Устройство и способ для нанесения сверхпроводящих слоев

Изобретение относится к области высокотемпературной сверхпроводимости и может использоваться для изготовления ленточных высокотемпературных сверхпроводников второго поколения. Сущность: устройство для нанесения сверхпроводящих слоев содержит камеру осаждения с зоной нагрева, через которую перемещается протяженная подложка; импульсно-периодический лазер, сфокусированный на мишень, имеющую покрытие из сверхпроводящего материала; механизм для перемещения импульсного лазерного луча по поверхности мишени, от которой в результате импульсной лазерной абляции отделяется материал и ударяет в нагреваемую протяженную подложку; механизм перемещения мишени, и блок управления последовательных движений лазерного луча и перемещения мишени. Технический результат достигается за счет того, что механизм перемещения мишени содержит постоянно вращающийся вал, на котором закреплена мишень, имеющая осевую симметрию относительно оси вращения, параллельной направлению перемещения подложки через зону нагрева. Технический результат: упрощение устройства при обеспечении возможности повышения скорости нанесения сверхпроводящих слоев. 2 н. и 1 з.п. ф-лы, 1 ил.

 

Группа изобретений относится к области высокотемпературной сверхпроводимости, а именно к устройству и способу нанесения высокотемпературных сверхпроводящих слоев методом импульсной лазерной абляции на протяженную подложку/ленту, и может использоваться для изготовления ленточных высокотемпературных сверхпроводников (ВТСП) второго поколения.

Уровень техники

Высокотемпературные сверхпроводники (ВТСП) имеют критическую температуру более 11 градусов по Кельвину. Открытие нового класса сверхпроводников, представляющих собой металлическую оксидную керамику, в частности, Y-Ba-Cu-О с критической температурой Тс=90-92 К, которая выше температуры 77 К жидкого азота, стало прорывом в развитии ВТСП. Рекордная температура перехода в сверхпроводящее состояние на настоящий момент составляет 135 К для ртутных (Hg-Ba-Ca-Cu-O) сверхпроводников. В качестве хладагента для этих материалов можно использовать жидкий азот (77 К). Стоимость криооборудования и его энергопотребление для охлаждения ВТСП во много раз меньше, чем для низкотемпературных сверхпроводников. Наряду с высокой плотностью критического тока, достигающей единиц МА/см2 при 77 К, эти материалы демонстрируют рекордную среди всех прочих сверхпроводников устойчивость критического тока в магнитных полях. В этом состоит их принципиальное преимущество по сравнению с проводами первого поколения на основе висмутовых ВТСП. Если в лентах 1-го поколения ВТСП проводники заключены в матрицу из серебра или сплава на его основе, то для создания лент 2-го поколения обычно применяют ленты-подложки, на которых ВТСП проводник - один и представляет из себя тонкое покрытие на поверхности ленты. В последнее десятилетие происходило накопление мирового опыта в технологии ВТСП-лент 2-го поколения, приведшее к появлению лент длиной в сотни метров с токонесущей способностью, достигающей 500 А при 77 К.

В результате отбора ВТСП покрытие промышленно изготавливаемых лент обычно включает в себя такие компоненты, как иттрий, барий, медь и кислород: YBa2Cu3O7-δ (YBCO).

Одним из наиболее высокоэффективных способов получения ВТСП материалов является импульсная лазерная абляции, например, при воздействии в камере осаждения сканирующего лазерного луча эксимерного лазера на плоский торец вращающейся мишени из YBCO [Сверхпроводящие высокотемпературные пленки Y-Ba-Cu-O, полученные импульсным лазерным распылением. В.Ю. Баранов, Е.В. Богданов, В.М. Борисов и др. Сборник научных трудов Института атомной энергии им. И.В. Курчатова, 1988]. Однако данные устройство и способ, применявшиеся для нанесения сверхпроводящих слоев на неподвижную нагреваемую подложку, не предназначены для получения длинных лент с ВТСП покрытием, требуемых для изготовления ВТСП кабелей и других видов электроэнергетического оборудования.

Из ЕР 0469603 А2 известны другие способ и устройство для нанесения сверхпроводящих слоев. В одном из вариантов устройство содержит первое и второе зеркала для двумерного сканирования мишени. Двумя зеркалами можно управлять с помощью электромагнитных приводов таким образом, чтобы лазерный луч сканировал всю площадь мишени. Однако координация двух зеркал сложна и может не обеспечивать равномерное нанесение ВТСП покрытия с одной стороны и равномерную выработку мишени - с другой стороны. Производительность метода также может быть недостаточна высокой.

