Способ получения бутадиена превращением этанола (варианты)

Изобретение относится к двум вариантам способа получения бутадиена превращением этанола в присутствии гетерогенного катализатора, содержащего соединения алюминия, цинка, магния и кремния, включающего стадии синтеза бутадиена и регенерации катализатора. Один из вариантов характеризуется тем, что исходный этанол, подаваемый на стадию синтеза, содержит ацетальдегид и/или воду в количестве не более 50% мас., катализатор дополнительно содержит соединения кальция и/или стронция при следующем содержании компонентов, считая на оксиды, % мас.: оксид магния 47÷76, оксид алюминия 4,5÷12,5, оксид цинка 0,1÷1,5, оксид кальция и/или стронция 1,5÷7,5, диоксид кремния остальное. При этом синтез осуществляют на неподвижном слое гранулированного катализатора. Данный способ позволяет обеспечить технологическую гибкости процесса, высокую конверсию этанола и избирательность по бутадиену, а также увеличить длительность процесса синтеза или осуществлять процесс непрерывно. 2 н. и 5 з.п. ф-лы, 1 табл., 10 пр.

 

Изобретение относится к способам получения бутадиена превращением этанола в присутствии катализатора.

Известен способ получения диолефинов из низших спиртов, в частности бутадиена из этанола на катализаторе, содержащем смесь оксидов алюминия и магния и обладающим бифункциональным действием - дегидратирующим и дегидрирующим (FR 665917 опубл. 25.09.1929, GB 331482 опубл. 30.06.1930, DE 577630 опубл. 03.06.1933,). Выход бутадиена по указанным способам составляет 15-18% на разложенный спирт.

Известен каталитический способ получения бутадиена из этанола с добавками ацетальдегида, кретонового альдегида и ацетальдоля, согласно которому в качестве катализатора используются различные сочетания диатомита, диоксида циркония, диоксида тория, оксида магния, диоксида кремния, диоксида молибдена, медь (US 2438464, от 23.03.1948). Реакционный цикл данного способа составляет 0,6÷4,1 часа, при максимальном выходе бутадиена 44,1% от теоретического - теоретический выход составляет 58,7% масс. (А.П. Крючков. Общая технология синтетических каучуков. М., «Химия», 1969 г., стр.144.).

Известен способ получения бутадиена из этанола, включающий стадии синтеза бутадиена и регенерации катализатора, содержащего оксиды алюминия и цинка. Синтез осуществляется на неподвижном слое гранулированного катализатора. Синтез и регенерация осуществляются в одном и том же аппарате (Н.И. Смирнов. Синтетические каучуки. ЛЕНГОСХИМИЗДАТ, Л., 1954 г., стр.110-163.).

Известен одностадийный способ газофазного получения бутадиена, включающий превращение этанола или смеси этанола с ацетальдегидом (в соотношении 10:0÷3) на неподвижном слое катализатора, содержащего металл, выбранный из группы: серебро, золото или медь, и оксид металла, выбранный из группы оксид магния, титана, циркония, тантала или ниобия; указанные оксиды могут быть модифицированы щелочным металлом и/или оксидами церия, олова или сурьмы (RU 2440962 от 29.07.2010, опубл. 27.01. 2012, Бюл. №3).

Наиболее близким (прототип), является способ получения дивинила превращением этанола в присутствии оксидного катализатора, содержащего, в % масс: оксид цинка 25-35, диоксид кремния 3-5, оксид магния 3-5, оксид калия 1, γ-оксид алюминия - остальное (RU 2459788, опубл. 27.08.2012). В соответствии с данным изобретением, при использовании катализатора указанного состава обеспечивается конверсия этанола 34,7-52,8%, при абсолютной избирательности 46-53% масс. Процесс также предлагается осуществлять путем химического инициирования в присутствии пероксида водорода, взятого в количестве 0,8-1,5 масс %. При осуществлении процесса без инициирования пероксидом активность сохраняется до 8 часов, при инициировании пероксидом межрегенерационный цикл - до 200 часов. Процесс осуществляется на неподвижном слое катализатора.

