 79,87%, Н 6,52%.

Соединения 1а-д являются триболюминесцентными (механолюминесцентными) веществами. Наиболее интенсивную механолюминесценцию показало соединение la, a относительные величины механолюминесценции соединений 1б-д приведены в таблице 1.

Спектры механолюминесценции (ML) и фотолюминесценции (PL, возбуждение на длине волны 290 нм) соединения 1а приведены на Фиг.1.

Соединение Относительная интенсивность механолюминесценции в максимуме по сравнению с соединением 1а
1
0,6
0,5
1,1
0,7

Пример 2.

К порошку соединения 1а, дающего сине-фиолетовую механолюминесценцию, прибавили 5-10 весовых процентов комплекса цинка 2, обладающего яркой желтовато-зеленой фотолюминесценцией с максимумом в спектре около 500 нм. Полученная смесь при встряхивании стала излучать желтовато-зеленый свет со спектральными характеристиками, идентичными спектру фотолюминесценции комплекса цинка. На Фиг.2 приведены спектры механолюминесценции соединения 1а, смеси соединения 1а и люминесцентного комплекса цинка, а также спектр фотолюминесценции комплекса цинка. В изученной системе происходит перенос энергии механолюминесценции 1а на комплекс цинка, который переизлучает ее в желто-зеленой области спектра.

Примером практического применения механолюминесценции защищаемых нами соединений общей формулы 1 является использование их в конструкции детской игрушки. Данная игрушка (погремушка) представляет собой сосуд из прозрачного стеклянного или полимерного материала, наполненный порошком механолюминесцентного вещества, например, соединения 1а. При встряхивании такой игрушки наблюдается неравномерное свечение в объеме и на стенках сосуда, имитирующее звездный дождь или бенгальский огонь.

Наполнение игрушки смесью механолюминесцентного вещества с различными твердыми частицами (например, стеклянными, металлическими или пластиковыми шариками, песком) повышает яркость свечения за счет усиления механических воздействий на светоизлучающий материал.

При использовании в качестве наполнителя в игрушке композиции соединения 1а и люминесцентного комплекса цинка, описанной в примере 2, наблюдалось желто-зеленая механолюминесценция. Возрастала также яркость свечения, что, вероятно, связано с более высокой чувствительностью человеческого глаза к зеленому свету.

1. Применение производных 4-бифенилкарбоновой кислоты общей формулы 1:

где в общей формуле 1 X, R1, R2, R3 имеют следующие значения:
Х - кислород (О), сера (S) или остаток амина (NR); в последнем случае заместитель R - атом водорода (Н), линейный или разветвленный алифатический радикал, содержащий от 1 до 30 атомов углерода; алициклический радикал, содержащий от 1 до 30 атомов углерода; ароматический или гетероароматический радикал, содержащий от 1 до 30 атомов углерода;
R1 и R2 - независимо атом водорода (Н); атом галогена (F, Cl, Вr, I); гидроксильная (ОН) или аминная (NH2) группа; нитрогруппа (NO2); линейный или разветвленный алифатический радикал, содержащий от 1 до 30 атомов углерода; алициклический радикал, содержащий от 1 до 30 атомов углерода; ароматический или гетероароматический радикал, содержащий от 1 до 30 атомов углерода; R1 и R2 могут быть одинаковыми или разными;
n может изменяться от 1 до 5,
m может изменяться от 1 до 4;
R3 - линейный или разветвленный алифатический радикал, содержащий от 1 до 30 атомов углерода; алициклический радикал, содержащий от 1 до 30 атомов углерода; ароматический или гетероароматический радикал, содержащий от 1 до 30 атомов углерода,
в качестве органического механолюминесцентного материала.

2. Механолюминесцентная композиция, содержащая эффективное количество механолюминесцентного материала общей формулы 1 по п.1 и люминесцентное вещество.

3. Механолюминесцентная композиция по п.2, содержащая от 0,01 до 99,99 вес.% механолюминесцентного материала и люминесцентное вещество - остальное.



 

Похожие патенты:

Изобретение относится к полимерным наночастицам, содержащим среду для преобразования фотонов с повышением частоты, и к способу получения таких полимерных наночастиц.

Изобретение относится к области материалов для оптической записи информации, в частности материалов для архивной записи информации, основанной на фотоиндуцированной флуоресценции, с возможностью использования в устройствах оптической памяти, включая трехмерные системы оптической памяти для Read Only Memory (ROM).

Изобретение относится к органическому соединению, представленному общей формулой (1). .

