Способ определения конструктивных параметров электроозонатора

Изобретение может быть использовано в химической промышленности. Определяют активную мощность газоразрядного блока с газоразрядным промежутком между стеклянными пластинами и производительность, а также внутреннюю температуру озонируемого помещения. Строят графики зависимости производительности от активной мощности при разной влажности помещения, затем рассчитывают емкость газоразрядного блока с учетом толщины стеклянных пластин от 2,5 до 4,5 мм и их площади от 0,1 до 1 м2 при постоянном расстоянии между ними. Строят графики зависимости активной мощности газоразрядного блока от его емкости и зависимости емкости газоразрядного блока от площади стеклянных пластин при разной их толщине. Составляют номограмму из ранее построенных графиков. Осуществляют геометрические построения следующим образом: производительность озонатора на выходе из установки находят на оси производительности при заданной температуре и отмечают точкой 1. От нее проводят прямую линию до пересечения с кривой зависимости производительности электроозонатора от его активной мощности при заданной влажности воздуха в помещении и отмечают точку 2. Опускают прямую линию до пересечения с кривой зависимости активной мощности газоразрядного блока от его емкости и отмечают точку 3. Проводят перпендикуляр до пересечения с кривой зависимости емкости газоразрядного блока от площади стеклянных пластин при заданной толщине до линии, соответствущей толщине стекла. Получают точку 4 и от нее поднимают перпендикуляр до пересечения с осью площади стеклянных пластин, на которой отмечают точку 5, которая и является определяемым конструктивным параметром озонатора. Изобретение позволяет выбрать размеры газоразрядного блока электроозонатора без использования специального оборудования. 4 ил.

 

Изобретение относится к устройствам для получения озона и может быть использовано на промышленных и сельскохозяйственных предприятиях для обработки воздушных и водных сред.

Известно техническое решение для измерения таких характеристик, как концентрация положительных и отрицательных аэроионов в помещениях (см. патент РФ №2132052, кл. G01N 27/413. 1991 г.).

Также известно техническое решение (см. патент РФ №2357412, кл. А 0155/00, 2008 г. в котором измеряют физические величины - температуру, активную мощность разрядного устройства с газоразрядным промежутком между стеклянными пластинами в озонаторе, его производительность и строят график зависимости физических величин.

Недостатками известных технических решений является отсутствие возможности определения технических характеристик озонатора, таких как: емкость разрядного устройства, геометрические размеры пластин разрядного устройства и расстояние между ними.

Техническим решением является обеспечение возможности определения технических характеристик электроозонатора.

Поставленная задача достигается тем, что в способе определения конструктивных параметров электроозонатора, включающем измерение конструктивных параметров элемента, построение графика зависимости производительности от конструктивных параметров элемента и определение по построенной зависимости размеров элемента, согласно изобретению, в качестве элемента используют стеклянные пластины, сначала определяют активную мощность газоразрядного блока с газоразрядным промежутком между стеклянными пластинами и производительность, а также внутреннюю температуру озонируемого помещения, строят графики зависимости производительности от активной мощности при разной влажности помещения, затем рассчитывают емкость газоразрядного блока с учетом толщины стеклянных пластин от 2,5 до 4,5 мм и их площади от 0,1 до 1 м2 при постоянном расстоянии между ними, строят графики зависимости активной мощности газоразрядного блока от его емкости и зависимости емкости газоразрядного блока от площади стеклянных пластин при разной их толщине, далее составляют номограмму из ранее построенных графиков, после чего осуществляют геометрические построения, начиная с графика зависимости производительности озонатора от его активной мощности, следующим образом: производительность озонатора на выходе из установки находят на оси производительности при заданной температуре и отмечают точкой 1, от которой проводят прямую линию до пересечения с кривой зависимости производительности электроозонатора от его активной мощности при заданной влажности воздуха в помещении и отмечают точку 2; затем опускают прямую линию до пересечения с кривой зависимости активной мощности газоразрядного блока от его емкости и отмечают точку 3; от которой проводят перпендикуляр до пересечения с кривой зависимости емкости газоразрядного блока от площади стеклянных пластин при заданной толщине до линии, соответствующей толщине стекла, которое будет использоваться при изготовлении разрядного устройства; получают точку 4 и от нее поднимают перпендикуляр до пересечения с осью площади стеклянных пластин, на которой отмечают точку 5, которая и является определяемым конструктивным параметром озонатора.