Недостатком известных способов является недостаточная активность применяемых катализаторов и/или недостаточная технологическая гибкость, использование ограниченного состава сырья, и/или недостаточно длительный реакционный цикл.

Задачей, решаемой настоящим изобретением, является повышение эффективности процесса за счет обеспечения длительного или непрерывного процесса синтеза при высокой конверсии этанола и высокой избирательности по бутадиену и технологической гибкости процесса

Поставленная задача решается способом получения бутадиена превращением этанола, согласно которому процесс осуществляют в присутствии гетерогенного катализатора, содержащего соединения алюминия, цинка, магния и кремния и дополнительно соединения кальция и/или стронция при следующем содержании компонентов, считая на оксиды, % масс:

- оксид магния 47÷76
- оксид алюминия 4,5÷12,5
- оксид цинка 0,1÷1,5
- оксид кальция и/или стронция 1,5÷7,5,
- диоксид кремния остальное,

исходный этанол, подаваемый на стадию синтеза, содержит ацетальдегид и/или воду в количестве не более 50% масс, а синтез осуществляют на неподвижном слое гранулированного катализатора.

Используемый катализатор может дополнительно содержать оксиды и/или легко разлагающиеся до оксидов соединения бария, и/или титана, и/или олова в количествах 0,5-5,0% масс и/или портландцемент в количестве 1-20% масс.

Предпочтительно использовать для приготовления катализатора соединений алюминия, кремния, цинка, кальция и/или стронция в виде оксидов и/или легко разлагающихся до оксидов соединений.

Как вариант поставленная задача решается способом получения бутадиена превращением этанола, согласно которому процесс осуществляют в присутствии гетерогенного катализатора, содержащего соединения алюминия, цинка, магния и кремния и дополнительно соединения кальция и/или стронция при следующем содержании компонентов, считая на оксиды, % масс:

- оксид магния 47÷76
- оксид алюминия 4,5÷12,5
- оксид цинка 0,1÷1,5
- оксид кальция и/или стронция 1,5÷7,5,
- диоксид кремния остальное,

исходный этанол, подаваемый на стадию синтеза, содержит ацетальдегид и/или воду в количестве не более 50% масс, а стадии синтеза бутадиена и регенерации катализатора осуществляют в кипящем слое мелкодисперсного катализатора.

Предпочтительно стадии синтеза и регенерации осуществлять в разных аппаратах с осуществлением непрерывного перемещения катализатора из аппарата синтеза в аппарат регенерации и обратно.

Используемый катализатор может дополнительно содержать оксиды и/или легко разлагающиеся до оксидов соединения бария, и/или титана, и/или олова в количествах 0,5-5,0% масс и/или портландцемент в количестве 1-20% масс.

Предпочтительно использовать для приготовления катализатора соединений алюминия, кремния, цинка, кальция и/или стронция в виде оксидов и/или легко разлагающихся до оксидов соединений.

При осуществлении способа получения бутадиена превращением этанола на неподвижном слое гранулированного катализатора используют катализатор с предпочтительным размером гранул: диаметр 2-5 мм; длина 2-15 мм. Время работы с сохранением активности без регенерации 9,5 часов.

При осуществлении процесса синтеза и регенерации в одном аппарате в кипящем слое мелкодисперсного катализатора время работы с сохранением активности без регенерации также 9,5 часов.

Регенерация осуществляется подачей кислородсодержащего газа.

При осуществлении процесса в кипящем слое мелкодисперсного катализатора предпочтительно стадии синтеза и регенерации проводить в разных аппаратах при непрерывном перемещении катализатора из реактора в регенератор и обратно, например, на установке, описанной в RU 2156233 (приоритет от 04.08.1999 г, опубликован 20.09.2000 г.).

Таким образом, нет необходимости чередовать стадии синтеза и регенерации катализатора, поскольку они (стадии) осуществляются непрерывно в разных аппаратах.

