Способ получения сульфата натрия

Изобретение может быть использовано в химической промышленности. Способ получения сульфата натрия включает взаимодействие отработанной серной кислоты (ОСК) - отхода процесса алкилирования изобутана олефинами с 10-15% раствором гидроксида натрия. Предварительно отработанную серную кислоту смешивают с органическим экстрагентом, взятым в массовом соотношении серная кислота:экстрагент=1:1. В качестве экстрагента используют смесь этилового спирта и тетрагидрофурана при массовом соотношении 1:1. Процесс взаимодействия проводят при температуре 50-75°C до достижения pH реакционной массы 7-8. Далее верхний органический слой отделяют, а нижний водный слой выпаривают, кристаллы сульфата натрия сушат с получением целевого продукта. Изобретение позволяет расширить сырьевую базу производства сульфата натрия с получением продукта высокого качества с малым содержанием остаточного количества органических веществ. 1 табл., 1 пр.

 

Изобретение относится к получению сульфата натрия из отработанной серной кислоты процесса алкилирования изобутана олефинами, содержащей органические примеси.

Известен способ выделения сульфата натрия из растворов алкилсульфонатов путем добавления низкомолекулярного спирта с последующим охлаждением и отделением маточного раствора от выпавших в кристаллизаторе кристаллов сульфата, при этом с целью получения крупных кристаллов и сокращения времени фильтрации, маточный раствор возвращают в кристаллизатор двумя потоками в объемном соотношении 3:1-4:1, направленными под углом 75-105°C друг к другу, а смесь раствора алкилсульфоната и спирта подают совместно с меньшим потоком маточного раствора в нижнюю часть кристаллизатора [Авторское свидетельство СССР №790571, кл. C01B 5/00, 1999].

Недостатком известного способа является сложность технологического процесса, низкое качество сульфата натрия.

Известен способ получения сульфата натрия из хлоридсульфатных растворов путем упаривания их при повышенной температуре с последующим отделением из полученной пульпы сульфата натрия, а упаривание ведут под давлением 1,5-4,5 ати и при температуре 110-120°C до содержания хлоридов в жидкой фазе, не превышающего 18-20%, предпочтительно 12-14% [А.с. СССР №334181, кл. C01D 5/00, 1972].

Недостатком известного способа является недостаточное высокое качество целевого продукта - сульфата натрия из-за содержания хлоридов в пределах 0,65-1,6%.

Известен способ получения гранулированного сульфата натрия, включающий нейтрализацию сульфатного стока производства синтетических жирных кислот 25%-ным раствором кальцинированной соды и обезвоживание реакционной смеси путем распыления над взвешенным слоем, полученный гранулированный продукт пропускают через вспененный слой водного раствора сульфата натрия, содержащего поверхностно-активное вещество (ПАВ), с последующей сушкой при 50-80°C. Водный раствор сульфата натрия и ПАВ берут при массовом соотношении 100:0,1-1,5 [А.с. СССР №1125192, кл. C01D 5/00, 1984].

Недостатком известного способа является недостаточное высокое качество целевого продукта - сульфата натрия из-за содержания хлоридов в пределах 1,2% и органических веществ 5%.

Наиболее близким по достигаемому результату является способ получения сульфата натрия, включающий взаимодействие серной кислоты с натрийсодержащим реагентом, где в качестве натрийсодержащего реагента используют измельченную поваренную соль, а ее взаимодействие с 92-93%-ной серной кислотой проводят в сульфатных печах при температурах 500-550°C [Позин М.Е. Технология минеральных солей. ч.1. Изд. 4-е, испр. Л., Изд-во «Химия», 1974, с.371-379]. При взаимодействии поваренной соли и серной кислоты процесс протекает с образованием сульфата натрия и выделением газообразного хлористого водорода.

Недостатком известного метода является использование технической серной кислоты в качестве исходного реагента, недостаточно высокое качество сульфата натрия из-за присутствия в готовом продукте примеси гипса и оксидов железа.

Целью изобретения является повышение качества целевого продукта - сульфата натрия.

Поставленная цель достигается в предлагаемом способе получения сульфата натрия, включающий взаимодействие серной кислоты с натрийсодержащим реагентом, причем в качестве серной кислоты используют отработанную серную кислоту - отход процесса алкилирования изобутана олефинами, а в качестве натрийсодержащего реагента - 10-15%-ный раствор гидроксида натрия, предварительно отработанную серную кислоту смешивают с органическим экстрагентом, взятого в массовом соотношении серная кислота:экстрагент=1:1, в качестве экстрагента используют смесь этилового спирта и тетрагидрофурана при массовом соотношении 1:1, а процесс взаимодействия проводят при температуре 50-75°C до достижения рН среды водного слоя реакционной массы 7-8. Далее верхний органический слой отделяют, а нижний водный слой выпаривают, кристаллы сульфата натрия сушат с получением целевого продукта.