Изобретение относится к соединению хризена, представленному общей формулой [1]: где каждый из R1-R 9 представляет собой атом водорода, и Ar1, Ar 2 и Ar3 каждый независимо выбирают из группы, представленной общими формулами [2]: где Х1-Х26 каждый независимо выбирают из группы, состоящей из атома водорода, алкильной группы, состоящей только из углерода и водорода, содержащей 1-4 атома углерода, фенильной группы, которая может быть замещена алкильной группой, состоящей только из углерода и водорода, содержащей 1-4 атома углерода, нафтильной группы, которая может быть замещена алкильной группой, состоящей только из углерода и водорода, содержащей 1-4 атома углерода, фенантрильной группы, которая может быть замещена алкильной группой, состоящей только из углерода и водорода, содержащей 1-4 атома углерода, и флуоренильной группы, которая может быть замещена алкильной группой, состоящей только из углерода и водорода, содержащей 1-4 атома углерода, при условии, что один из X1-X8, один из X9-X16 и один из Х17-Х26 каждый представляет хризеновое кольцо, представленное общей формулой [1]; и Y 1 и Y2 каждый независимо выбирают из алкильной группы, состоящей только из углерода и водорода, содержащей 1-4 атома углерода.

Изобретение относится к электролюминесцентным веществам, а именно к бис {3-метил-1-фенил-4-[(хинолин-3-имино)-метил]1-Н-пиразол-5-онато}цинка(II) общей формулы I Также предложено электролюминесцентное устройство, содержащее бис{3-метил-1-фенил-4-[(хинолин-3-имино)-метил]1-Н-пиразол-5-онато}цинка(II) общей формулы I.

Изобретение относится к производному бензоинденохризена, представленному общей формулой (1) гдекаждый из X1, Х2 , Х3, Х4, Х5, Х6, Х7, Х8, X9, Х10, Х11, X12, X13, Х14 , X15 и X16 выбран независимо друг от друга из атома водорода и группы заместителей, состоящей из атома галогена, цианогруппы, нитрогруппы, третбутильной группы, метоксигруппы, этинильной группы, ацетинильной группы, бензильной группы, фенильной группы, нафтильной группы, бифенильной группы, флуоренильной группы, антраценильной группы, флуорантенильной группы, пиренильной группы, бинафтильной группы, фенантренильной группы, бензофлуорантенильной группы, , фенантролинильной группы и феноксигруппы, и каждый заместитель может дополнительно содержать, по меньшей мере, одну метальную группу, третбутильную группу и фенильную группу.

Изобретение относится к новым люминесцентным комплексам лантанидов, которые могут быть использованы в качестве люминофоров, активных компонентов или в составе функциональных материалов в светоизлучающих устройствах.

Изобретение относится к органическому соединению, представленному общей формулой (1) где каждый из R1-R8, R10 и R13 представляет собой атом водорода; каждый из R9 и R14 представляет собой группу, выбранную из атома водорода, трет-бутильной группы, фенильной группы и нафтильной группы, причем фенильная группа содержит, по меньшей мере, один заместитель, выбранный из метальной группы, трет-бутильной группы и фенильной группы, или является незамещенной; один из R11 и R12 представляет собой атом водорода, а другой из R11 и R12 представляет собой группу, выбранную из нафтильной группы, фенантренильной группы, антраценильной группы, периленильной группы, хризенильной группы, бензо-с-фенантренильной группы, флуоренильной группы, флуорантенильной группы, бензофлуорантенильной группы и нафтофлуорантенильной группы, причем нафтильная группа содержит в качестве заместителя фенильную группу или является незамещенной, антраценильная группа содержит в качестве заместителя фенильную группу или является незамещенной, хризенильная группа содержит в качестве заместителя фенильную группу или является незамещенной, флуоренильная группа содержит в качестве заместителя метальную группу, флуорантенильная группа содержит, по меньшей мере, один заместитель, выбранный из трет-бутильной группы и фенильной группы, или является незамещенной, и бензофлуорантенильная группа содержит, по меньшей мере, один заместитель, выбранный из фенильной группы, фенильной группы, замещенной метальной группой, и фенильной группы, замещенной трет-бутильной группой, или является незамещенной.

Изобретение относится к новым соединениям в ряду азолзамещенных спирогетероциклических соединений, а именно к 5'-(1,3-бензотиазол-2-ил)-замещенным спиро[индолин-нафтопиранам] общей формулы где R1=C1-C 6 алкил, R2=H, C1-C6 алкил, алкоксил, галоген.

Изобретение относится к новым соединениям - производным бензохинонов формулы (I): где каждый R1 и R2 представляет собой O-С(O)фенил; где фенил замещен 1 заместителем, выбранным из галоида, нитро, C1-С6алкила или С1-С6алкокси, и к их фармацевтически приемлемым солям.

Изобретение относится к усовершенствованному способу получения диалкилового эфира нафталиндикарбоновой кислоты, использующегося для получения различных полимерных материалов, таких как полиэфиры или полиамиды, из жидкофазной реакционной смеси, содержащей низкомолекулярный спирт, нафталиндикарбоновую кислоту, и материал, содержащий полиэтиленнафталат, при массовом соотношении спирта и кислоты от 1:1 до 10:1, при температуре в интервале от 260°С до 370°С и давлении в интервале от 5 до 250 атм абс.