Перед подачей в регенератор углеводороды отдуваются от катализатора азотом, что обеспечивает отсутствие потерь и безопасность процесса; перед подачей в реактор регенерированный катализатор также продувается азотом для удаления абсорбированного кислорода.

Регенерированный катализатор одновременно является теплоносителем, что решает проблему подвода тепла и позволяет проводить процесс непрерывно. При этом дополнительно часть дезактивированного катализатора может непрерывно выводиться из процесса, с одновременной подпиткой свежим катализатором, что обеспечивает не только непрерывность процесса, но и обеспечение высокой активности на протяжении всего времени работы установки. Таким образом, процесс может осуществляться сколь угодно долго.

Предпочтительно размер частиц катализатора иметь не более 630 мкм (лучше 71-500 мкм), в этом случае обеспечивается максимальный выход бутадиена.

Осуществление процессов в кипящем слое, например дегидрирования парафинов в олефины, описано в упомянутом патенте RU 2156233, однако, упоминания об осуществлении синтеза бутадиена превращением этанола в кипящем слое катализатора в патентной и научно-технической литературе не найдено. При этом, как следует из результатов исследований, подтверждаемых примерами, приведенными ниже, при осуществлении процесса синтеза бутадиена превращением этанола в кипящем слое катализатора достигается существенный положительный технический результат.

При осуществлении процесса известными способами (Н.И. Смирнов. Синтетические каучуки. ЛЕНГОСХИМИЗДАТ, Л., 1954 г., стр.127-128, 137.), наличие ацетальдегида в исходном сырье является источником смолообразования, а наличие воды отрицательно сказывается на образование бутадиена. Согласно другому способу, допускается наличие ацетальдегида в количествах 1-3 частей на 10 частей этанола (RU 2440962 от 29.07.2010, опубл. 27.01.2012, Бюл. №3).

Использование нового и сбалансированного состава катализатора по предлагаемому способу обеспечивает нивелирование отрицательных факторов, что подтверждается испытаниями активности. В то же время, обеспечивает технологическую гибкость процесса - возможность осуществления процесса как на неподвижном, так и в кипящем слое катализатора, возможность использование рецикловых потоков без излишнего концентрирования этанола, что энергетически выгодно, при этом еще ацетальдегид увеличивает образование бутадиена, а вода является внутренним теплоносителем, что также является положительным фактором.

Катализатор может быть приготовлен традиционным способом - механическим смешением компонентов (Технология катализаторов/Мухленов И.П., Добкина Е.И., Дерюжкина В.И, Сороко В.Е. - Изд. 2-е, перераб. - Л.: Химия, 1979. с 168-169.). В этом случае осуществляется смешение оксидов и/или легко разлагающихся до оксидов соединений магния, алюминия, кремния, цинка, кальция и/или стронция в течение 0,5-2 часов. Оксиды и/или легко разлагающиеся до оксидов соединения бария, и/или титана, и/или олова, и/или портландцемент добавляются на стадии смешения. К полученной смеси затем добавляется вода до образования пластичной массы, перемешивается в течение 0,5-3 часов, формуется экструзией в гранулы диаметром 2-5 мм. Полученные экстру даты подсушиваются при комнатной температуре 4-10 часов, затем при температуре 100-140°C в течение 6-10 часов и прокаливаются в воздушной среде при температуре 500-600°C в течение 1-4 часов.

Катализатор можно готовить также растворением оксидов и/или гидроксидов магния, цинка, алюминия в серной кислоте с концентрацией 20-30% масс с последующим совместным осаждением раствором гидроксида натрия, с концентрацией 20-30% масс. Получаемый осадок фильтруется, промывается водой для удаления ионов натрия и SO42-, высушивается при температуре 100-140°C в течение 6-10 часов. Высушенная масса помещается в смеситель, куда добавляются остальные компоненты по рецептуре и вода до образования пластичной массы. Последующая технология, включающая перемешивание, формовку, сушку и прокалку, аналогична приготовлению катализатора, описанному выше из сухих веществ, а именно - в смесителе перемешивание осуществляется в течение 0,5-3 часов, формовка экструзией в гранулы диаметром 2-5 мм, экструдаты подсушиваются при комнатной температуре 4-10 часов, затем при температуре 100-140°C в течение 6-10 часов и прокаливаются в воздушной среде при температуре 500-600°C в течение 1-4 часов.