Новизна заявляемого предложения усматривается в том, что использование номограммы обеспечивает возможность выбора размеров газоразрядного блока электроозонатора без использования специального оборудования, что значительно облегчает его создание электроозонатора по требуемым технологическим параметрам.

По данным научно-технической и патентной литературы не обнаружена аналогичная заявленной совокупность признаков, позволяющая получить технический результат, который ранее не достигался известными средствами, что позволяет судить об изобретательском уровне заявляемого предложения.

Предложенное техническое решение воспроизводимо, в исполнении доступно и может быть использовано на промышленных и сельскохозяйственных предприятиях для обработки воздушных и водных сред.

Сущность изобретения поясняется чертежом, где на фиг.1 - представлен график зависимости производительности электроозонатора от его активной мощности при разной влажности; на фиг.2 - график зависимости емкости разрядного устройства от активной мощности разрядного устройства; на фиг.3 - график зависимости емкости разрядного устройства от площади стеклянных пластин при разной их толщине; фиг.4 - номограмма для определения конструктивных параметров электроозонатора.

Способ определения конструктивных параметров электроозонатора осуществляется следующим образом.

Предварительно экспериментально определяют влияние активной мощности разрядного устройства на его производительность и строят график их зависимости при влажности 60%, 70%, 80% и 90% (фиг.1), 1 - кривая зависимости активной мощности разрядного устройства от его производительности при влажности 60%, 2 - кривая зависимости активной мощности разрядного устройства от его производительности при влажности 70%, 3 - кривая зависимости активной мощности разрядного устройства от его производительности при влажности 80%, 4 - кривая зависимости активной мощности разрядного устройства от его производительности при влажности 90%.

Осуществляют расчет газоразрядных блоков выполненных из стекол разной толщины от 2,5 до 4,5 мм. Значения относительной диэлектрической проницаемости для данных стекол по справочным данным составляет 6-10. В расчете также использовали различные значения площади газоразрядного промежутка, площадь газоразрядного промежутка варьировали от 0.1 м2 до 1 м2. Расстояние между пластинами газоразрядного промежутка оставляли неизменным 2,5 мм. По полученным данным построена следующая зависимость емкости разрядного устройства от площади стеклянных пластин при разной их толщине (фиг.3), где 5 - кривая влияния площади газоразрядного промежутка электроозонатора на его емкость для толщины стекла 2,5 мм; 6 - для толщины стекла 3,5 мм; 7 - для толщины стекла 4,5 мм.

Далее определяют влияние емкости разрядного устройства электроозонатора на его активную мощность. По экспериментальным данным строят зависимость значения активной мощности электроозонатора от емкости разрядного устройства. Данная зависимость представлена на фиг.2. - кривая 8. Емкость диэлектрических барьеров не учитывалась, так как в момент зажигания разряда и при последующем его горении, она стремиться к нулю, следовательно не оказывает влияния на активную мощность электроозонатора.

Далее составляют номограмму для определения технических характеристик электроозонатора (фиг.4) из ранее построенных графиков зависимостей производительности разрядного устройства от его активной мощности, емкости разрядного устройства от площади стеклянных пластин и от активной мощности разрядного устройства и дополнительных осей внутренней температуры озонируемого помещения при различной влажности воздуха, затем осуществляют геометрические построения и определяют технические характеристики электроозонатора.

Пример конкретного осуществления способа определения конструктивных параметров электроозонатора.