Отработанная серная кислота (ОСК) образуется в качестве отхода при производстве высокооктанового бензина путем сернокислотной алкилации изобутана олефинами. Выход ОСК составляет около 0,10 т на 1 т. высокооктанового бензина. Отработанная серная кислота представляет собой темную гомогенную жидкость и содержит не менее 85% H2SO4, не более 10% органических соединений в пересчете на углерод.

Сущность способа заключается в следующем. При взаимодействии раствора гидроксида натрия с отработанной серной кислотой в присутствии экстрагента протекают процессы нейтрализации серной кислоты с получением насыщенного водного раствора сульфата натрия и перехода органических соединений ОСК в верхний органический слой. Проведение процесса получения сульфата натрия в указанных пределах технологических параметров обеспечивает высокое качество целевого продукта - сульфата натрия с малым содержанием примесей органических соединений. Оптимальным является использование раствора гидроксида натрия концентрации в пределах 10-15%. При повышении концентрации гидроксида натрия выше 15% получается пересыщенный раствор сульфата натрия, процесс протекает с образованием твердой фазы, целевой продукт загрязняется органическими соединениями. При использовании раствора гидроксида натрия концентрации ниже 10% повышается расход энергоресурсов на выпаривание более разбавленного раствора сульфата натрия. Именно предварительное смешение органического экстрагента с ОСК в массовом соотношении ОСК:экстрагент, равным 1:1, обеспечивает низкое содержание органических примесей в целевом продукте. Насыщенный водный раствор сульфата натрия в данном случае проявляет высаливающий эффект. При этом достигается высокая степень перехода органических примесей в органическую фазу. Введение экстрагента в полученную реакционную смесь после нейтрализации кислоты не обеспечивает чистоту продукта, затруднено расслоение органической и водной фаз. Уменьшение расхода экстрагента, ниже массового соотношения 1:1, приводит к ухудшению отделения органической и водной фаз и повышенному содержанию органических примесей в готовом продукте. Увеличение расхода экстрагента выше указанного массового соотношения не целесообразно, так как при этом степень выделения органической фазы практически не возрастает, приводит к перерасходу экстрагента. Применение в качестве экстрагента смеси полярных органических растворителей, а именно этилового спирта и тетрагидрофурана (ТГФ) при массовом соотношении 1:1, обеспечивает высокое качество целевого продукта, низкое содержание органических примесей, а также наиболее полный выход сульфата натрия. Оптимальным является ведение процесса взаимодействия ОСК и гидроксида натрия при температуре 50-75°C. При понижении температуры ниже 50°C ухудшаются условия разделения органической и водной фаз. Повышение температуры процесса выше 75°C приводит к увеличению потерь экстрагента из-за усиленного испарения органических растворителей - этилового спирта и тетрагидрофурана. Нагревание реакционной массы и поддержание требуемой температуры обеспечивается за счет выделения теплоты реакции нейтрализации. Ведение процесса взаимодействия ОСК и раствора гидроксида до достижения показателя рН среды до 7-8 обеспечивает наибольший выход сульфата натрия и нейтральность полученной соли. При ведении процесса с достижением рН реакционной массы ниже 7 получается продукт, содержащей высокую кислотность, уменьшается выход соли. Ведение процесса взаимодействия при рН реакционной массы выше 8 приводит к перерасход гидроксида натрия.

Целесообразность выбранных пределов показателей процесса приведена в примере 1 и в таблице 1.

Пример 1. Берут 1000 г отработанной серной кислоты - отхода процесса алкилирования изобутана олефинами, содержащей 86% масс. серной кислоты и 10% масс. органических примесей в пересчете на углерод, и помещают в реактор, снабженной механической мешалкой. В реактор вводят 1000 г экстрагента, состоящий из 500 г этилового спирта и 500 г тетрагидрофурана. Массовое соотношение серная кислота: экстрагент равно 1:1. Массовое соотношение этилового спирта и тетрагидрофурана в смеси растворителей равно 1:1.Отработанную серную кислоту нейтрализуют 10%-ным раствором гидроксида натрия при температуре 60°C до достижения рН водной фазы 7. Процесс взаимодействия ОСК и гидроксида натрия сопровождается выделением тепла, за счет чего обеспечивается нагревание реакционной массы до требуемой температуры. При отключении перемешивания реакционная масса самопроизвольно делится на органический (верхний) слой и водный слой, представляющий насыщеный раствор сульфата натрия. Органический слой отделяют. Водный слой имеет слабо-желтую окраску. Водный слой выпаривают и сушат. Выход соли - сульфата натрия 0,9 кг. Продукт содержит 98% масс. основного вещества, 0,3% масс. влаги и 0,5% органических примесей в пересчете на углерод.