Для осуществления процесса в кипящем слое, гранулы катализатора измельчаются, и отсеивается требуемая фракция.

Таким образом, только совместное использование предлагаемых приемов обеспечивает достижение поставленной задачи.

Изобретение иллюстрируется следующими примерами.

Пример 1.

Исходная смесь, содержащая 95,9% масс этанола и 4,1% масс воды, подается на синтез бутадиена. Синтез осуществляется в проточном режиме на неподвижном гранулированном катализаторе следующего состава, % масс: оксид магния 63,9; оксид алюминия 6,5; диоксид кремния 22,0; оксид цинка 0,1; оксид кальция 7,5. Катализатор готовится следующим образом:

Термоактивированный гидроксид алюминия (продукт ТХА) прокаливают в течении 0,5 часа при температуре 500°C до оксида алюминия.

Полученный оксид алюминия в количестве 11,05 грамм, оксид цинка в количестве 0,17 грамм, оксид магния в количестве 108,63 грамм, (количество всех реагентов приведено на основное вещество), растворяются в эквимолярном количестве серной кислоты с концентрацией 23,3% масс. Полученный раствор осаждается эквимолярным количеством гидроксида натрия с концентрацией 27,4% масс. Получаемый осадок фильтруется, промывается водой, высушивается при температуре 120°C в течение 8 часов. Высушенная масса помещается в смеситель, добавляется 37,4 грамма тонкоизмельченного диоксида кремния и 12,75 грамм тонкоизмельченного оксида кальция и перемешивается в течение 30 минут, затем добавляется вода до образования пластичной массы, перемешивается в течение 2 часов, формуется экструзией в гранулы диаметром 2,5 мм. Полученные экструдаты подсушиваются при комнатной температуре 8 часов, затем при температуре 120°C в течение 6 часов и прокаливаются в воздушной среде при температуре 550°C в течение 2 часов.

Реакционная масса после реактора поступает на конденсацию и на анализ жидкой и газообразных составляющих. Параметры синтеза и показатели процесса представлены в таблице 1.

Пример 2.

Синтез осуществляется с использованием исходной смеси по примеру 1 и с использованием катализатора по примеру 1, но синтез осуществляется в проточном режиме в кипящем слое катализатора с размером частиц не более 630 мкм. Исходная смесь подается в реактор синтеза снизу. Реакционная масса после реактора поступает на конденсацию и на анализ жидкой и газообразных составляющих. Параметры синтеза и показатели процесса представлены в таблице 1.

Пример 3.

Исходная смесь, содержащая 62,3% масс этанола, 2,6% масс воды и 35,1% масс ацетальдегида, подается на синтез, осуществляемый в проточном режиме на неподвижном гранулированном катализаторе, следующего состава, % масс: оксид магния 76,0; оксид алюминия 4,5; диоксид кремния 17,0; оксид цинка 1,0; оксид стронция 1,5. Катализатор готовится следующим образом - гидроксид магния, гидроксид алюминия, диоксид кремния, оксид цинка помещаются в смеситель, перемешиваются 0,5 часа, затем добавляется раствор нитрата стронция и вода до образования пластичной массы и перемешивается 2 часа. Исходные реагенты берутся в количествах, обеспечивающих следующий состав катализатора, считая на оксиды, % масс: оксид магния - 76,0; оксид алюминия - 4,5; диоксид кремния - 17,0; оксид цинка - 1,0; оксид стронция - 1,5 Далее полученная масса формуется, высушивается и прокаливается аналогично примеру 1.

Параметры синтеза и показатели представлены в таблице 1.

Пример 4.

Исходная смесь по примеру 3, подается на синтез с использованием катализатора по примеру 3, но синтез осуществляется в проточном режиме в кипящем слое катализатора с размером частиц не более 630 мкм. Параметры синтеза и показатели представлены в таблице 1.

