Способ определения астрономического азимута и широты по неизвестным звездам

Изобретение относится к области астрономо-геодезических измерений и может быть использовано для определения по звездам астрономических азимутов направлений на земные ориентиры для решения разнообразных задач инженерной геодезии. Способ определения астрономического азимута и широты по неизвестным звездам включает измерение теодолитом зенитных расстояний наблюдаемой неизвестной звезды и горизонтальных направлений на нее и на земной предмет, вычисление места севера и азимута как разности горизонтального направления на земной предмет и места севера. Измерения теодолитом проводят четырехкратно через промежутки времени не более 60 мин и место севера вычисляют по формуле: tg MN=A/B,

а широту определяют дважды по формулам:

tg φ=[sin z2 cos(N2-MN)-sin z1(N1-MN]:(cos z1-z2);

tg φ=[sin z4 cos (N4-MN)-sin z3(N3-MN)]:(cos z3-z4).

Техническим результатом является расширение функциональных возможностей и повышение точности совместного определения азимута и широты. 4 ил.

 

Изобретение относится к области астрономо-геодезических измерений и может быть использовано для определения по звездам астрономических азимутов направлений на земные ориентиры для решения разнообразных задач инженерной геодезии.

Известен способ определения азимута земного предмета (Колесниченко А.Е. Астрономическое определение азимута земного предмета. Артиллерийский журнал, №6, стр.24-28, 1951 г.), включающий измерение зенитные расстояния одной и той же звезды дважды через небольшой промежуток времени. Зная широту места, находят азимут а звезды в момент ее наблюдения по формуле:

A=O-N,

где О - среднее значение направления на звезду,

N=C0-b0+Θ,

здесь С0 - средний отсчет по горизонтальному кругу на звезду.

b0=arc tg[ΔZ0/(tg Z0 tg ΔC0)],

Θ=arc sin[(tg φ tg Z0 sin b0)/cos C0],

ΔZ0=(Z2-Z1)/2; Z0=(Z2+Z1)/2;

ΔC0=(C2-C1)/2.

Точность определения азимута зависит от точности угловых измерений теодолитом и точности знания широты места наблюдения.

Недостатком является необходимость знание географической широты места стояния теодолита.

Известен способ определения азимута по неизвестной звезде (Колесниченко А.Е., Трофименко В.Т. О точности определения азимута по неизвестной звезде. Геодезия и картография, №6, стр.14-17, 1988 г.), включающий измерение дважды через небольшой промежуток времени зенитных расстояний и направлений на одну и ту же неизвестную звезду. Азимут А местного предмета вычисляют по формуле:

А=М-MN,

где М - отсчет по горизонтальному кругу на земной предмет,

MN - место севера.

MN=Θ-b+N0,

где Θ=arc sin[(tg φ tg z0 sin b cos ΔN)/2],

b=arc ctg[(tg z0 ctg Δz tg ΔN)/2],

где z0 и Δz - полусумма и разность зенитных расстояний z2 и z1;

N0 и ΔN - полусумма и разность направлений на звезду.

Широта места снимается с топографической карты. Недостатком способа является предварительное знание широты места.

Известен способ определения широты и азимута по звезде с неизвестными координатами (Пандул И.С. Определение широты и азимута без помощи хронометра по звезде с неизвестными координатами. // Сб. «Записки горного института», том 156, СПГГИ, 2004 г., с.225-228), принятый за прототип. Азимут, отсчитываемый от точки севера, и широту определяют по 4-кратным измерениям зенитных расстояний одной и той же неизвестной звезды, горизонтальных направлений на нее и по измерению разности часовых углов с помощью среднего секундомера. Способ включает помимо измерения горизонтальных направлений и зенитных расстояний, замеры разности часовых углов звезды с помощью секундомера. Знание широты места наблюдателя не требуется. Азимут А вычисляют по формулам

A=N0-MN,

где N0 - горизонтальное направление на земной предмет,

MN - место севера, соответствующее направлению меридиана на местности,

MN=N1-A1,

где N1 - измеренное теодолитом горизонтальное направление на первую точку суточной параллели некоторой звезды,

А1=arc cos[(sin δ - sin φ cos z1): sin z1 cos φ],

где δ=arc sin(sin φ cos z1 + cos φ sin z1 cos A1),

φ=arc sin(cos z2 sin δ + sin z2 cos δ cos q2),

q2 - параллактический угол второго параллактического треугольника.