Для озонатора с производительностью 20 г/час при внутренней температуре 8°С озонируемого помещения с влажностью воздуха 70% определяют габаритные размеры. Производительность озонатора на выходе из установки (20 г/час) находят на оси 03 при температуре 8°C и отмечают точкой 1, от которой проводят прямую линию до пересечения с кривой 2 зависимости производительности электроозонатора от его активной мощности при влажности воздуха в помещении 70% и отмечают точку 2. Затем опускают прямую линию до пересечения с кривой 8 зависимости активной мощности от емкости газоразрядного промежутка, получаем точку 3. От точки 3 проводим перпендикуляр до пересечения с кривой 7 зависимости емкости газоразрядного промежутка от площади стеклянных пластин (толщина стекла 4,5 мм). Перпендикуляр необходимо проводить до линии, которая соответствует толщине стекла, которое будет использоваться при изготовлении разрядного устройства. Получаем точку 4 и от нее поднимаем перпендикуляр до пересечения с осью F (площадь стеклянных пластин) и отмечаем точку 5. которая и является определяемым конструктивным параметром озонатора, соответствующее значению площади стеклянных пластин электроозонатора.

Способ определения конструктивных параметров электроозонатора, включающий измерение конструктивных параметров элемента, построение графика зависимости производительности от конструктивных параметров элемента и определение по построенной зависимости размеров элемента, отличающийся тем, что в качестве элемента используют стеклянные пластины, сначала определяют активную мощность газоразрядного блока с газоразрядным промежутком между стеклянными пластинами и производительность, а также внутреннюю температуру озонируемого помещения, строят графики зависимости производительности от активной мощности при разной влажности помещения, затем рассчитывают емкость газоразрядного блока с учетом толщины стеклянных пластин от 2,5 до 4,5 мм и их площади от 0,1 до 1 м2 при постоянном расстоянии между ними, строят графики зависимости активной мощности газоразрядного блока от его емкости и зависимости емкости газоразрядного блока от площади стеклянных пластин при разной их толщине, далее составляют номограмму из ранее построенных графиков, после чего осуществляют геометрические построения, начиная с графика зависимости производительности озонатора от его активной мощности, следующим образом: производительность озонатора на выходе из установки находят на оси производительности при заданной температуре и отмечают точкой 1, от которой проводят прямую линию до пересечения с кривой зависимости производительности электроозонатора от его активной мощности при заданной влажности воздуха в помещении и отмечают точку 2; затем опускают прямую линию до пересечения с кривой зависимости активной мощности газоразрядного блока от его емкости и отмечают точку 3, от которой проводят перпендикуляр до пересечения с кривой зависимости емкости газоразрядного блока от площади стеклянных пластин при заданной толщине до линии, соответствущей толщине стекла, которое будет использоваться при изготовлении разрядного устройства; получают точку 4 и от нее поднимают перпендикуляр до пересечения с осью площади стеклянных пластин, на которой отмечают точку 5, которая и является определяемым конструктивным параметром озонатора.



 

Похожие патенты:

Изобретение относится к плазменной технике и технологи получения озона, дезинфекции воздуха и обеззараживания воды, и может быть использовано в медицинской, химической и других областях промышленности, а так же для очистки от микробных загрязнений подземных и поверхностных вод.

Изобретение относится к производству озона и может быть использован для очистки воды и обработки помещений в медицине. .

Изобретение относится к устройству для генерации озона и может быть использовано в химической промышленности и сельском хозяйстве. .

Изобретение относится к устройствам для получения озона и может быть использовано на промышленных и сельскохозяйственных предприятиях для обработки воздушных и водных сред.

Изобретение относится к устройствам для генерирования озона и может быть использовано для обеззараживания питьевой воды, очистки сточных вод, воздуха в помещениях, а также в медицине, в промышленном производстве, в сельском хозяйстве и других отраслях.

Озонатор // 2429193
Изобретение относится к устройствам для получения озона и может быть использовано на промышленных и сельскохозяйственных предприятиях для обработки воздушных и водных сред.

Изобретение относится к устройствам для получения озона из воздуха и может быть широко использовано в различных отраслях сельского хозяйства. .