Пример 5.

Смесь этанола - 50% масс и воды - 50% масс подается на синтез, осуществляемый в проточном режиме на неподвижном гранулированном катализаторе, следующего состава, % масс: оксид магния 50,5; оксид алюминия 12,5; диоксид кремния 21,5; оксид цинка 1,5; оксид кальция 7,5; оксид бария - 0,5; оксид титана - 5,0; портландцемент - 1,0. Катализатор готовится как в примере 1. Диоксид кремния, оксид кальция, оксид бария, оксид титана и портландцемент добавляются на стадии перемешивания в смесителе.

Параметры процесса и достигнутые показатели представлены в таблице 1.

Пример 6.

Исходная смесь по примеру 5, подается на синтез с использованием катализатора по примеру 5, но синтез осуществляется в проточном режиме в кипящем слое катализатора с размером частиц не более 630 мкм. Параметры синтеза и показатели представлены в таблице 1.

Пример 7.

Смесь, содержащая этанол - 76,3% масс, воду - 17,3% масс, ацетальдегид - 6,4% масс подается на синтез бутадиена, осуществляемый в проточном режиме на неподвижном гранулированном катализаторе, следующего состава, % масс: оксид магния 47,0; оксид алюминия 5,0; диоксид кремния 41,0; оксид цинка 0,5; оксид кальция 1,5; оксид олова - 5,0. Катализатор готовится как в примере 1. Диоксид кремния, оксид кальция, оксид бария, оксид титана и портландцемент добавляются на стадии перемешивания в смесителе.

Параметры синтеза и достигнутые показатели представлены в таблице 1.

Пример 8.

Исходная смесь по примеру 7, подается на синтез с использованием катализатора по примеру 7, но синтез осуществляется в проточном режиме в кипящем слое катализатора с размером частиц не более 630 мкм. Параметры синтеза и показатели представлены в таблице 1.

Пример 9.

Исходная смесь по примеру 7 подается на синтез, осуществляемый в проточном режиме на неподвижном гранулированном катализаторе следующего состава, % масс: оксид магния 49,7; оксид алюминия 6,5; диоксид кремния 17,0; оксид цинка 0,3; оксид кальция 1,5; оксид олова - 5,0; портландцемент - 20%. Катализатор готовится как в примере 1. Диоксид кремния, оксид кальция, оксид олова и портландцемент добавляются на стадии перемешивания в смесителе.

Параметры процесса и достигнутые показатели представлены в таблице 1.

Пример 10.

Исходная смесь по примеру 7, подается на синтез с использованием катализатора по примеру 9, но синтез осуществляется в проточном режиме в кипящем слое катализатора с размером частиц не более 630 мкм. Параметры синтеза и показатели представлены в таблице.

Таблица
№ примера Параметры процесса синтеза Показатели процесса
Температура*, °C Скорость подачи сырья, л/л катализатора Конверсия, % Выход бутадиена на разложенный этанол, % мас.
Абсолютный От теоретического
1 400 0,6 53,6 46,2 78,7
2 400 0,6 58,6 53,7 91,5
3 370 0,3 45,3 46,5 79,2
4 370 0,3 48,3 53,5 91,1
5 430 1,5 59,3 47,6 81,1
6 430 1,5 65,1 51,2 87,2
7 400 0,8 48,6 47,1 80,2
8 400 0,8 54,7 53,9 91,8
9 400 0,8 47,5 46,9 79,9
10 400 0,8 53,4 52,8 89,9
По прототипу 400-420 1,5-2,5 ч-1 34,7-52,8 46-53 78,4-90,3
* Средняя температура по слою катализатора

Таким образом, как следует из представленных в таблице данных, предлагаемый способ получения бутадиена из этанола, обеспечивает получение высокой конверсии этанола и высокой избирательности по бутадиену при высокой технологической гибкости процесса - возможности осуществления процесса как на неподвижном, так и в кипящем слое катализатора, использования исходного сырья с содержанием ацетальдегида и/или воды до 50% масс и обеспечения длительного или непрерывного процесса синтеза.

