Отжиг холоднокатаной металлической полосы

Изобретение относится к области термообработки алюминиевых полос. Способ характеризуется тем, что холоднокатаная полоса из алюминия непрерывно транспортируется по маршруту транспортировки, где расположен, по меньшей мере, один горелочный мост с горелками прямого воздействия пламени (DFI) для нагревания полосы, причем горелочный мост расположен перпендикулярно к направлению движения полосы, горелки прямого воздействия пламени (DFI) взаимно расположены так, чтобы полоса нагревалась по всей ширине до одинаковой или, по существу, почти одинаковой температуры, при этом скорость прохождения полосы через горелочный мост и тепловую мощность горелок устанавливают такими, чтобы при тепловой обработке выполнялся отжиг полосы, и полоса могла наматываться в рулон. Изобретение позволяет сократить процесс термообработки алюминиевой полосы и одновременно повысить стабильность механических свойств и качество ее поверхности. 6 з.п. ф-лы, 6 ил.

 

Изобретение относится к области отжига алюминиевых полос.

Уровень техники заключается в отжиге холоднокатаных алюминиевых полос при 250-500°С. Целью является восстановление нормальной способности к формуемости.

Механизмами являются удаление дислокаций (частичный отжиг) и рекристаллизация (отжиг).

Процесс рекристаллизации, среди прочих, находится в зависимости от времени и температуры. Например, при 500°C рекристаллизация занимает несколько секунд, при 380°C - несколько минут и при 280°C - несколько часов. Другими факторами являются состав сплава и величина холодной обработки до отжига.

Частичный отжиг имеет место при 200-300°C в течение длительных периодов времени до 15 часов.

Для рулонов алюминиевых полос обычно используется камерная печь с выдвижным подом. Печь нагревают или электрическими элементами, или топливными нагревательными элементами. Для получения нормальной конвекции и температурной однородности в печи используются сильные вентиляторы для обеспечения циркуляции среды в печи. Камерная печь с выдвижным подом означает значительные затраты.

Метод прямого воздействия пламени (DFI), где множественные факелы пламени кислородотопливной горелки непосредственно встречают и нагревают движущуюся стальную полосу, является способом, ранее разработанным и запатентованным. В горелки (DFI) обычно подается топливо и окислитель с высоким содержанием кислорода. Предпочтительно использование окислителя, содержащего кислород, по меньшей мере, с массовой долей 80%. Использование горелки (DFI) обеспечивает высокую теплоотдачу от пламени к стальной полосе и, таким образом, очень высокую интенсивность нагревания.

Однако горелки (DFI), работающие с окислителем с высоким содержанием кислорода, дают очень высокую выходную мощность и высокую температуру пламени, такую как 2500°C.

Несмотря на этот факт, неожиданно было обнаружено, что является возможным нагревание алюминиевой полосы до заданной температуры очень быстро, причем без получения поверхностных повреждений, таких как локальное расплавление на поверхности полосы. У алюминия точка плавления составляет приблизительно 660°C.

В соответствии с известным уровнем техники существует проблема с отжигом. Известный уровень техники для отжига в рулонах является медленным процессом. Для него характерно неэффективное нагревание и низкая теплопроводность между слоями алюминиевой полосы в пределах рулона. Это приводит к затягиванию процесса по времени, низкой производительности и высокому потреблению энергии.

Вторая проблема заключается в опасности возможных взрывов в результате испарений смазочных материалов с поверхности рулонного материала, воспламеняемых со средой внутри печи.

Третья проблема состоит в изменении цвета на поверхности полосы вследствие реакций между технологической прокатной смазкой, металлом и средой.

Четвертая проблема состоит в том, что длительный по времени процесс может вызывать рост оксидного слоя на поверхности полосы, приводящего к снижению свойств пайки и другим отрицательным последствиям.

