Способ контроля сопротивления изоляции цепей постоянного тока относительно корпуса и устройство для его реализации

Изобретение относится к электроизмерительной технике, в частности к автоматизированным системам контроля, и применяется при контроле сопротивления изоляции электрических цепей постоянного тока относительно корпуса. Технический результат заявленного изобретения заключается в сокращении числа коммутационных элементов, отвечающих за подключение цепей к измерительному каналу, и в сокращении времени, затрачиваемого на проведение измерений. Технический результат достигается благодаря тому, что исследуемые цепи группируют в двухмерную матрицу, состоящую из m строк и n столбцов. Далее группы цепей, составляющих строки и столбцы матрицы, поочередно подключают к источнику напряжения U постоянного тока через измерительный резистор R1 и выполняют измерения напряжений AU на резисторе R1. Сопротивления изоляции групп цепей определяют по формуле Rизол=R1×(U/ΔU-1). Каждая исследуемая цепь участвует в двух измерениях: сначала в составе группы строки матрицы, а затем в составе группы столбца матрицы. На основе анализа результатов измерений определяют цепи с пониженным сопротивлением изоляции относительно корпуса. Выдача команд, измерение напряжений, вычисление сопротивлений изоляции и формирование результатов контроля осуществляется с помощью программного модуля. Для (m×n) исследуемых цепей требуется проведение (m+n) измерений. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к электроизмерительной технике, в частности к автоматизированным системам контроля, и применяется при контроле сопротивления изоляции электрических цепей постоянного тока относительно корпуса.

Известен измеритель электрического сопротивления изоляции, основанный на том, что блок формирования сигнала на выходе цифро-аналогового преобразователя обеспечивает тестовый сигнал, который через конденсатор накачки воздействует на корпус. К шине корпуса подключен выход усилителя, охваченного обратной связью, потенциал которого выше потенциала корпуса на заранее заданную величину. Между выходом усилителя и точкой обратной связи установлен ограничительный резистор, который в течение первого периода режима насыщения усилителя, когда доминирует емкостная нагрузка, определяет ток ускоренного заряда емкости утечки. После установления потенциала корпуса по величине падения напряжения на ограничительном резисторе определяется ток, протекающий через сопротивление утечки, и, зная величину скачка напряжения, определяется значение сопротивления изоляции (патент RU, №242538801, МПК G01R 27/16, опубл. 27.07.2011).

Недостатки указанного устройства - техническая сложность, необходимость последовательного подключения исследуемых цепей к измерительной схеме коммутационными элементами.

Известен способ автоматического контроля сопротивления изоляции шин источников постоянного тока на корпус, отличающийся тем, что вначале определяют отсутствие короткого замыкания цепей источников постоянного тока на корпус, для чего выполняют два измерения корпусного тока между общей минусовой шиной и корпусом вначале с включением в цепь измерителя тока ограничивающего резистора, а затем с добавлением в цепь еще контрольного источника постоянного напряжения, вычисляют разницу двух измеренных токов и по величине этой разницы судят о наличии коротко-замкнутых конкретных цепей с корпусом, а при отсутствии короткого замыкания производят два измерения корпусного тока между общей минусовой шиной и корпусом с включением в цепь измерителя тока контрольного источника постоянного напряжения и без него и вычисляют эквивалентное сопротивление изоляции по разнице измеренных токов и величине напряжения контрольного источника (патент RU, №2391679 С1, МПК G01R 31/02, опубл. 10.06.2010).

Недостаток указанного способа - определение отсутствия короткого замыкания перед контролем изоляции шин источников, выполнение двух измерений корпусного тока для определения сопротивления изоляции одной шины.