1. Способ получения бутадиена превращением этанола в присутствии гетерогенного катализатора, содержащего соединения алюминия, цинка, магния и кремния, включающий стадии синтеза бутадиена и регенерации катализатора, отличающийся тем, что исходный этанол, подаваемый на стадию синтеза, содержит ацетальдегид и/или воду в количестве не более 50 мас.%, катализатор дополнительно содержит соединения кальция и/или стронция при следующем содержании компонентов, считая на оксиды, мас.%:

оксид магния 47÷76
оксид алюминия 4,5÷12,5
оксид цинка 0,1÷1,5
оксид кальция и/или стронция 1,5÷7,5
диоксид кремния остальное,

а синтез осуществляют на неподвижном слое гранулированного катализатора.

2. Способ по п.1, отличающийся тем, что используют катализатор, дополнительно содержащий оксиды и/или легко разлагающиеся до оксидов соединения бария, и/или титана, и/или олова в количествах 0,5-5,0 мас.% и/или портландцемент в количестве 1-20 мас.%.

3. Способ по п.1 или 2, отличающийся тем, что в катализаторе в качестве соединений алюминия, кремния, цинка, кальция и/или стронция используются оксиды и/или легко разлагающиеся до оксидов соединения.

4. Способ получения бутадиена превращением этанола в присутствии гетерогенного катализатора, содержащего соединения алюминия, цинка, магния и кремния, включающий стадии синтеза бутадиена и регенерации катализатора, отличающийся тем, что исходный этанол, подаваемый на стадию синтеза, содержит ацетальдегид и/или воду в количестве не более 50 мас.%, катализатор дополнительно содержит соединения кальция и/или стронция при следующем содержании компонентов, считая на оксиды, мас.%:

оксид магния 47÷76
оксид алюминия 4,5÷12,5
оксид цинка 0,1÷1,5
диоксид кремния остальное,

а стадии синтеза бутадиена и регенерации катализатора осуществляют в кипящем слое мелкодисперсного катализатора.

5. Способ по п.4, отличающийся тем, что стадии синтеза бутадиена и регенерации катализатора осуществляют в разных аппаратах, и осуществляется непрерывное перемещение катализатора из аппарата синтеза в аппарат регенерации и обратно.

6. Способ по п.4, отличающийся тем, что используют катализатор, дополнительно содержащий оксиды и/или легко разлагающиеся до оксидов соединения бария, и/или титана, и/или олова в количествах 0,5-5,0 мас.% и/или портландцемент в количестве 1-20 мас.%.

7. Способ по п.4 или 6, отличающийся тем, что в катализаторе в качестве соединений алюминия, кремния, цинка, кальция и/или стронция используются оксиды и/или легко разлагающиеся до оксидов соединения.



 

Похожие патенты:
Изобретение относится к способу получения н-гептадекана гидродеоксигенированием стеариновой кислоты. Способ включает проведение процесса в 4-6% растворе стеариновой кислоты в додекане в присутствии палладиевого катализатора в количестве 11-13% от массы стеариновой кислоты, который нанесен на сверхсшитый полистирол марки MN270, при этом процесс осуществляют в атмосфере водорода при давлении 0.5-0.7 МПа и при температуре 250-260°С.

Изобретение относится к способу получения C2-C36 линейных или разветвленных углеводородов и кислородсодержащих углеводородов. Способ включает: а) проведение эндотермической реакции газификации с реагентом из биомассы при температуре менее или равной примерно 750 K, с получением синтез-газа, при этом температура является оптимальной для реакции утилизации синтез-газа или для реакции образования углерод-углеродных связей; б) проведение экзотермической реакции утилизации синтез-газа или реакции образования углерод-углеродных связей с синтез-газом стадии (а), без какой-либо промежуточной обработки синтез-газа стадии (а), при температуре выше или равной температуре реакции газификации, выполняемой на стадии (а), где реакция производит C2-C36 линейные или разветвленные углеводороды или кислородсодержащие углеводороды и теплоту, и в) использование теплоты, выделяемой при реакции утилизации синтез-газа или реакции образования углерод-углеродных связей стадии (б), в эндотермической реакции газификации стадии (а).
Изобретение относится к нефтехимической промышленности, а именно к каталитической переработке биоэтанола в ценные продукты нефтехимии, в частности в высокомолекулярные ароматические углеводороды.