Недостатком способа является значительное снижение точности определяемого азимута за счет одновременного применения теодолита и секундомера. Способ пригоден только для грубых определений.

Техническим результатом предлагаемого способа является расширение возможностей и повышение точности совместного определения азимута и широты.

Технический результат достигается тем, что в способе определения астрономического азимута на земной предмет и его широты, включающем измерение теодолитом зенитных расстояний наблюдаемой неизвестной звезды и горизонтальных направлений на нее и на земной предмет без применения секундомера, вычисление места севера и азимута как разности горизонтального направления на земной предмет и места севера, измерения теодолитом проводят четырехкратно через промежутки времени не более 60 мин, и место севера вычисляют по формуле:

tg MN=А/В,

где А и В вычисляют по формулам:

А=-b cos N1 + a cos N2 + d cos N3 - с cos N4,

В=+b sin N1 - a sin N2 - d sin N3 + с sin N4,

где коэффициенты а, b, с, d вычисляют по формулам:

а=sin z2:(cos z1-z2);

b=sin z1:(cos z1-z2);

c=sin z4:(cos z3-z4);

d=sin z3:(cos z3-z4);

где N1, N2, N3, N4 - горизонтальные направления на наблюдаемую неизвестную звезду в четырех точках ее суточной параллели, измеренные по горизонтальному кругу теодолита,

z1, z2, z3 z4 - зенитные расстояния в четырех точках суточной параллели наблюдаемой неизвестной звезды, определяемые по формуле, соответствующей данному типу теодолита, по данным вертикального круга теодолита, а широту определяют дважды по формулам:

tg φ=[sin z2 cos (N2-MN)-sin z1(N1-MN)]:(cos z1-z2),

tg φ=[sin z4 cos (N4-MN)-sin z3(N3-MN)]:(cos z3-z4).

Для обоснования и вывода формулы для определения астрономического азимута земного предмета воспользуемся фиг.1, где представлен параллактический треугольник светила σ1. Пусть теодолитом измерены через определенный промежуток времени горизонтальные направления N1 и N2, и зенитные расстояния z1 и z2 двух точек суточной параллели некоторой звезды.

cos Δ = cos z 1 sin ϕ + sin z 1 cos ϕ cos ( N 1 M N ) ( 1 )

Здесь MN - место севера, Δ - полярное расстояние, Δ=90°-δ.

cos M N A = sin M N B . О т к у д а t g M N = A / B . ( 9 )

Зная место севера, всегда легко получить астрономический азимут направления на земной предмет

A = N 0 M N , ( 10 )

где N0 - горизонтальное направление на земной предмет.

Широту определяют по формулам (4) и (5).

Сходимость широт φ вычисленных по формулам (4) и (5) служит контролем вычислений. Формулами (9-10) следует пользоваться при определении искомого азимута. Формулы легко программируются с помощью стандартной программы Mathcad и вычисления выполненных наблюдений занимают совсем мало времени.

Способ осуществляют следующим образом. Выбирают звезду в западной или восточной части неба. Наблюдения восточной звезды следует начинать, а западной - заканчивать невысоко над горизонтом. Наблюдают любую звезду, заметную и легко опознаваемую для повторных наблюдений. Чтобы не потерять выбранную звезду, ее надо гидировать, удерживая все время в поле зрения грубы теодолита. Звезда должна быть не ближе 35° к меридиану наблюдателя, для чего теодолит следует грубо ориентировать в меридиане по компасу или на глаз. Измеренное зенитное расстояние отягощено приборными погрешностями, ошибкой наведения на звезду и ошибкой определения астрономической рефракции. Для уменьшения влияния ошибки рефракции следует наблюдать звезду, если ее зенитное расстояние менее 80°. Для учета астрономической рефракции в каждом приеме необходимо измерять температуру t°С и атмосферное давление воздуха В (в мм рт.ст.).

Порядок наблюдений следующий. Для наблюдений используют теодолит (желательно с накладным уровнем), наружный термометр, барометр-анероид, карманный фонарик и световая визирная цель. Для обеспечения устойчивости теодолита ножки штатива следует устанавливать на кирпичи или вбитые в землю колья.