Наиболее близким по технической сущности к предлагаемому способу является способ измерения сопротивления изоляции в цепях постоянного тока, основанный на подключении к полюсам цепи постоянного тока цепи резисторов, состоящей из двух последовательно соединенных резисторов, имеющих одинаковую величину сопротивления, включении в место соединения резисторов между собой первого конца измерительной цепи, состоящей из последовательно включенных источника измерительного напряжения и измерителя тока, подключении второго конца измерительной цепи к элементу заземления, определении измерительного тока в измерительной цепи, включении источника измерительного напряжения то в одной полярности полюсов, то в противоположной полярности полюсов, определении эквивалентного измерительного тока как половины суммы двух абсолютных по величине значений измерительного тока, измеренных последовательно по времени, определении эквивалентного сопротивления цепи двух резисторов, делении величины напряжения измерительного источника на величину эквивалентного измерительного тока и вычитании от значения, полученного в результате этого деления, значения величины эквивалентного сопротивления цепи резисторов (патент RU, №238485501, МПК G01R 27/18, опубл. 20.03.2010).

Недостаток указанного способа, выбранного за прототип, заключается в необходимости выполнения двух измерений для вычисления сопротивления изоляции каждой цепи и последовательного подключения исследуемых цепей к измерительной схеме коммутационными элементами, что приводит к увеличению затрачиваемого на измерения времени при большом количестве исследуемых цепей.

Предлагается способ для контроля сопротивления изоляции электрических цепей постоянного тока относительно корпуса и устройство для его реализации, обеспечивающие при большом количестве исследуемых цепей сокращение числа коммутационных элементов и сокращение времени, затрачиваемого на проведение измерений.

Предлагается способ контроля сопротивления изоляции электрических цепей постоянного тока относительно корпуса, заключающийся в том, что исследуемые цепи группируют в двухмерную матрицу, состоящую из m строк и п столбцов. Группы цепей, составляющих строки и столбцы матрицы, поочередно подключают к источнику напряжения U постоянного тока через измерительный резистор R1, выполняют измерения напряжений ΔU на резисторе R1 и вычисляют сопротивления изоляции групп цепей по формуле Rизол=R1×(U/ΔU-1). При этом каждая исследуемая цепь участвует в двух измерениях: сначала в составе строки матрицы, а затем в составе столбца матрицы. На основе анализа результатов измерений определяют цепи с пониженным сопротивлением изоляции относительно корпуса, причем выдача команд, измерение напряжений, вычисление сопротивлений изоляции и формирование результатов контроля осуществляется с помощью программного модуля.

Предлагается также устройство для реализации этого способа. Сущность предлагаемого устройства поясняется чертежом, на котором показана упрощенная принципиальная схема предлагаемого технического решения для варианта с 9 исследуемыми цепями.

Устройство содержит: Al - промышленный компьютер с платой аналогового ввода А2 и платой дискретного вывода A3, К1-К6 - реле, коммутирующие исследуемые цепи к измерительному каналу, R1 - измерительный резистор, V1-V18 - диоды, Rи1-Rи9 - исследуемые цепи, UZ1, UZ2 - источники питания постоянного тока. Устройство управляется программным модулем, заложенным в компьютере A1. Измерительный канал устройства включает в себя источник питания UZ1 напряжением U постоянного тока, резистор R1 и плату аналогового ввода А2. Минус источника подключают к корпусу, а плюс источника через резистор R1 с помощью реле К1-К6 подключают к исследуемой группе цепей.

Предлагаемое устройство работает следующим образом.

1. При выдаче команды на проверку сопротивления изоляции цепей строки 1 матрицы замыкается канал DO1 платы A3. Включается реле К1, которое подключает цепи Rи1, Rи2, Rи3 к измерительному каналу. Каналом АН платы А2 измеряется напряжение ΔU на резисторе R1. Сопротивление изоляции этой группы цепей вычисляется по формуле Rизол=R1×(U/ΔU-1).

2. При выдаче команды на проверку сопротивления изоляции цепей строки 2 матрицы замыкается канал DO2 платы A3. Включается реле К2, которое подключает цепи Rи4, Rи5, Rи6 к измерительному каналу. Аналогично п.1 измеряется сопротивление изоляции этих цепей.

3. При выдаче команды на проверку сопротивления изоляции цепей строки 3 матрицы замыкается канал D03 платы A3. Включается реле КЗ, которое подключает цепи Rи7, Rи8, Rи9 к измерительному каналу. Аналогично п.1 измеряется сопротивление изоляции этих цепей.