Частично этих недостатков лишены известные из US Patent 7501145 В2 устройство и метод получения протяженных ВТСП лент методом лазерной абляции нескольких расположенных на одной линии мишеней, облучаемых таким же количеством лазерных лучей, фиксированных в пространстве. Мишени снабжены приводом вращения и механизмом возвратно-поступательного движения для равномерной выработки покрытия мишени и равномерного нанесения покрытия на протяженную подложку, движущуюся через зону нагрева, в которой происходит осаждение сверхпроводящего материала на подложку. Метод нанесения сверхпроводящих слоев предполагает перекрытие потоков испаряемого с мишеней материала, формирующего сверхпроводящие слои на поверхности протяженной подложки. Данные устройство и метод обладают высокой производительностью за счет мультиплицирования количества мишеней и лазерных лучей. Однако фиксация лазерного луча в пространстве может ограничивать частоту следования лазерных импульсов из-за того, что в области фокусировки луча на мишени может происходить накопления паров и продуктов абляции материала мишени, рассеивающих лазерный луч. Это является фактором, ограничивающим производительность метода, не позволяющим использовать лазеры с высокой частотой повторения импульсов. Кроме этого, механизмы и контроль перемещения мишеней достаточно сложны.

Частично этих недостатков лишены известные из US Patent 7501125 устройство и способ для нанесения сверхпроводящих слоев. Устройство для нанесения сверхпроводящих слоев содержит: камеру осаждения с зоной нагрева, через которую перемещается протяженная подложка, импульсно-периодический лазер, сфокусированный на мишень, характеризующуюся длиной Llas и имеющую покрытие, формирующее сверхпроводящий материал на подложке; механизм для перемещения импульсного лазерного луча в направлении сканирования по поверхности мишени, от которой оделяется материал и ударяет в протяженную подложку, нагреваемую в зоне нагрева; механизм перемещения мишени, и блок управления для контроля последовательных движений лазерного луча и перемещения мишени.

Способ нанесения сверхпроводящих слоев, включает: перемещение протяженной подложки через зону нагрева, воздействие импульсного сфокусированного лазерного луча на мишень с покрытием, формирующим сверхпроводящий материал, от которой отделяется материал и вместе с потоком плазмы ударяет в нагретую протяженную подложку в зоне нагрева, обеспечивая равномерное покрытие подложки сверхпроводящим материалом за счет линейного сканирования лучом лазера поверхности мишени по длине мишени и перемещения поверхности мишени поперек направления линейного сканирования лазерного луча.

В указанных устройстве и способе используется плоская мишень, которую перемещают в плоскости мишени и периодически поворачивают на 180° в плоскости мишени. Механизм для перемещения импульсного лазерного луча в направлении сканирования по поверхности мишени может включать поворотное зеркало с поворотным механизмом и механизм возвратно-поступательного движения зеркала. Способ нанесения сверхпроводящих слоев предусматривает прерывание лазерного луча на время, за которое осуществляют поворот мишени на 180°. Указанные устройство и способ обеспечивают равномерную выработку поверхности мишени и равномерное покрытие подложки сверхпроводящим материалом. Одновременное передвижение как луча, так и мишени позволяет повысить скорость нанесения сверхпроводящих слоев, однако существенные ограничения присутствуют и в этом способе. Дело в том, что для равномерного нанесения сверхпроводящих слоев расстояние между местами фокусировки лазерного луча на поверхности мишени при очередных лазерных импульсах должны отстоять друг от друга на расстоянии около 1 мм. Однако в указанных устройстве и способе достаточно сложно обеспечить высокую постоянную величину скорости перемещения поверхности мишени относительно лазерного луча, которая, в основном, определяется величиной скорости перемещения сканирующего лазерного луча. Это ограничивает возможности повышения производительности нанесения сверхпроводящих слоев. Кроме этого, механизм поступательного движения мишени с ее периодическими поворотами в плоскости мишени достаточно сложен.