Первый полуприем - круг лево (круг право):

1) визирование на земной предмет: отсчеты N0 по горизонтальному и Л, П по вертикальному кругам (при двух положениях вертикального круга). Перед каждым отсчетом по вертикальному кругу пузырек уровня при алидаде вертикального круга приводят в нульпункт;

2) визирование на звезду и взятием отсчетов N1 по горизонтальному и Л1 по вертикальному кругам;

3) приблизительно через час вторичное визирование на ту же звезду и взятие отсчетов N2 по горизонтальному и Л2 по вертикальному кругам;

Далее следует перерыв в наблюдениях при смене кругов в течении примерно 10-15 минут.

Второй полуприем - круг право (круг лево):

4) визирование на ту же звезду, отсчеты N3 по горизонтальному и П3 по вертикальному кругам;

5) через час вторичное визирование на звезду и отсчеты N4 по горизонтальному и П4 по вертикальному кругам;

6) повторное визирование на земной предмет: отсчеты N′0 по горизонтальному и П', Л' по вертикальному кругам (при двух положениях вертикального круга). Вертикальный круг при визировании на земной предмет отсчитывают для последующего вычисления места зенита MZ. Полный прием измерений занимает не более 135 мин.

Методика визирования на звезду. После грубого захвата звезды горизонтальную нить следует установить на пути видимого движения звезды в поле зрения грубы. Ввести изображение звезды в биссектор и удерживать его там до контакта с горизонтальной нитью. В этот момент надо прекратить вращение наводящего винта алидады и последовательно отсчитать вертикальный и горизонтальный круги теодолита, предварительно убедившись в том, что пузырек уровня при алидаде вертикального круга находится в нульпункте. При выполнении приема в промежутках между наблюдениями звезды измерять температуру и атмосферное давление воздуха, необходимые для вычисления астрономической рефракции ρ. Для вычисления этих поправок брать метеоданные для конкретных наблюдений.

Для уменьшения ряда ошибок, в частности ошибки определения широты желательно отнаблюдать другую звезду в противоположной стороне неба по изложенной выше методике.

Методика вычислений.

Вычисляют место зенита вертикального круга MZ по формуле, например, для теодолита Theo - 010

MZ=0,5(Л+П±360°),

где Л, П - отсчеты по вертикальному лимбу при двух положениях (справа и слева от наблюдателя). Затем вычисляют видимые зенитные расстояния z1, z2, z3, z4 - зенитные расстояния в четырех точках суточной параллели наблюдаемой звезды, определяемые по формуле, соответствующей данному типу теодолита, по данным вертикального круга теодолита. Например, для теодолита Theo - 010,

z=0,5 (Л-П±360°),

z=Л-MZ,

z=MZ-П.

Истинные зенитные расстояния z получить, как z=z'+ρ, где ρ - истинная астрономическая рефракция, которую можно вычислить по формуле

ρ = 60, 3 B 760 273 t + 273 t g z

Затем по формулам (6, 7) вычисляют a, b, с, d и по формулам (9) А и В и место севера. Вычисления места севера MN по каждому отдельному полуприему будут различаться между собой вследствие влияния ошибки в определении MZ, поэтому на последнем этапе вычислений берут среднее значение места севера из приема.

По формуле (10) вычисляют астрономический азимут направления на земной предмет Л и по формулам (4, 5) широту места φ.

Пример. Проведен полевой эксперимент. Астрономические наблюдения азимута и широты способом выполнены летом 2011 года на Бережанском геодезическом полигоне с помощью точного оптического теодолита Theo-010. Наблюдения выполнялись по линии В-14 - АС-1 длиной 500 м. Координаты пунктов, широта и азимут линии определены из астрономических наблюдений 1 класса и приняты за эталонные:

φ0=49° 27' 40” N, A0=131° 56' 43”. Теодолит Theo-010 был установлен на пункте В-14, а световая визирная цель - на пункте АС-1. В разные дни выполнены 4 приема измерений.

Результаты измерений и вычислений представлены на фиг.2, фиг.3 и фиг.4. Средняя квадратическая погрешность определения азимута из четырех приемов mA=±11”. Средняя квадратическая погрешность определения широты из четырех приемов mφ=±15”. Полевой эксперимент подтвердил достоверность вывода рабочих формул способа.

Таким образом, способ позволяет определить астрономический азимут направления на земной предмет с точностью ±10” и широту с точностью ±15” по некоторой неизвестной звезде без знания географических координат места наблюдения, точного звездного времени, названия и экваториальных координат наблюдаемой звезды.