Использование отработанной серной кислоты процесса сернокислотного алкилирования расширяет сырьевую базу производства сульфата натрия. Способ позволяет получить сульфат натрия высокого качества с малым содержанием остаточного количества органических веществ.

Способ получения сульфата натрия, включающий взаимодействие серной кислоты с натрийсодержащим реагентом, отличающийся тем, что в качестве серной кислоты используют отработанную серную кислоту - отход процесса алкилирования изобутана олефинами, а в качестве натрийсодержащего реагента - 10-15%-ный раствор гидроксида натрия, предварительно отработанную серную кислоту смешивают с органическим экстрагентом, взятым в массовом соотношении серная кислота:экстрагент=1:1, в качестве экстрагента используют смесь этилового спирта и тетрагидрофурана при массовом соотношении 1:1, а процесс взаимодействия проводят при температуре 50-75°C до достижения pH реакционной массы 7-8, далее верхний органический слой отделяют, а нижний водный слой выпаривают, кристаллы сульфата натрия сушат с получением целевого продукта.



 

Похожие патенты:

Изобретение относится к цветной металлургии, конкретно к мокрой очистке отходящих газов электролизных корпусов производства алюминия от остатков фтористого водорода и диоксида серы с получением в качестве товарных продуктов сульфата натрия и фтористого кальция.

Изобретение относится к способу переработки содосульфатной смеси на сульфат натрия при производстве из боксита по методу Байер-спекание. .

Изобретение относится к переработке низкокалийного содопоташного раствора. .

Изобретение относится к переработке содосульфатных растворов, получаемых после очистки содосульфатным раствором серосодержащих газов электролизных корпусов производства алюминия.

Изобретение относится к технологии переработки содосульфатной смеси. .

Изобретение относится к переработке содо-сульфатно-фторидных растворов, образующихся при очистке отходящих газов электролизных корпусов. .

Изобретение относится к переработке низкокалийного содопоташного раствора, загрязненного большим количеством сульфатных солей. .

Изобретение относится к способу и устройству для очистки воды от примесей в виде молекул воды, содержащих в своем составе тяжелые изотопы водорода и кислорода, а более конкретно - к способу и установке для получения легкой, особо чистой воды с повышенным содержанием в ней доли молекул 1Н 2 16О.
Изобретение относится к способу получения гранулированного сульфата калия, применяемого в химической промышленности для производства минеральных удобрений и в сельском хозяйстве в качестве бесхлорного калийсодержащего удобрения.

Изобретение может быть использовано химической промышленности. Способ получения двойного сульфата и раствора хлористого водорода включает приготовление раствора из хлорида, содержащего один из катионов двойного сульфата, и гидросульфата, содержащего второй из катионов двойного сульфата, и осаждение из раствора двойного сульфата. Осаждение ведут до удаления из раствора сульфат-иона с одновременным получением раствора хлористого водорода. В качестве гидросульфата, содержащего первый из катионов двойного сульфата, используют гидросульфат натрия, или гидросульфат калия, или гидросульфат аммония, или гидросульфат рубидия, или гидросульфат цезия. В качестве хлорида, содержащего второй из катионов двойного сульфата, используют хлорид магния, или хлорид алюминия, или хлорид никеля, или хлорид хрома, или хлорид кобальта, или хлорид марганца, или хлорид меди, или хлорид железа, или хлорид кадмия, или хлорид цинка. Изобретение позволяет одновременно получать двойные сульфаты и разбавленный раствор технической соляной кислоты или раствор для выщелачивания руд или производства газообразного хлористого водорода. 7 з.п. ф-лы, 1 табл., 5 пр.

Изобретение может быть использовано в химической промышленности. Для получения железоокисных пигментов готовят суспензию зародышей. На стадии окисления металлического лома в кислой среде для нейтрализации кислоты и регулирования pH используют 20% водный раствор гидроксида калия. Осуществляют многократную промывку пигмента. Стоки при концентрации сульфата калия 5-10% направляют в вакуумную кристаллизационную установку выпарки растворов. Загрязненную солями сульфата калия технологическую воду методом выпаривания и конденсации преобразуют в чистую воду с концентрацией солей 150 г/м3. Воду используют в производстве железоокисных пигментов. Полученный при выпаривании сульфат калия используют в качестве калиевого удобрения. Изобретение позволяет исключить образование загрязненных сточных вод, твердых отходов и выбросов паров аммиака, получить сульфат калия в качестве дополнительного продукта. 1 ил.