4. При выдаче команды на проверку сопротивления изоляции цепей столбца 1 матрицы замыкается канал DO4 платы A3. Включается реле К4, которое подключает цепи Rи1, Rи4, Rи7 к измерительному каналу. Аналогично п.1 измеряется сопротивление изоляции этих цепей.

5. При выдаче команды на проверку сопротивления изоляции цепей столбца 2 матрицы замыкается канал DO5 платы A3. Включается реле К5, которое подключает цепи Rи2, Rи5, Rи8 к измерительному каналу. Аналогично п.1 измеряется сопротивление изоляции этих цепей.

6. При выдаче команды на проверку сопротивления изоляции цепей столбца 3 матрицы замыкается канал DO6 платы A3. Включается реле К6, которое подключает цепи Rи3, Rи6, Rи9 к измерительному каналу. Аналогично п.1 измеряется сопротивление изоляции этих цепей.

7. Проводится анализ полученных результатов измерений с целью выявления цепей с низким сопротивлением изоляции.

8. Происходит выдача оператору информации о состоянии изоляции исследуемых цепей.

Предложенное техническое решение дает при использовании положительный эффект, заключающийся в сокращении числа коммутационных элементов, отвечающих за подключение цепей к измерительному каналу, и в сокращении времени, затрачиваемого на проведение измерений. Для (m×n) исследуемых цепей требуется проведение всего (m+n) измерений.

Предлагаемое устройство может быть использовано в контрольно-проверочной аппаратуре (аппаратно-программных комплексах) для работ со сложными объектами контроля и в «интеллектуальных» средствах измерения сопротивления изоляции цепей.

Вышеуказанное устройство отработано и заложено в техническую документацию контрольно-проверочной аппаратуры системы телеметрического контроля изделий.

1. Способ контроля сопротивления изоляции цепей постоянного тока относительно корпуса, заключающийся в том, что группы исследуемых цепей поочередно подключают к источнику напряжения U постоянного тока через измерительный резистор R1, выполняют измерения напряжений ΔU на резисторе R1, определяют сопротивление изоляции цепи по формуле Rизoл=R1×(U/ΔU-1), отличающийся тем, что исследуемые цепи группируются в двухмерную матрицу, состоящую из m строк и n столбцов; каждую группу исследуемых цепей поочередно подключают к источнику напряжения U постоянного тока через измерительный резистор R1, при этом каждая исследуемая цепь участвует в двух измерениях: сначала в составе строки матрицы, а затем в составе столбца матрицы; на основе анализа результатов измерений определяют цепи с пониженным сопротивлением изоляции относительно корпуса, причем выдача команд, измерение напряжений, вычисление сопротивлений изоляции и формирование результатов контроля осуществляется с помощью программного модуля.

2. Устройство для осуществления способа по п.1, содержащее: промышленный компьютер с программным модулем, управляющим работой устройства; платы аналогового ввода и дискретного вывода; реле, коммутирующие исследуемые цепи к измерительному каналу; диоды, источники питания постоянного тока, измерительный резистор, отличающееся тем, что минус источника питания подключают к корпусу, а плюс источника через измерительный резистор с помощью реле подключают к исследуемой группе цепей, причем для развязки цепей между собой по постоянному току используются диоды.



 

Похожие патенты:

Группа изобретений относится к электроизмерительной технике и предназначена для использования в автоматизированных системах контроля, диагностики и управления технологическими процессами.

Изобретение относится к контрольно-измерительной технике транспортных средств с электрической тягой, а именно к микропроцессорным системам управления и диагностики тепловозов.

Изобретение относится к электроэнергетике и предназначено для эксплуатационного контроля состояния изоляции относительно земли объектов под рабочим напряжением в трехфазных сетях с изолированной нейтралью, а также в сетях, где нейтраль заземлена через резистор или реактор.

Изобретение относится к контрольно-измерительной технике и используется для измерения и постоянно действующего контроля сопротивления изоляции электрических сетей постоянного тока на кораблях, судах, шахтах, метрополитене и там, где есть разветвленные отдельные сети постоянного тока, изолированные от земли.

Изобретение относится к контрольно-измерительной технике транспортных средств с электрической тягой. .