Способ определения астрономического азимута и широты по неизвестным звездам, включающий измерение теодолитом зенитных расстояний наблюдаемой неизвестной звезды и горизонтальных направлений на нее и на земной предмет, вычисление места севера и азимута как разности горизонтального направления на земной предмет и места севера, отличающийся тем, что измерение теодолитом производят четырехкратно через промежутки времени не более 60 мин, и место севера вычисляют по формуле:
tgMN=A/B;
где А и В вычисляют по формулам:
A=-b cos N1+a cos N2+d cos N3-c cos N4;
B=+b sin N1-a sin N2-d sin N3+c sin N4,
где коэффициенты a, b, с, d вычисляют по формулам:
a=sin z2:(cos z1-z2); b=sin z1:(cos z1-z2);
c=sin z4:(cos z3-z4); d=sin z3:(cos z3-z4);
где N1, N2, N3, N4 - горизонтальные направления на наблюдаемую неизвестную звезду в четырех точках суточной параллели, измеренные по горизонтальному кругу теодолита; z1, z2, z3, z4 - зенитные расстояния в четырех точках суточной параллели наблюдаемой неизвестной звезды, определяемые по формуле, соответствующей данному типу теодолита, по данным вертикального круга теодолита, а широту определяют дважды по формулам:
tg φ=[sin z2 cos(N2-MN)-sin z1 cos(N1-MN)]:(cos z1-cos z2);
tg φ=[sin z4 cos(N4-MN)-sin z3 cos(N3-MN)]:(cos z3-cos z4).



 

Похожие патенты:

Изобретение относится к областям измерительной техники и геодезического приборостроения и может быть использовано в геодезии при полевых геодезических работах, а также в метрологии для калибровки спутниковых GPS-приемников.

Изобретение относится к области угловых измерений, в частности к системам обнаружения и измерения азимутальных координат импульсных источников излучения, таких как вспышки при запуске ракет, ПТУРС.

Изобретение относится к оптическому приборостроению и может быть использовано для контроля и юстировки различных оптических деталей, сборок и приборов. .

Изобретение относится к оптико-электронным системам и может быть использовано в углоизмерительных приборах ориентации космических аппаратов. .

Изобретение относится к оптико-электронным системам и может быть использовано в углоизмерительных приборах, предпочтительно в звездных приборах ориентации космических аппаратов.

Изобретение относится к технике измерений, может использоваться в геодезическом приборостроении и предназначено для использования при измерении угловых координат летательных аппаратов.

Изобретение относится к области метрологии в геодезической отрасли. .
Изобретение относится к области измерительной техники и может быть использовано для определения азимута направления из заданной точки, называемой исходной точкой, на Мекку, называемую точкой цели, географические координаты которой известны. Для определения требуемого азимута необходимо определить географические координаты исходной точки, точки цели и некоторой базовой точки, в качестве которой проще всего взять Северный магнитный полюс. Угол между базовым направлением, т.е. направлением на базовую точку, и направлением на точку цели, который и является искомым азимутом, является разностью угла между направлением из исходной точки на географический Северный полюс и направлением на точку цели и угла между направлением из исходной точки на Северный магнитный полюс и на географический Северный полюс. Устройство сможет определять направление на Мекку, что необходимо для совершения молитвы человеку, исповедующему ислам, и может быть выполнено в виде молитвенного коврика. При этом при ориентации развернутого молитвенного коврика относительно сторон горизонта, соответствующей направлению некоторой метки на коврике на Мекку, индикация этого направления может быть осуществлена за счет изменения цвета или интенсивности цвета встроенного в молитвенный коврик дисплея на жидких кристаллах.