Сущность изобретения

Настоящее изобретение направлено на упрощение механизма перемещения мишени, значительное увеличение скорости перемещения мишени и обеспечение за счет этого возможности повышения производительности нанесения сверхпроводящих слоев, в частности, увеличением частоты следования лазерных импульсов.

Техническим результатом изобретения является упрощение устройства при обеспечении возможности повышения скорости нанесения сверхпроводящих слоев.

Для решения указанных задач предлагается устройство для нанесения сверхпроводящих слоев, содержащее: камеру осаждения с зоной нагрева, через которую перемещается протяженная подложка, импульсно-периодический лазер, сфокусированный на мишень, характеризующуюся длиной Ltag и имеющую покрытие, формирующее сверхпроводящий материал на подложке; механизм для перемещения импульсного лазерного луча в направлении линейного сканирования поверхности мишени, от которой отделяется материал и ударяет в протяженную подложку, нагреваемую в зоне нагрева; механизм перемещения мишени, и блок управления для контроля последовательных движений лазерного луча и перемещения мишени.

Усовершенствование устройства состоит в том, что механизм перемещения мишени содержит постоянно вращающийся вал с приводом вращения, мишень закреплена на валу вращения, мишень имеет осевую симметрию относительно оси вращения, и ось вращения мишени параллельна направлению перемещения подложки через зону нагрева.

Предпочтительно, что мишень имеет наружную поверхность в форме прямого круглого цилиндра.

В другом аспекте изобретение относится к способу нанесения сверхпроводящих слоев, включающему: перемещение протяженной подложки через зону нагрева, воздействие импульсного сфокусированного лазерного луча на мишень с покрытием, формирующим сверхпроводящий материал, от которой отделяется материал и вместе с потоком плазмы ударяет в нагретую протяженную подложку в зоне нагрева, обеспечивая равномерное покрытие подложки сверхпроводящим материалом за счет линейного сканирования лучом лазера поверхности мишени по длине мишени и перемещения поверхности мишени поперек направления линейного сканирования лазерного луча.

Усовершенствование способа состоит в том, что перемещение поверхности мишени поперек направления линейного сканирования лазерного луча осуществляют непрерывным вращением мишени, которая имеет осевую симметрию относительно оси вращения, причем ось вращения мишени параллельна направлению перемещения подложки через зону нагрева.

Выполнение устройства и способа нанесения сверхпроводящих слоев в предложенном виде обеспечивает простоту перемещения поверхности мишени в направлении поперек направления линейного сканирования мишени по ее длине. При этом обеспечивается повышение скорости поверхности мишени до значений, многократно превышающих скорость перемещения лазерного луча по поверхности мишени. Это позволяет по сравнению с аналогами и прототипом в несколько раз повысить частоту следования лазерных импульсов и, соответственно, увеличить скорость нанесения сверхпроводящих слоев.

Краткое описание чертежей

Существо изобретения поясняется прилагаемым чертежом, на котором схематично показано устройство для нанесения сверхпроводящих слоев.

Данный чертеж не охватывает и, тем более, не ограничивает весь объем вариантов реализации данного технического решения, а является иллюстрацией частного случая его выполнения.

Детальное описание изобретения

Устройство для нанесения сверхпроводящих слоев, показанное на фиг.1, содержит предварительно вакуумированную и затем предпочтительно заполненную кислородом камеру осаждения 1 с зоной нагрева 2, через которую перемещается протяженная подложка 3. В состав устройства входит импульсно-периодический лазер 4 с лучом 5, сфокусированным посредством линзы 6 на мишень 7, характеризующуюся длиной Ltag и имеющую покрытие, формирующее сверхпроводящий материал на подложке 3. Мишень предпочтительно имеет наружную поверхность 8 в форме прямого круглого цилиндра. Механизм перемещения мишени 7 содержит постоянно вращающийся вал 9 с приводом вращения 10. Мишень 7 закреплена на валу вращения 8 и имеет осевую симметрию относительно оси вращения 11. Ось вращения 11 мишени 7 параллельна направлению 12 поступательного перемещения подложки 3 через зону нагрева 2. Устройство также содержит механизм 13, для перемещения импульсного лазерного луча в направлении 14 сканирования по поверхности мишени 7, от которой отделяется материал в виде плазмы 15 лазерного факела и ударяет в протяженную подложку 3, нагреваемую в зоне нагрева 2. Блок управления 16 служит для контроля скорости перемещения мишени 7 и последовательных перемещений лазерного луча 5 в направлении 14 линейного сканирования мишени. Лазерный луч 5 проходит в камеру осаждения 1 через ее окно 17. Зона нагрева 2 образована камерой нагрева 18 с протяженным отверстием 19, напротив которого размещена мишень 7. Подложка 3 может быть спирально намотана на трубу 20, которая может вращаться вокруг своей оси 21 и перемещаться в линейном направлении 12.