Изобретение относится к электротехнике и предназначено к использованию при создании и применении устройств и систем для измерения сопротивлений изоляции в сетях постоянного тока, находящихся под напряжением.

Изобретение относится к электрическим измерениям, а именно к контролю сопротивления изоляции в электрических сетях с изолированной нейтралью. .

Способ измерения сопротивления изоляции цепей постоянного тока, находящихся под рабочим напряжением, и устройство для его осуществления относятся к электроизмерительной технике и предназначены для использования преимущественно в автоматизированных системах контроля, диагностики и управления технологическими процессами. Техническим результатом является повышение помехозащищенности и точности измерений, упрощение устройства, реализующего заявленный способ, а также расширение функциональных возможностей за счет реализации функции самодиагностики измерительных каналов и устройства в целом. Технический результат достигается устройством, осуществляющим способ, заключающийся в том, что в интервалах между измерениями сопротивления изоляции производят контроль измерительных каналов путем подключения входов первого измерительного канала к одной точке и определения среднего значения «нуля» после "n" измерений для учета в расчете напряжения, а затем подключения этих же входов к обоим полюсам контролируемой цепи для последующего вычисления отношения среднего (из "n") значения показаний второго канала к среднему значению показаний первого канала, при выходе рассчитанных показателей за пределы установленных порогов, делают вывод о нарушении функционирования измерительных каналов, а в противном случае последующее вычисление общего сопротивления изоляции производят по формуле:

Изобретение относится к области электротехники, а именно к релейной защите синхронных генераторов, и может быть использовано на электрических станциях для защиты синхронных генераторов от замыкания обмотки возбуждения на землю в одной точке, а также для контроля сопротивления изоляции. Технический результат - повышение надежности работы системы контроля состояния изоляции и релейной защиты цепей возбуждения. Полюса обмотки возбуждения шунтируют сопротивлениями, часть которых периодически шунтируется управляемыми ключами с целью изменения состояния измерительной схемы, измеряют напряжения на определенных элементах схемы и вычисляют сопротивление изоляции по формуле, приведенной в описании изобретения. Блок-схема способа включает в себя обмотку возбуждения (1); контролируемое сопротивление изоляции (3); два шунтируемых сопротивления (6) и (8); два управляемых ключа (5) и (9), шунтирующих сопротивления (6) и (8) соответственно; добавочные высокоомные сопротивления (2) и (4), включенные между полюсами обмотки возбуждения и ключами (5) и (9); блок (10) управления ключами; блок измерения 11; выходной релейный блок (12); блок (13) контроля исправности ключей; заземляющее сопротивление (70. Технический результат получают путем снижения уровня напряжений на шунтирующих ключах путем разделения их с выводами обмотки возбуждения при помощи высокоомных сопротивлений, а сами ключи для осуществления контроля их исправности подключают параллельно к сопротивлениям, на которых измеряют напряжения. 2 ил.

Изобретение относится к области электротехники и может быть использовано для измерения емкости между фазами и корпусом (или землей) в любых трехфазных электросетях, например в судовых. Описан способ измерения фазной емкости электросети с изолированной нейтралью, который включает в себя поочередное измерение токов замыкания каждой из фаз и отличается тем, что дополнительно измеряют углы между векторами токов замыкания и векторами возникающих при замыканиях напряжений на нейтрали, используя которые рассчитывают фазные емкости. Способ повышает точность и устраняет ошибки при определении фазных емкостей электросети. 3 ил.