Изобретение относится к новым замещенным феноксиуксусным кислотам (I), в которых: Х представляет собой галоген, циано, нитро или С1-4алкил, который замещен одним или более чем одним атомом галогена; Y выбран из водорода, галогена или C1-С6алкила, Z представляет собой фенил, нафтил или кольцо А, где А представляет собой шестичленное гетероциклическое ароматическое кольцо, содержащее один или два атома азота, или может представлять собой 6,6- или 6,5-конденсированный бицикл, содержащий один атом О, N или S, или может представлять собой 6,5-конденсированный бицикл, содержащий два атома О, причем фенил, нафтил или кольца А все, возможно, замещены одним или более чем одним заместителем, независимо выбранным из галогена, CN, ОН, нитро, COR9, CO2R6, SO2 R9, OR9, SR9, SO2 NR10R11, CONR10R11 , NR10R11, NHSO2R9 , NR9SO2R9, NR6CO 2R6, NR9COR9, NR6CONR4R5, NR6SO 2NR4R5, фенила или C1-6 алкила, причем последняя группа, возможно, замещена одним или более чем одним заместителем, независимо выбранным из галогена; R1 и R2 независимо представляют собой атом водорода или С1-6алкильную группу, R4 и R5 независимо представляют собой водород, С3 -С7циклоалкил или C1-6алкил, R6 представляет собой атом водорода или C1-6алкил; R 8 представляет собой С1-4алкил; R9 представляет собой C1-6алкил, возможно, замещенный одним или более чем одним заместителем, независимо выбранным из галогена или фенила; R10 и R11 независимо представляют собой фенил, 5-членное ароматическое кольцо, содержащее два гетероатома, выбранных из N или S, водород, С3-С7циклоалкил или C1-6алкил, причем последние две группы, возможно, замещены одним или более чем одним заместителем, независимо выбранным из галогена или фенила; или R10 и R11 вместе с атомом азота, к которому они присоединены, могут образовывать 3-8-членное насыщенное гетероциклическое кольцо, возможно, содержащее один атом или более чем один атом, выбранный из О, S(O)n (где n=0, 1 или 2), NR8.

Изобретение относится к способу получения [ 18F]фторорганических соединений путем взаимодействия [ 18F]фторида с соответствующим галогенидом или сульфонатом в присутствии в качестве растворителя спирта формулы 1 в которой R1, R2 и R3 представляют атом водорода или С1 -С18 алкил.

Изобретение относится к новым соединениям формулы (I), в которой R означает Н, (С1-С12 )-алкил или (С1-С4 )-алкил-(С6-С12)-арил, причем в алкиле одна или несколько СН2-групп могут быть заменены на -О-, и к способу получения этих соединений, заключающемуся в том, что эфир диметилбензойной кислоты формулы (II), где R имеет вышеуказанное значение, вводят во взаимодействие с хлорирующим реагентом в инертном растворителе или без растворителя, при температуре выше 40°С и затем, в случае необходимости, подвергают очистке.

Изобретение относится к новым соединениям формулы I, где R 1 представляет собой фенил, возможно замещенный фенилом или гетероциклической группой, или гетероциклическую группу, возможно замещенную фенилом, где указанная гетероциклическая группа представляет собой моно- или бициклическое кольцо, содержащее 4-12 атомов, из которых по меньшей мере один атом выбран из азота, серы или кислорода, причем каждый фенил или гетероциклическая группа возможно замещен(а) одной или более чем одной из нижеследующих групп: C1-6алкильная группа; фенилС 1-6алкил, причем алкильная, фенильная или алкилфенильная группа возможно замещена одним или более чем одним из R b; галоген; -ORa -OSO 2Rd; -SO2R d; -SORd; -SO2 ORa; где Ra представляет собой Н, C1-6алкильную группу, фенильную или фенилС1-6алкильную группу; где R b представляет собой галогено, -ОН, -ОС 1-4алкил, -Офенил, -OC1-4алкилфенил, и Rd представляет собой С 1-4алкил; группа -(CH2) m-T-(CH2)n-U-(CH 2)p присоединена либо в 3-ем, либо 4-ом положении в фенильном кольце, как указано цифрами в формуле I, и представляет собой группу, выбранную из одной или более чем одной из нижеследующих: O(СН2) 2, O(СН2)3, NC(O)NR4(CH2) 2, CH2S(O2)NR 5(CH2)2, CH 2N(R6)C(O)CH2 , (CH2)2N)(R 6)С(O)(СН2)2 , C(O)NR7CH2, C(O)NR 7(CH2)2 и CH 2N(R6)C(O)CH2 O; V представляет собой О, NR8 или одинарную связь; q представляет собой 1, 2 или 3; W представляет собой О, S или одинарную связь; R2 представляет собой галогено или С1-4алкоксильную группу; r представляет собой 0, 1, 2 или 3; s представляет собой 0; и R6 независимо представляют собой Н или C1-10алкильную группу; R 4, R5, R7 и R8 представляют собой атом водорода; и их фармацевтически приемлемым солям.

Изобретение относится к усовершенствованному способу получения диметил-1,5-нафталиндикарбоксилата, который используется для получения полимеров на его основе и изделий из этих полимеров.

Изобретение относится к усовершенствованному способу получения ацилированных 1,3-дикарбонильных соединений, используемых в качестве агрохимикатов или промежуточных продуктов для производства агрохимикатов.

Изобретение относится к области органической химии. .
Наверх