Способ нанесения сверхпроводящих слоев посредством описанного устройства осуществляют следующим образом. Через вакуумированную и затем предпочтительно заполненную кислородом камеру осаждения 1 с зоной нагрева 2 перемещают протяженную подложку 3. Лучом 5 импульсно-периодического лазера 4, сфокусированным, например, посредством линзы 6 и вводимым в камеру осаждения 1 через окно 17 воздействуют на мишень 7, имеющую наружную поверхность 8 в форме прямого круглого цилиндра. Лазерным лучом 5 производят абляцию мишени с покрытием, формирующим сверхпроводящий материал на подложке 3. Посредством абляции материал отделяют от мишени 7 и вместе с потоком плазмы 15 лазерного факела переносят через отверстие 19 камеры нагрева 18 на нагретую протяженную подложку 3. В процессе нанесения сверхпроводящих слоев с помощью механизма 13 производят линейное сканирование (осциллирующее или однонаправленное) лучом 5 лазера 4 поверхности мишени 7 в направлении 14 по длине мишени Ltag. Одновременно с этим перемещают поверхность мишени 3 поперек направления 14 линейного сканирования лазерного луча 5 за счет непрерывного вращения закрепленной на валу 9 мишени у. Приводом 10 осуществляют вращение мишени 3 относительно оси 11 симметрии мишени, параллельной направлению 12 перемещения подложки 3 через зону нагрева 2. При этом с помощью блока управления 16 осуществляют оптимальный режим последовательных движений лазерного луча 5, перемещения мишени 7 и циклов работы лазера 4. В результате осуществляют равномерное покрытие подложки 3 сверхпроводящим материалом. Подложка 3 может быть спирально намотана на трубу 20, которую вращают вокруг оси трубы 21 и перемещают в линейном направлении 12, что позволяет покрывать сверхпроводящим материалом большую поверхность подложки 3.

Выполнение механизма перемещения мишени в виде постоянно вращающегося вала с приводом вращения упрощает механизм перемещения мишени и позволяет перемещать поверхность мишени с высокой скоростью. Обеспечивается высокая постоянная величина скорости перемещения поверхности мишени относительно лазерного луча, которая в отличие от прототипа теперь, в основном, определяется величиной скорости перемещения поверхности мишени, а не скоростью перемещения лазерного луча. При непрерывном вращении мишени легко обеспечивается необходимое для равномерного нанесения сверхпроводящих слоев расстояние A (A≈1 мм) между местами фокусировки лазерного луча на поверхности мишени при очередных лазерных импульсах. В сочетании с линейным перемещением луча по поверхности мишени также обеспечивается линейное перемещение в пространстве потока плазмы с поверхности мишени. Все это позволяет повысить частоту следования лазерных импульсов и увеличить скорость нанесения сверхпроводящих слоев на протяженную подложку.

Выполнение мишени симметричной относительно оси вращения, предпочтительно с цилиндрической поверхностью, и ориентация оси вращения мишени параллельно направлению перемещения подложки через зону нагрева обеспечивает как равномерное нанесения сверхпроводящих слоев на протяженную подложку, так и равномерное по поверхности мишени воздействие лазерного луча.

Таким образом, предлагаемое изобретение позволяет упростить устройство для нанесения сверхпроводящих слоев и повысить скорость нанесения сверхпроводящих слоев при равномерном покрытии протяженной подложки сверхпроводящим материалом.

1. Устройство для нанесения сверхпроводящих слоев, содержащее: камеру осаждения с зоной нагрева, через которую перемещается протяженная подложка, импульсно-периодический лазер, сфокусированный на мишень, характеризующуюся длиной и имеющую покрытие, формирующее сверхпроводящий материал на подложке; механизм для перемещения импульсного лазерного луча в направлении линейного сканирования поверхности мишени, от которой оделяется материал и ударяет в протяженную подложку, нагреваемую в зоне нагрева; механизм перемещения мишени, и блок управления для контроля последовательных движений лазерного луча и перемещения мишени, отличающееся тем, что
механизм перемещения мишени содержит постоянно вращающийся вал с приводом вращения, мишень закреплена на валу вращения, мишень имеет осевую симметрию относительно оси вращения, и ось вращения мишени параллельна направлению перемещения подложки через зону нагрева.