Изобретение относится к технике электрических измерений. Устройство содержит источник испытательного напряжения (ИИН), эталонный резистор (ЭР), зарядный ключ (ЗК), испытуемый объект (ИО), разрядный ключ (РК), разрядный резистор (РР), выходные выводы, к которым подключают ИО, двухканальный цифровой измеритель с запоминающим устройством с двумя информационными (ЦИ) и двумя управляющими входами, устройство отображения информации (УОИ), генератор тактовых импульсов (ГТИ) и блок управления (БУ) с выходами «Пуск» и «Установка нуля». Первый вывод ИИН через ЗК присоединен к первому выходному выводу устройства, а второй вывод ИИН через ЭР присоединен ко второму выходному выводу устройства. К выходным выводам устройства параллельно подключены соединенные последовательно РК и РР. Выход ЦИ соединен с входом УОИ. Выход ГТИ соединен с первым управляющим входом ЦИ. Также в устройство введены замыкающий и размыкающий блок-контакты ЗК, замыкающий блок-контакт РК, пиковый детектор, дифференцирующий элемент, нуль-компаратор, световой индикатор, счетчик времени, блок умножения напряжений, цифровой индикатор, два масштабных преобразователя и органы управления двухканальным цифровым измерителем с запоминающим устройством. Причем входные выводы первого масштабного преобразователя подключены параллельно выходным выводам устройства, а его выход через размыкающий блок-контакт ЗК и замыкающий блок-контакт РК подключен к первому информационному входу ЦИ и к входам дифференцирующего элемента и пикового детектора. Выход дифференцирующего элемента подключен к входу нуль-компаратора, а выход нуль-компаратора подключен к входу счетчика времени и световому индикатору. Выход счетчика времени подключен к первому входу блока умножения напряжений, второй вход которого подключен к выходу пикового детектора. Выход блока умножения напряжений подключен к входу второго масштабного преобразователя, выход которого соединен с входом цифрового индикатора. Второй вывод ИИН соединен через замыкающий блок-контакт ЗК с вторым информационным входом ЦИ. Вход генератора тактовых импульсов соединен с выходом «Пуск» блока управления. Второй управляющий вход ЦИ соединен с выходом органов управления ЦИ. Обнуляющие входы пикового детектора и счетчика времени соединены с выходом «Установка нуля» блока управления. Технический результат заключается в возможности непосредственного измерения оставшегося ресурса изоляции. 3 ил.

Изобретение относится к области электротехники. Устройство состоит из источника измерительного стабилизированного напряжения постоянного тока, фильтра RC, состоящего из последовательно соединенных резистора и конденсатора, одного диод, шунтирующего конденсатор С1, блока гальванической развязки, усилителя напряжения сигнала с регулируемым коэффициентом усиления, блока питания, электронного делителя напряжения, блока индикации и блока сигнализации. При этом источник измерительного стабилизированного напряжения постоянного тока положительным полюсом подключен к корпусу (земле), а отрицательным полюсом соединен с нижним первым выводом резистора нейтрали контролируемой сети. Второй вывод резистора нейтрали контролируемой сети соединен с нейтралью контролируемой сети. Параллельно источнику измерительного стабилизированного напряжения постоянного тока включены конденсатор С1 и диод, катод которого соединен с корпусом (землей). Параллельно резистору нейтрали включен фильтр RC, причем конденсатор фильтра включен параллельно входу блока гальванической развязки, который своим выходом включен на вход усилителя напряжения сигнала с регулируемым коэффициентом усиления, выход которого соединен со входом электронного делителя напряжения, а выход электронного делителя напряжения соединен непосредственно с блоком индикации и с блоком сигнализации. При этом все блоки устройства запитаны от блока питания. Технический результат заключается в возможности непрерывного контроля сопротивления изоляции. 1 ил.

Изобретение относится к области электротехники. Устройство содержит резистор, соединенный с нейтралью одним выводом, резистивный датчик тока, источник стабилизированного напряжения постоянного тока, шунтирующий конденсатор C1, RC-фильтр на 50 Гц, блок гальванической развязки, электронный делитель напряжения, дифференциальный усилитель, блок питания и блоки индикации и сигнализации. При этом второй вывод резистора нейтрали соединен с введенными резистивным датчиком тока и источником стабилизированного напряжения постоянного тока, включенными последовательно. Второй вывод резистора нейтрали соединен с корпусом через шунтирующий конденсатор С1, а плюсовой вывод источника стабилизированного напряжения соединен с корпусом через введенный резистивный датчик тока. Параллельно резистивному датчику тока включен RC-фильтр, средняя точка которого соединена с входом блока гальванической развязки, а выход блока гальванической развязки соединен с входом электронного делителя напряжения, на выход которого входом включен дифференциальный усилитель, на выход которого входом включены блоки индикации и сигнализации. Все блоки устройства запитаны от блока питания. Технический результат заключается в возможности непрерывно контролировать сопротивление изоляции в сетях переменного тока с резистивной нейтралью. 1 ил.