Изобретение относится к области технической физики и может применяться для стабилизации положения на земной поверхности крупногабаритных установок для научных исследований или промышленного оборудования. Устройство для измерения угла наклона относительно земной поверхности включает в себя источник света, кювету с жидкостью, поверхность которой установлена на пути движения света, регистрирующее устройство отраженного от поверхности жидкости луча света. При этом имеется общее для всех элементов основание, источник света выполнен в виде одномодового стабилизированного лазерного источника, кювета содержит вязкую диэлектрическую жидкость, например масло, с отношением толщины слоя жидкости в кювете к диаметру кюветы в пределах от 0.04 до 0.06, регистрирующее устройство выполнено в виде позиционно чувствительного фотоприемного устройства с блоком регистрации, а угол наклона основания определятся как изменение положения пятна отраженного от поверхности жидкости лазерного луча на позиционно-чувствительном фотоприемнике. Результатом применения предлагаемого изобретения является улучшение стабилизации положения крупномасштабных промышленных или научно-исследовательских комплексов, таких как Международный линейный коллайдер (ILC), современные телескопические системы и др. в условиях сейсмических шумов земного и индустриального происхождения, а также регистрация поверхностных сейсмических волн. 1 ил.

Секстан // 2523100
Изобретение относится к области морского судовождения и может быть использовано в навигационных секстанах. Технический результат изобретения заключается в возможности одновременного и непосредственного измерения разности высот и разности азимутов двух светил без измерения их высот и азимутов. Секстан содержит секторную раму с лимбом, малое наполовину прозрачное зеркало, расположенное на раме, алидаду с осью вращения, перпендикулярной плоскости лимба, большое зеркало, расположенное на алидаде, угломерное отсчетно-стопорное устройство алидады, оптическую трубу и вспомогательные детали. Большое зеркало снабжено осью вращения, лежащей в плоскости этого зеркала параллельно плоскости лимба, и снабжено угломерным отсчетно-стопорным устройством. Оптическая труба снабжена жидкостным уровнем. 3 ил.

Изобретение относится к области геодезии, в частности к высокоточным измерениям для определения критических деформаций. Предложен способ высокоточных измерений инженерных объектов сканирующими лазерными системами (ЛИС) с применением программного обеспечения управления и обработки результатов по двум координатам в реальном масштабе времени и устройство для его осуществления. Сканирующий лазерный пучок задает опорное направление в реальном масштабе времени, используя математический аппарат, наиболее адаптированный к геодезическим измерениям и позволяющий производить одновременные равноточные измерения в нескольких точках исследуемого объекта, расположенных в створе. Технический результат - сокращение временных интервалов измерений, производимых в процессе длительного и непрерывного геодезического мониторинга, обеспечивая точность измерений на протяженных трассах и их отрезках. 2 н.п. ф-лы, 4 ил.

Изобретение относится к технике измерений, может использоваться в геодезическом приборостроении и предназначено для использования в составе устройств измерения угловых координат летательных аппаратов. Известный прототип изобретения не позволяет в ходе селекции идентифицировать подвижные цели при наличии нескольких объектов, поскольку на кадре результирующего изображения присутствуют два изображения каждой движущейся цели - прямое и инверсное, которое запаздывает относительно первого (основного) изображения на время, равное периоду следования кадров. Для устранения инверсных изображений, создающих эффект "ложных целей", в устройство селекции вводится блок вычисления компиляционного кадра. Технический результат предлагаемого устройства селекции подвижных целей - повышение точности селекции подвижных целей за счет подавления их инверсных (ложных) изображений. 1 илл.

Изобретение относится к навигационному приборостроению и может быть использовано в магнитных курсоуказателях для скоростных судов как для визуального съема показаний, так и для дистанционной передачи курса в судовые системы автоматики. Магнитный курсоуказатель для скоростных судов содержит прозрачный корпус котелка, выполненный в виде сферы, заполненной компасной жидкостью, магниточувствительный элемент, расположенный внутри корпуса и состоящий из поплавка, шкалы, магнитов и опорного узла, в который вставляется игла компаса. Магнитный курсоуказатель дополнительно содержит датчик электронной передачи сигнала курса, расположенный на дне корпуса компаса таким образом, что одна его принимающая горизонтальной составляющей магнитного поля земли Нх лежит по диаметральной линии корпуса котелка, а вторая принимающая Ну перпендикулярна ей. Магниточувствительный элемент имеет положительную плавучесть в компасной жидкости, опорный узел магниточувствительного элемента выполнен в виде конуса, магниты магниточувствительного элемента расположены ниже центра точки опоры, на боковой поверхности поплавка по периметру расположена шкала для визуального отсчета курса. Техническим результатом изобретения является упрощение конструкции, повышение точности съема отсчетов. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано в точном приборостроении и метрологии. Способ заключается в кодировании измерительного диапазона прибора с помощью светоконтрастных щелей сигнальной маски, устанавливаемой на объекте, формировании изображения этой щели в плоскости приемной ПЗС(КМОП)-матрицы, передаче этого изображения в вычислительный блок. При этом в схему прибора вводится внутренний эталон угла, реализованный изменением топологии сигнальной маски за счет одной дополнительной светоконтрастной щели с центральным углом между ней и штатной щелью, измеряются вариации Δε(φ) угла ε на различных углах φ разворота ротора в диапазоне 0<φ<360° и по этим вариациям вычисляются систематические погрешности Δφс(φ) измерительной шкалы энкодера. Технический результат - упрощение измерения погрешностей. 1 ил.