Озонатор // 2427528
Изобретение относится к аппаратам синтеза озона из кислородосодержащих газов. .

Изобретение относится к устройствам, используемым в биологии, химической промышленности, медицине, сельском хозяйстве для получения озона с помощью электрического разряда.

Изобретение может быть использовано для обеззараживания питьевой воды, очистки сточных вод и воздуха в помещениях. Устройство содержит расположенные в герметичном корпусе высоковольтные и заземленные пластинчатые электроды, имеющие центральные отверстия и выполненные с возможностью охлаждения теплоносителем, покрытые снаружи диэлектриком и чередующиеся через один, источник питания, выводы которого подключены к электродам, штуцеры для подвода рабочего кислородосодержащего газа и теплоносителя и штуцеры для отвода теплоносителя и газоозоновой смеси. Электроды выполнены из герметично соединенных между собой параллельных пластин, образующих внутреннюю полость, в которой расположены установленные перпендикулярно внутренним поверхностям пластин электродов перемычки, жестко связывающие пластины между собой, штуцеры для подвода теплоносителя к электродам и отвода теплоносителя от них. Пластины электродов выполнены с выступающими за пределы активной зоны электродов частями. Первая внутренняя и все нечетные дистанцирующие перемычки жестко прикреплены к одной пластине электрода, а все четные дистанцирующие перемычки жестко прикреплены к другой пластине. На внешней кромке кольцевых пластин выполнены полуцилиндрические впадины для прохода запирающих стержней, которые, проходя через отверстия в дистанцирующих перемычках, соединяют кольцевые пластины и обеспечивают жесткую конструкцию электрода. Три стержня, расположенные под углом 120° относительно друг друга, выходят за пределы внешней кромки электрода и являются элементами крепления электрода к несущим стойкам, имеющим отверстия для установки стержней крепления электродов, расположенные на определенном расстоянии друг от друга. 1 з.п. ф-лы, 4 ил.

Озонатор // 2523805
Изобретение относится к области производства озона и может быть использовано для обработки воздушных и водных сред. Озонатор содержит высоковольтный источник переменного напряжения, выполненный в виде изолированных проводов (электродов), покрытых диэлектриком, намотанных на конусное основание. Техническим результатом является повышение производительности и упрощение конструкции. 3 ил.

Изобретение относится к озонаторам и может быть использовано на промышленных и сельскохозяйственных предприятия для обработки воздушных и водных сред. Технический результат состоит в обеспечении контроля производительности озонаторов. Для контроля производительности озонатора в качестве расхода продукта используют концентрацию озона, а в качестве сигнала - количество электрического заряда в озоно-ионной воздушной смеси и измеряют его в течение времени, заданного блоком управления. Затем подают сигнал на дифференцирующее звено, которое по циклам определяет скорость изменения заряда, и формируют его в виде числового или аналогового сигнала в виде электрического напряжения. Циклически поступающие сигналы на счетчик суммируют и при достижении суммарного сигнала заданной величины напряжения озонатор отключают. Устройство содержит датчик производительности озона 7, установленный перед выходом озонатора 4, и имеет кулометр 9, соединенный с дифференцирующим звеном 5 и блоком управления, состоящим из последовательно соединенных счетчика сигналов 10, усилителя сигналов 11 и устройства управления циклическим процессом измерения скорости изменения заряда 12. Выход усилителя сигналов 11 соединен с регулятором напряжения 6. Датчик выполнен в виде тонкой металлической пластины, а высоковольтный электрод озонатора - в виде плоской катушки. 2 н.п. ф-лы, 1 ил.