Изобретение относится к двум вариантам способа использования продуктов синтеза диметилового эфира (DME) для конверсии оксигенатов в олефины. Один из вариантов включает стадии: извлечения из реактора DME исходящего из реактора DME потока, который включает DME, воду и метанол; отделения в сепараторе жидкость-газ углекислого газа от исходящего из реактора DME потока для получения дегазированного исходящего потока; подачи дегазированного исходящего потока в колонну DME для получения сырьевого материала DME и потока растворителя, который включает метанол и воду; подачи сырьевого материала DME в реактор конверсии оксигенатов в олефины для получения содержащего олефины исходящего потока, который, кроме того, включает оксигенаты; разделения содержащего олефины исходящего потока для получения фракции, содержащей легкие олефины, и фракции, содержащей тяжелые олефины, причем содержащая легкие олефины фракция включает этилен, а фракция, содержащая тяжелые олефины, включает С4+; приведения в контакт фракции, содержащей легкие олефины, с первой частью потока растворителя в первой зоне взаимодействия с растворителем для получения первого содержащего олефины очищенного потока и первого содержащего оксигенат экстракта; приведения в контакт фракции, содержащей тяжелые олефины, со второй частью потока растворителя во второй зоне взаимодействия с растворителем для получения второго содержащего олефины очищенного потока и второго содержащего оксигенат экстракта.

Изобретение относится к способу получения олефиновых мономеров для производства полимера. Способ характеризуется тем, что включает следующие стадии: введение в каталитический слой (7) биологического масла, содержащего более 50% жирных кислот таллового масла и до 25% смоляных кислот таллового масла, а также газообразного водорода; каталитическое дезоксигенирование масла водородом в слое (7); охлаждение потока, выходящего из слоя (7), и его разделение на жидкую фазу (10), содержащую углеводороды, и газообразную фазу; и паровой крекинг (4) жидкости (13), содержащей углеводороды, с образованием продукта, содержащего полимеризующиеся олефины.

Изобретение относится к способу преобразования метанолового сырья в олефины. .

Изобретение относится к способу получения стирола каталитическим превращением соответствующего ацетофенона в реакторе проточного типа. .

Изобретение относится к области нефтехимии, точнее к устройствам, используемым в производстве мономеров для синтетического каучука. .
Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности и к созданию катализаторов, используемых в переработке алифатических углеводородов С 2-С12 и метанола в высокооктановый бензин и ароматические углеводороды.
Изобретение относится к гетерогенным катализаторам для получения ароматических углеводородов ряда бензола. .
Изобретение относится к нефтехимической промышленности, а именно к каталитической переработке биоэтанола в ценные продукты нефтехимии, в частности в высокомолекулярные ароматические углеводороды.

Изобретение относится к способу (вариантам) получения дивинила превращением этанола в присутствии оксидного катализатора, содержащего оксид цинка и -оксид алюминия, характеризующемуся тем, что катализатор дополнительно содержит оксид калия, диоксид кремния и оксид магния при следующем исходном составе, % мас.: ZnO - 25-35, SiO 2 - 3-5, MgO - 3-5, K2O - 1, -Al2O3 - остальное.
Изобретение относится к способу совместного получения изобутена и бутадиена дегидрированием С4-углеводородов на алюмохромовом катализаторе при повышенной температуре с дальнейшим разделением полученных продуктов дегидрирования методами абсорбции-десорбции и экстрактивной ректификации и выделением товарного изобутена и бутадиена-1,3.