2. Устройство для нанесения сверхпроводящих слоев по п.1, отличающееся тем, что мишень имеет наружную поверхность в форме прямого круглого цилиндра.

3. Способ нанесения сверхпроводящих слоев, включающий: перемещение протяженной подложки через зону нагрева, воздействие импульсного сфокусированного лазерного луча на мишень с покрытием, формирующим сверхпроводящий материал, от которой отделяется материал и вместе с потоком плазмы ударяет в нагретую протяженную подложку в зоне нагрева, обеспечивая равномерное покрытие подложки сверхпроводящим материалом за счет линейного сканирования лучом лазера поверхности мишени по длине мишени и перемещения поверхности мишени поперек направления линейного сканирования лазерного луча, отличающийся тем, что перемещение поверхности мишени поперек направления линейного сканирования лазерного луча осуществляют непрерывным вращением мишени, которая имеет осевую симметрию относительно оси вращения, причем ось вращения мишени параллельна направлению перемещения подложки через зону нагрева.



 

Похожие патенты:

Изобретение относится к электричеству, к электрофизике и теплопроводности материалов, к явлению нулевого электрического сопротивления, т.е. к гиперпроводимости, и нулевого теплового сопротивления, т.е.

Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов, в частности к изготовлению подложек для этих материалов.
Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов и может быть использовано при промышленном производстве длинномерных сверхпроводящих лент для создания токопроводящих кабелей, токоограничителей, обмоток мощных электромагнитов, электродвигателей и т.д.

Изобретение относится к области сверхпроводимости и нанотехнологий, а именно к способу получения и обработки композитных материалов на основе высокотемпературных сверхпроводников (BTCП), которые могут быть использованы в устройствах передачи электроэнергии, для создания токоограничителей, трансформаторов, мощных магнитных систем.

Изобретение относится к области получения сверхпроводящих соединений и изготовления нанопроводников и приборов на их основе, что может быть использовано в электротехнической, радиотехнической, медицинской и других отраслях промышленности, в частности для оптического тестирования интегральных микросхем, исследования излучения квантовых точек и в системах квантовой криптографии.

Изобретение относится к способам формирования методом лазерного напыления нанопленок сложного металлооксидного соединения состава YВа2Сu3O7-х (YBCO) повышенной проводимости и может быть использовано при создании элементов наноэлектроники.

Изобретение относится к устройствам для высокотемпературного осаждения сверхпроводящих слоев на подложках в форме ленты с использованием импульсного лазера и может быть использовано в электротехнической промышленности.

Изобретение относится к области сверхпроводниковой микроэлектроники, в частности к изготовлению сверхпроводниковых туннельных переходов, джозефсоновских переходов, структур типа сверхпроводник-изолятор-сверхпроводник (СИС), структур сверхпроводник-изолятор-нормальный металл (СИН), болометров на холодных электронах.
Изобретение относится к изготовлению сверхпроводящей ленты на основе соединения Nb3Sn и может быть использовано при изготовлении сверхпроводящих магнитных систем различного назначения.

Изобретение относится к сборке из металлических элементов, составляющей заготовки для сверхпроводника. Сборка содержит, по меньшей мере, один проводниковый элемент, адаптированный для обеспечения сверхпроводящей нити в конечном сверхпроводнике, и по меньшей мере один легирующий элемент, обеспечивающий источник легирования для легирования проводникового элемента, и источник олова. Сборка содержит по меньшей мере такое число легирующих элементов, расположенных вне проводниковых элементов, каково число проводниковых элементов, и металлическая сборка содержит по меньшей мере два легирующих элемента для каждого проводникового элемента. Проводниковый элемент и легирующий элемент выполнены в виде прутков и составляют отдельные элементы. Трубчатый элемент размещен вне проводникового элемента и легирующего элемента. Сборка размещена так, что по меньшей мере два легирующих элемента позиционированы рядом и в двух различных направлениях каждого проводникового элемента. Изобретение обеспечивает получение высококачественного сверхпроводника, позволяет повысить производительность и снизить затраты на производство. 2 н. и 7 з.п. ф-лы, 9 ил.