Изобретение относится к электроизмерительной технике и предназначено для измерения сопротивления изоляции электрических сетей переменного тока, находящихся под напряжением и изолированных от земли. Устройство содержит источник измерительного напряжения, миллиамперметр, блок гальванической развязки, блок вычитания, блок управления, управляемый источник переменного напряжения, первый ключ, второй ключ, токоограничивающий резистор. Причем два входа блока гальванической развязки подключены к двум фазам контролируемой сети, между которыми действует переменное напряжение. Выход блока гальванической развязки подключен ко второму входу блока управления, выход которого подключен к входу управляемого источника переменного напряжения, первый выход которого подключен к второму выводу токоограничивающего резистора, первый вывод которого подключен ко второму выходу источника измерительного напряжения. Второй выход управляемого источника переменного напряжения подключен через миллиамперметр к земле. Первый выход источника измерительного напряжения через первый ключ подключен к любой фазе контролируемой сети. Первый вход блока вычитания подключен к первому выходу управляемого источника переменного напряжения, а выход блока вычитания через второй ключ подключен к первому входу блока управления. Технический результат заключается в уменьшении погрешности и времени измерения сопротивления изоляции. 3 ил.

Изобретение относится к электроизмерительной технике, в частности к автоматизированным системам контроля, и применяется при контроле сопротивления изоляции электрических цепей электро- и радиотехнических изделий, отключенных от источника питания. На первом этапе при закороченных шинах между корпусом и шинами устанавливают тестовый сигнал, существенно превосходящий уровень помех, что позволяет проводить измерения параллельно соединенных сопротивлений изоляции обеих шин с высокой точностью. На втором этапе подключают первый источник низкого уровня между шинами электропитания, который обеспечивает быстрый заряд емкости нагрузки и нейтрализацию влияния активного сопротивления нагрузки на результаты измерений. При этом малый уровень сигнала исключает повреждение потребителей энергии по цепям питания. А второй источник сигнала подключают между корпусом и одной из шин, что обеспечивает высокую точность измерений сопротивления утечки. Технический результат заключается в возможности проведения контроля с минимальными энергетическими затратами, с высоким быстродействием и с минимальным влиянием помех. 4 ил.

Изобретение относится к электротехнике и может быть использовано при создании устройств контроля изоляции сетей постоянного оперативного тока. В сети постоянного тока периодически осуществляют тестовое воздействие путем подключения к полюсам высокоточного резистора, при этом измеряют величины напряжений на полюсах и дифференциальные токи присоединений сети до и после каждого тестового воздействия. Величина сопротивления резистора регулируется исходя из условия, чтобы после его подключения напряжения полюсов относительно земли входили в диапазон допустимых значений, а ток утечки на землю через резистор не превышал установленного допустимого значения. Технический результат заключается в расширении функциональных возможностей и повышении точности измерения сопротивления изоляции, а также в повышении универсальности. 1 з.п. ф-лы, 1 ил.

Изобретение относится к электротехнике и может быть использовано при создании и применении устройств и систем измерения сопротивлений изоляции в сетях постоянного тока с изолированной нейтралью, находящихся под напряжением. Технический результат: повышение точности измерений сопротивления изоляции сети постоянного тока. Сущность: измеряют напряжение между «землей» и полюсами источника постоянного тока. Для чего сначала подключают резистивный элемент к одному из полюсов, а затем к другому, выравнивают напряжения на полюсах параллельным подключением к источнику постоянного тока двух последовательно соединенных одинаковых резисторов, общая точка которых через третий резистор соединена с «землей». При этом резистивные элементы подключают поочередно параллельно первому и второму резисторам, измеряют напряжение на третьем резисторе после подключения одного и другого резистивных элементов. Далее определяют сопротивление изоляции всей сети, а затем для каждого из полюсов. 1 ил.
Наверх