Изобретение относится к способу выделения и очистки 1,3-бутадиена из смеси преимущественно С4-углеводородов, содержащей 1,3-бутадиен и С4-углеводороды, отличающиеся от него по числу ненасыщенных связей и/или -ацетиленовых протонов, включающему как минимум зону(ы) экстрактивной ректификации с полярным экстрагентом, десорбции и обычной ректификации, характеризующемуся тем, что в качестве указанного экстрагента используют как минимум полярный органический растворитель с температурой кипения выше 120°С, проводят отгонку С4-углеводородов от указанного экстрагента из зон экстрактивной ректификации и десорбции при высоком давлении от 3,5 до 6,5 ата, как минимум в нижнюю часть и/или в кипятильник(и) зоны(зон) экстрактивной ректификации вводят углеводородный промежуточный десорбент с температурой кипения от 27 до 85°С в количестве, обеспечивающем его содержание в кубе(ах) зоны(зон) десорбции высокого давления от 3 до 30% мас.

Изобретение относится к одностадийному способу газофазного получения бутадиена, включающему превращение этанола или смеси этанола с ацетальдегидом в присутствии катализатора, характеризующемуся тем, что взаимодействие проводят в присутствии твердофазного катализатора, содержащего металл, выбранный из группы: серебро, золото или медь, и оксид металла, выбранный из группы оксид магния, титана, циркония, тантала или ниобия.

Изобретение относится к способу получения изобутилена и бутадиена-1,3 каталитическим дегидрированием соответствующих парафиновых углеводородов на алюмохромовом катализаторе при повышенной температуре, разделением полученных продуктов дегидрирования методами абсорбции-десорбции и экстрактивной ректификации с получением товарных изобутилена и бутадиена-1,3 олефиновых углеводородов C4, непревращенных парафинов и горючих отходов производства: «легких» и «тяжелых» неабсорбированных газов и бутадиен-ацетиленового концентрата, причем смесь «тяжелых» неабсорбированных газов с бутадиен-ацетиленовым концентратом и частью «легких» неабсорбированных газов пропускают через бинарный слой катализаторов гидрирования, один из которых никель-хромовый, а другой алюмопалладиевый, и на выходе получают пропановую фракцию.

Изобретение относится к способу получения 1,2,3,4-тетраалкил-1,4-дииод-1,3-бутадиенов. .

Изобретение относится к способу получения 1,2,3,4-тетраалкил-1-иод-1,3-бутадиенов. .

Изобретение относится к способу непрерывного разделения C 4-фракции (C4) экстрактивной дистилляцией с использованием селективного растворителя в колонне экстрактивной дистилляции и характеризуется тем, что в колонне экстрактивной дистилляции в продольном направлении расположена разделительная перегородка, достигающая наивысшей точки колонны, с образованием первой зоны, второй зоны и нижележащей общей зоны колонны, и головной поток (С4Н10 ), содержащий бутаны, отводят из первой зоны, головной поток (C4H8), содержащий бутены, отводят из второй зоны, а поток (С4 Н6), содержащий углеводороды из С 4-фракции, которые более растворимы в селективном растворителе, чем бутаны и бутены, отводят из нижележащей общей зоны колонны.
Изобретение относится к способу одновременного получения ароматических углеводородов и дивинила путем каталитической конверсии биоэтанола, протекающей на цеолитсодержащем катализаторе HZSM-5 при температуре 390-420°С, объемной скорости по жидкому углеводороду 2-4 ч-1. Способ характеризуется тем, что с целью увеличения выхода дивинила в контактном газе над слоем HZSM-5 катализатора размещается слой К2O-ZnO/γ-Аl2O3 катализатора при массовом соотношении слоев 1:(0,5-1) и следующей рецептуре компонентов верхнего слоя: К2O - 0,1-0,25%, ZnO - 22-24%, γ-Аl2О3 - остальное. При этом процесс проводят в присутствии инициатора пероксида водорода, взятого в количестве 1% масс. в исходном биоэтаноле. Настоящий способ позволяет повысить селективность процесса конверсии биоэтанола, а именно одновременно получать высокое содержание дивинила в газовой фазе и ароматических углеводородов в жидкой фазе. 1 з.п. ф-лы, 4 пр.
Наверх