Изобретение относится к технологии криоэлектроники и может быть использовано при изготовлении высокотемпературных сверхпроводящих (ВТСП) схем. Техническим результатом изобретения является повышение качества ВТСП схем, увеличение их температурного рабочего диапазона, повышение удельного сопротивления ВТСП материала в нормальном состоянии путем введения ферромагнитной примеси в ВТСП пленку при электроискровой обработке отрицательными импульсами, мощность которых находится из заявленного соотношения. 4 ил.

Изобретение относится к способам формирования методом лазерного напыления сверхпроводящих пленок. Изобретение обеспечивает получение на золотом буферном подслое сверхпроводящих пленок с высокими токонесущими свойствами, обеспечивающими значения плотности сверхпроводящего критического тока не ниже 105 А/см2. В способе формирования YBa2Cu3O7-x пленок с высокой токонесущей способностью на золотом буферном подслое золотая контактная площадка формируется на диэлектрической подложке перед нанесением пленок YBa2Cu3O7-x на диэлектрической подложке. Для распылении мишеней из золота и керамики YBa2Cu3O7 используется лазер с длиной волны излучения 1,06 мкм, длительностью импульса 10÷20 нс и частотой повторения импульсов 10 Гц, плотностью мощности лазерного излучения (5÷7)·108 Вт/см2, при этом предварительно нагревается мишень из золота и подложка до температуры T=450-500°C, устанавливается давление 0,1÷0,5 Па, после этого распыляется мишень из золота на подложку через маску, расположенную на расстоянии 0,3÷0,5 мм от подложки, затем нагревается мишень YBa2Cu3O7 до T=600÷700°C, нагревается подложка до температуры 800÷840°C, устанавливается давление 50-100 Па, и распыляется мишень YBa2Cu3O7 на сформированные контактные площадки до толщины 50 -200 нм с образованием пленок с критической температурой сверхпроводящего перехода Tc=88-89 K, шириной сверхпроводящего перехода ΔTc= 2÷3 K, плотностью критического тока Jc>105 А/см2. 6 ил.

Изобретение относится к формированию на диэлектрических подложках золотых контактных площадок к пленкам YBa2Cu3O7-х. Изобретение обеспечивает получение качественных золотых контактных площадок к сверхпроводящим пленкам. В способе формирования на диэлектрической подложке контактных площадок к пленкам YBa2Cu3O7-х контактные площадки формируют перед напылением пленок YBa2Cu3O7-х на диэлектрической подложке, для чего производится нагрев мишени и подложки до температуры 450-500°C, напыление контактной площадки из золота производится методом лазерного распыления мишени из золота твердотельным импульсным лазером с длиной волны излучения 1,06 мкм, длительностью импульса 10-20 нс и частотой повторения импульсов 10 Гц, плотностью мощности лазерного излучения (5-7)·108 Вт/см2. Диэлектрическая подложка устанавливается на расстоянии 4-6 мм от золотой мишени рабочей поверхностью к мишени при давлении в вакуумной камере 0,1-0,5 Па. 2 ил.

Изобретение относится к способам формирования сверхпроводящих пленок с двух сторон диэлектрических подложек. Изобретение обеспечивает создание однородных по толщине сверхпроводящих пленок с двух сторон подложки в одном технологическом цикле. В способе формирования сверхпроводящих пленочных структур из материала YBaCuO с двух сторон подложки методом лазерной абляции вращение подложки осуществляют так, что каждая сторона подложки поочередно обращена к мишени YBa2Cu3О7 в течение времени 5÷7 секунд, при расстоянии до мишени 25÷30 мм. Данный способ позволяет формировать сверхпроводящие пленки YBaCuO как полностью однородные по толщине, так и с необходимым распределением толщины по поверхности подложки. 1 ил.

Использование: для получения высокотемпературных сверхпроводников и изготовления высокочувствительных приемников электромагнитного излучения. Сущность изобретения заключается в том, что способ включает в себя формирование пленки из высокотемпературного сверхпроводящего материала, который представляет собой монофазный текстурированный сверхпроводник состава (Bi,Pb)2Sr2Ca2Cu3O10, на диэлектрической подложке методом магнетронного распыления из мишени, изготовление чувствительного элемента, антенны и подводящих линий выполняется в едином процессе на одном слое образованной пленки ВТСП (Bi,Pb)2Sr2Ca2Cu3O10. Технический результат: обеспечение возможности повышения рабочей температуры детектора терагерцевого излучения и расширения частотного диапазона приемной антенны, увеличение надежности прибора.