Изобретение относится к технологии стабилизации производительности озонаторов и может быть использовано на промышленных и сельскохозяйственных предприятиях для обработки воздушных и водных сред. Для стабилизации производительности озонатора согласно изобретению в качестве расхода сырья используют концентрацию озона, а в качестве сигнала - количество электрического заряда в озоно-ионной воздушной смеси, подаваемой озонатором, которое измеряют в течение времени, заданного блоком управления, и подают на дифференцирующее звено, определяющее по циклам скорость изменения заряда, которую далее формируют в виде числового или аналогового сигнала электрического напряжения и сравнивают со значением напряжения на электродах озонатора, заданного блоком управления. При отклонении величины сигнала формируют регулятором напряжения сигнал, обратно пропорционально изменяющий напряжение на электродах озонатора. Устройство для осуществления способа имеет датчик производительности озона, установленный перед выходом озонатора, кулонометр, соединенный с дифференцирующим звеном с блоком управления, состоящим из последовательно соединенных счетчика сигналов, усилителя сигналов и устройства управления циклическим процессом измерения скорости изменения заряда, соединенного со счетчиком сигналов и кулонометром. Выход усилителя сигналов соединен с регулятором напряжения, а источник питания подключен к устройству управления циклическим процессом измерения скорости изменения заряда и к усилителю сигналов. Датчик выполнен в виде тонкой металлической пластины, а высоковольтный электрод озонатора - в виде плоской катушки. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области промышленной безопасности и газоаналитического приборостроения в части производства приборов и устройств, применяемых для проведения периодической поверки и калибровки приборов газового контроля наличия в воздухе рабочей зоны промышленных предприятий токсичных и взрывоопасных газов. Электроразрядный имитатор поверочных газовых смесей содержит разрядную камеру с впускным и выпускным отверстиями, внутри которой размещены высоковольтные электроды. Причем вне камеры установлен источник импульсов высокого напряжения, подключенный к электродам и побудитель расхода атмосферного воздуха через разрядную камеру. При этом устройство размещено в носимом экранированном корпусе, в полости которого жестко закреплены источник питания искрового низкочастотного разряда и побудитель расхода газа. Также в полости корпуса размещены разрядная камера, имеющая форму Т-образной трубки, через длинную сторону которой побудителем расхода газа прокачивается атмосферный воздух. При этом в ее середине на внутренней стенке в отверстии диаметром D2=3 мм, образуемом другой короткой трубкой, стыкуемой перпендикулярно с первой, периодически зажигается искровой разряд между центральной жилой и корпусом камеры, соединенным с оплеткой коаксиального кабеля РК-50, вставленного герметично в короткую трубку с внутренним диаметром D2 на расстояние L2 заподлицо с внутренней поверхностью длинной трубки с внутренним диаметром D1, соединенной через выходящую из корпуса имитатора силиконовую трубку длиной 800 мм с внутренним диаметром 4 мм с входным штуцером проверяемого газосигнализатора, через камеру сенсоров которого прокачивается газовоздушная смесь, отбираемая из зоны разряда, в пространстве которого возникают возбужденные атомы, молекулы и ионы, действие которых на газочувствительные сенсоры NO, NO2, Cl2, CO, C3 и другие эквивалентно действию газовых смесей этих газов фиксированных концентраций в воздухе или в другом нейтральном по отношению к сенсору газе-разбавителе, получаемых в генераторах поверочных газовых смесей, или действию ГОСТированных поверочных газовых смесей в сосудах высокого давления. Техническим результатом является мобильность переносного прибора и повышение производительности поверки и наладки газосигнализаторов как в условиях массового производства, так и при периодическом техническом обслуживании газосигнализаторов в условиях технического сервиса, так и в организациях, закупающих газосигнализаторы для обеспечения безопасности производства с наличием токсичных веществ в воздухе рабочей зоны. 1 ил.