Изобретение может быть использовано в производстве удобрений. Для получения сульфата калия полигалитовую руду измельчают, отмывают водой от галита, прокаливают в печи, охлаждают. Выщелачивают водой прокаленный полигалит при 98-100°C, осаждают гипс и фильтруют его из раствора. К полученному фильтрату добавляют хлорид калия для конвертирования при температуре 98-100°C сульфата магния с хлоридом калия и получают сульфат калия, который фильтруют и сушат. Полигалитовую руду измельчают до получения гранулометрического состава частиц размером 5-20 мм. Промытый от галита полигалит прокаливают при температуре, равной 0,53-0,75 Т плавления полигалита. Затем измельчают полигалит в горячей воде до получения гранулометрического состава частиц размером 0,2-1,0 мм. После фильтрования гипса полученный фильтрат шенита смешивают с влажным шенитом для разложения. В образовавшийся раствор шенита добавляют раствор хлорида калия. Конвертируемый раствор шенита упаривают. Изобретение позволяет упростить извлечение сульфата калия из полигалитовой руды, повысить качество и степень извлечения сульфата калия. 1 ил., 1 табл., 1 пр.

Изобретение относится к способу переработки водно-органического отхода молибденового катализатора органического синтеза. Способ включает отгонку углеводородов, обработку кубового остатка серной кислотой, разделение продукта обработки на водную и органическую фазы, выделение из водной фазы триоксида молибдена и десятиводного сульфата натрия, выделение из органической фазы фенола и бензойной кислоты. При этом отгонку широкой фракции углеводородов проводят острым водяным паром с температурой 110-130°С, обработку кубового остатка проводят концентрированной серной кислотой до рН 1-2 при температуре 25-40°С, расслаивание продукта обработки на водную и органическую фазы проводят при 30-40°С в течение 30-60 минут, после чего фазы разделяют. Из охлажденной до 20-25°С водной фазы экстрагируют остатки фенола и бензойной кислоты метил-трет-бутиловым эфиром при соотношении объемов водной и органической фаз О:В = 1:1. Водную фазу отделяют от органической и обрабатывают водным раствором сульфида и/или гидросульфида натрия при мольном соотношении Mo:S = 1:5 с выделением из раствора осадка трисульфида молибдена фильтрацией с последующей сушкой и окислительным обжигом трисульфида молибдена до триоксида молибдена при температуре 550-600°С. Водный фильтрат после удаления трисульфида молибдена очищают от остатков органической фазы сорбцией на активированном угле с последующим упариванием водного раствора и кристаллизацией из упаренного раствора десятиводного сульфата натрия. Из органической фазы, полученной после разделения кубового остатка, последовательно выделяют фенол отгонкой с острым водяным паром с температурой 110-130°С, с последующей его экстракцией из дистиллята метил-трет-бутиловым эфиром при соотношении объемов водной и органической фаз О:В = 1:1 и очищением от примесей ректификацией, и бензойную кислоту при температуре перегонки 105-110°С, выделение которой из дистиллята проводят фильтрацией, а очистку от примесей - возгонкой твердого высушенного продукта при температуре 105-110°С. Изобретение позволяет повысить эффективность выделения товарных ликвидных продуктов из водно-органического отхода молибденового катализатора органического синтеза. 11 з.п. ф-лы, 2 табл.

Изобретение относится к цветной металлургии и может быть использовано для очистки отходящих газов электролизных корпусов производства алюминия от остатков фтористого водорода и соединений серы с получением в качестве товарного продукта сульфата натрия. Способ мокрой очистки отходящих газов электролизных корпусов производства алюминия включает очистку газа от фтористого водорода и соединений серы путем его орошения содосульфатным раствором, выделение безводного сульфата натрия в выпарном аппарате, при этом орошение газа содосульфатным раствором ведут с получением насыщенного содосульфатного раствора, часть которого подают в выпарной аппарат и упаривают до достижения предельной концентрации сульфата натрия, а оставшийся раствор направляют на отстаивание, после чего возвращают на стадию орошения, при этом упаренный раствор сульфата натрия направляют на обезвоживание и сушку с последующим получением готового сульфата натрия, а маточный раствор после упаривания повторно направляют в выпарной аппарат. Технический результат - повышение качества сульфата натрия. 3 з.п. ф-лы, 1 ил.
Наверх