Изобретение относится к способам формирования методом лазерного напыления сверхпроводящих ультратонких пленок сложного металлооксидного соединения состава YBa2Cu3O7-x путем оптимизации параметров лазерного излучения и условий постростового отжига в напылительной камере. Изобретение обеспечивает получение ультратонких сверхпроводящих пленок толщиной 12-25 нм с неровностью поверхности в пределах 1-2 нм. В способе формирования сверхпроводящей ультратонкой пленки YBa2Cu3O7-x на диэлектрических подложках на керамическую мишень YBa2Cu3O7-x воздействуют лазерным излучением плотностью мощности 3·108÷5·108 Вт/см2, длиной волны 1,06 мкм, длительностью импульса 10-20 нс и частотой следования импульсов 10 Гц в течение времени 15÷30 с при давлении 50÷100 Па, при температуре мишени 600÷700°С, температуре подложки 800-840°С, в результате формируют сверхпроводящую пленку толщиной 12-25 нм, после чего в диапазоне температур 840-780°С производят отжиг пленки со скоростью остывания 4°С/мин, в диапазоне температур 780-700°С - со скоростью остывания 10°С/мин, в диапазоне температур 700-400°С - со скоростью остывания 15°С/мин, в диапазоне температур 400-20°С - со скоростью остывания 19°С/мин. 2 ил.

Изобретение относится к области металлургии, в частности к получению сверхпроводящего материала в виде покрытия, и может быть использовано при изготовлении экранов электронных схем от воздействия электромагнитного и ионизирующего излучений в энергетике, транспорте, связи, приборостроении, в ракетной и аэрокосмической отраслях промышленности. Способ получения сверхпроводящего покрытия включает подачу в плазмотрон порошка материала покрытия фракцией 80-150 мкм, его нагрев до температуры плавления в прикатодной высокотемпературной области плазменной струи и напыление на подложку с предварительно нанесенным на ее поверхность изоляционным слоем. При напылении плазменную струю с напыляемым порошком SmBa2Cu3O7 на всей дистанции напыления охватывают коаксиальным цилиндрическим потоком кислорода, а подложку охлаждают теплоносителем, при этом путем регулирования расхода кислорода и скорости взаимного перемещения плазменной струи и подложки обеспечивают температуру в пятне напыления 940-980°С. Сокращается время процесса получения сверхпроводящего материала с сохранением структуры и стехиометрии исходного спеченного материала. 4 ил.

Использование: для изготовления сверхпроводниковых туннельных или джозефсоновских переходов. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих наноэлементов с туннельными или джозефсоновскими переходами включает формирование нанопроводов из веществ, обладающих сверхпроводящими свойствами, и преобразование их в несверхпроводящие в выбранных разделительных участках заданной ширины за счет селективного изменения атомного состава путем воздействия пучком ускоренных частиц через защитную маску с заданным рельефом. Технический результат: обеспечение возможности повышения производительности. 8 з.п. ф-лы, 2 ил.

Использование: для изготовления провода, кабеля, намотки и катушки. Сущность изобретения заключается в том, что высокотемпературный сверхпроводящий ленточный провод с гибкой металлической подложкой содержит по меньшей мере один промежуточный слой, который расположен на гибкой металлической подложке, и который на стороне, противоположной гибкой металлической подложке, содержит террасы, причем средняя ширина террас меньше 1 мкм, а средняя высота террас больше 20 нм, и который содержит по меньшей мере один расположенный на промежуточном слое высокотемпературный сверхпроводящий слой, который расположен на по меньшей мере одном промежуточном слое и имеет толщину слоя более 3 мкм, причем допустимая токовая нагрузка высокотемпературного сверхпроводящего ленточного провода, отнесенная к ширине провода, при 77 K превышает 600 А/см. Технический результат: обеспечение возможности создания ВТС-провода с большой предельно допустимой токовой нагрузкой. 9 з.п. ф-лы, 9 ил., 2 табл.
Наверх