Изобретение относится к устройству для получения озона и направлено на совершенствование схемы электрического питания генератора озона озонаторного комплекса. Озонаторный комплекс содержит высоковольтный высокочастотный источник питания и подключенную к нему ударную емкость, а также подключенный через коммутатор и выполненный в виде многозазорного искрового разрядника генератор озона. Причем высоковольтный источник питания представляет собой высоковольтный источник постоянного напряжения, а многозазорный искровой разрядник выполнен с неподвижными электродами. Каждая пара неподвижных электродов образует разрядный промежуток и установлена с возможностью формирования искрового разряда при помощи инициирующих электродов, установленных во вращающемся диске, размещенном в разрядных промежутках. При этом инициирующие электроды равномерно установлены на вращающемся диске так, что при вхождении двух противоположно размещенных на диске инициирующих электродов в разрядные промежутки двух пар неподвижных электродов все остальные электроды остаются вне разрядных промежутков других пар неподвижных электродов. Неподвижные электроды, расположенные по одну сторону от диска с инициирующими электродами, подключены к источнику питания через ударную емкость и импеданс, а неподвижные электроды, расположенные по другую сторону от диска с инициирующими электродами, подключены к генератору озона по мостовой схеме. Техническим результатом заявленного изобретения является повышение стабильности работы озонаторного комплекса. 1 з.п. ф-лы, 1 ил.

Изобретение относится к способам и устройствам защиты генератора озона от пожара при электрическом пробое внутренней изоляции. Техническим результатом является полное вытеснение за короткий промежуток времени кислорода с продуктами горения из внутренней полости генератора озона газом, не поддерживающим горение. Технический результат достигается тем, что в способе защиты генератора озона от пожара производят отключение электродов генератора озона от источника электропитания и прекращают подвод кислорода в генератор озона. Одновременно заполняют внутреннюю полость генератора озона негорючим газом под повышенным давлением, вытесняя из нее кислород с продуктами горения и прекращая процесс горения. 2 н.п. ф-лы, 2 ил.

Импульсный безбарьерный генератор озона относится к системам получения озона для использования его в технологиях очистки и обеззараживания воды. В импульсном безбарьерном озонаторе, содержащем металлический корпус и размещенную в корпусе электродную систему, содержащую разрядные элементы, каждый из которых состоит из низковольтного и высоковольтного электродов, подключенных к высоковольтному генератору импульсов, корпус содержит две диэлектрические пластины, установленные против друг друга. На одной из пластин расположен высоковольтный электрод, представляющий собой однослойную обмотку из неизолированного провода, диаметр которой меньше расстояния между пластинами, причем шаг обмотки не менее чем в 2 раза больше расстояния электрического пробоя. Аналогично выполнен низковольтный электрод, установленный на другой пластине. Электроды смещены относительно друг друга на полшага обмотки. Устройство характеризуется повышенной эффективностью наработки озона, простотой конструкции и малыми габаритами. 2 ил.

Изобретение относится к способу эксплуатации блока генерирования озона. Способ включает стадию, на которой в устройство генерирования озона подают поток содержащего кислород газа и стадию, на которой управляют потоком содержащего кислород газа, и управляют мощностью, которую подают из блока питания в устройство генерирования озона так, чтобы получить из устройства генерирования озона заданный выход озона, и так, чтобы обеспечить уменьшение потребления ресурсов, включая содержащий кислород газ и мощность, подаваемую из блока питания. 5 ил.

Озонатор // 2568703
Изобретение относится к технической физике и может быть использовано для озонирования воздуха и кислорода, растворов, обработки озоном различных объектов в биологии, медицине, сельском хозяйстве и промышленности. Озонатор коронного разряда содержит два разрядных электрода, расположенных коаксиально, соединенных с источником высокого напряжения. Внутренний электрод вращается относительно внешнего электрода и имеет на поверхности коронирующие элементы. Электроды имеют форму цилиндров, переходящих в конусы. Хотя бы один электрод или его часть может перемещаться вдоль общей оси вращения для регулирования межэлектродного зазора. Коронирующие элементы выполнены в виде шипов или гибких элементов из проводящего материала. Гибкие элементы обеспечивают возможность самоочистки поверхностей разрядных электродов от окислов путем периодического приведения в соприкосновение вращающегося внутреннего электрода в контакт с внешним электродом в отсутствие напряжения между электродами. Технический результат: повышение эффективности работы озонатора за счет получения устойчивого коронного разряда, увеличение тока разряда, увеличение надежности и ресурса работы озонатора. 2 пр., 1 ил.
Наверх