Электронно-цифровое устройство относится к технике измерений, может использоваться в геодезическом приборостроении для измерения угловых координат летательных аппаратов. Данное устройство содержит: объектив канала наблюдения, опорно-поворотное устройство, фотоприемное устройство канала наблюдения, матрицу фотодетекторов, устройство считывания информации и аналого-цифровой преобразователь, механизмы вертикального и горизонтального наведения, вертикальный и горизонтальный диски с кодовыми дорожками, блок считывания с вертикального диска и блок считывания с горизонтального диска, первый преобразователь угол-код и второй преобразователь угол-код, видеоконтрольный адаптер, видеоконтрольное устройство, блок формирования отсчетов, блок управления и преобразования информации, блок синхронизации, преобразователь кодов и преобразователь время-код, устройство регистрации, пульт дистанционного управления, а также устройство селекции подвижных целей, содержащее блок оперативной памяти текущего кадра видеоизображения, блок оперативной памяти предыдущего кадра видеоизображения, блок вычисления разностей кадров видеоизображений, блок оперативной памяти текущего кадра видеоизображения, блок суммирования разностей кадров видеоизображений, устройство регистрации, блок оперативной памяти текущих значений кодов, блок оперативной памяти предыдущих значений кодов, блок вычисления относительного сдвига кадров видеоизображений, устройство управления памятью, связанные соответствующим образом. Технический результат - возможность селектировать подвижные объекты на общем наблюдаемом фоне. 1 ил.

Изобретение относится, в частности, к области транспортного строительства и может быть использовано при автоматизации, например, землеройно-транспортных машин, предназначенных для сооружения земляного полотна, а также устройства оснований и покрытий автомобильных дорог. Горизонтальный помехозащищенный маятниковый измеритель угла с высокой чувствительностью по отношению к полезному сигналу и демпфируемый силами, пропорциональными его «абсолютной скорости», отличающийся тем, что горизонтальный маятник состоит из выполненного в виде ламинированного набора круговых тонких пластин, одним концом закрепленных на оси, а другим на дебалансной планке, помещенный в закрытый цилиндрический герметичный корпус, выполненный в виде цилиндра, ось которого совпадает с осью маятника, полностью заполненный демпфирующей жидкостью, смонтирован на плите так, чтобы одна сторона корпуса была установлена на плите шарнирно, а другая сторона закреплена к плите регулировочным болтом, с помощью которого задается величина постоянного угла α, закрытый герметичной крышкой, в которой предусмотрены отверстия с защитными пробками, и преобразователь полезного угла β в электрический сигнал. Целью изобретения является объединение положительных качеств горизонтального маятника с вертикальным, обеспечив демпфирование маятника силами, пропорциональными «абсолютной» скорости. В результате предлагаемое устройство обладает высокой чувствительностью по отношению к полезному сигналу и увеличенный период колебаний, а также при действии помехи в виде импульсного горизонтального ускорения, действующего в плоскости качания маятника, последний получает незначительное ложное отклонение β, которое вследствие демпфирования маятника относительно «жидкого тяжелого сбалансированного тела» быстро затухает. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области геолокации. В заявленном способе и устройстве, реализующем заявленный способ, осуществляют удаленное определение абсолютного азимута целевой точки наземными средствами путем создания банка изображений, географически привязанного по абсолютному азимуту только из первой точки (P1), и использования этого банка изображений в качестве азимутальной привязки из второй точки, имеющей видимое окружение, по меньшей мере, частично совпадающее с видимым окружением первой точки. Технический результат - точное дистанционное определение абсолютного азимута целевой точки с использованием наземных средств. 5 н. и 10 з.п. ф-лы, 4 ил.
Наверх