Пятая проблема состоит в том, что во время тепловой обработки возникают температурные градиенты в пределах рулона. При частичном отжиге в рулонах есть риск, что наружные слои рулона подвергаются тепловой обработке с различным по времени температурным профилем, чем внутренние слои, и это могло бы приводить к изменениям в механических свойствах.

Настоящим изобретением решаются все вышеупомянутые проблемы.

Настоящее изобретение относится, таким образом, к способу отжига холоднокатаных алюминиевых полос и отличается тем, что холоднокатаная полоса алюминия непрерывно транспортируется по маршруту транспортировки, где расположен горелочный мост с горелками 1 прямого воздействия пламени (DFI) для нагревания полосы, при этом упомянутый горелочный мост расположен перпендикулярно, или, по существу перпендикулярно к направлению движения полосы, а горелки (DFI) взаимно расположены так, чтобы полоса нагревалась по всей ширине до одинаковой или, по существу, почти до одинаковой температуры, при том, что скорость прохождения полосы у упомянутого горелочного моста и теплотворная способность упомянутых горелок отрегулированы для тепловой обработки полосы так, чтобы выполнялся отжиг полосы, и так, чтобы подвергнутая тепловой обработке полоса наматывалась в рулон 5.

Настоящее изобретение описано более подробно ниже, частично в связи с примерными вариантами осуществления, отображенными на приложенных чертежах, где:

фиг.1 иллюстрирует первый вариант осуществления настоящего изобретения;

фиг.2 иллюстрирует второй вариант осуществления настоящего изобретения;

фиг.3 иллюстрирует третий вариант осуществления настоящего изобретения;

фиг.4 иллюстрирует четвертый вариант осуществления настоящего изобретения;

фиг.5 иллюстрирует пятый вариант осуществления настоящего изобретения;

фиг.6 иллюстрирует шестой вариант осуществления настоящего изобретения.

Фиг.1 иллюстрирует первый вариант осуществления настоящего способа для отжига холоднокатаных алюминиевых полос 3.

В соответствии с изобретением холоднокатаная полоса 3 из алюминия непрерывно транспортируется по транспортному маршруту, где расположен горелочный мост с горелками 1 прямого воздействия пламени (DFI) для нагревания полосы. Упомянутый горелочный мост расположен перпендикулярно, или, по существу перпендикулярно, к направлению движения полосы 3. Кроме того, горелки прямого воздействия пламени (DFI) взаимно расположены так, чтобы полоса нагревалась по всей ширине до одинаковой или, по существу, почти до одинаковой температуры. Скорость прохождения полосы 3 через упомянутый горелочный мост и теплотворная способность упомянутых горелок отрегулированы для тепловой обработки полосы так, чтобы выполнялся отжиг полосы, и так, чтобы подвергнутая тепловой обработке полоса наматывалась в рулон 5.

В соответствии с одним вариантом осуществления изобретения, скорость полосы 3, проходящей через упомянутый горелочный мост с горелками 1 и тепловая мощность упомянутых горелок отрегулированы для тепловой обработки полосы 3 так, чтобы выполнялась рекристаллизация полосы.

В соответствии с другим предпочтительным вариантом осуществления, по меньшей мере, один горелочный мост с горелками 1 находится выше, и, по меньшей мере, один горелочный мост с горелками 1 находится ниже упомянутого маршрута транспортировки упомянутой полосы 3.

Эксперименты выполнялись с холоднокатаной и намотанной в рулон алюминиевой полосой, имеющей толщину материала 1 мм. Полоса проходила один горелочный мост для горелок (DFI), расположенных выше полосы, и один горелочный мост для горелок, расположенных ниже полосы. Каждый горелочный мост имел четыре горелки. Полная тепловая мощность, произведенная горелками, составляла 200 кВт. Температура полосы достигала 400°C при прохождении полосы вдоль горелок со скоростью 24 м/сек. Температура достигала 365°C при скорости 30 м/сек. Какие-либо поверхностные повреждения не наблюдались.

Предполагалось, что настоящее изобретение предпочтительно используется для полос, имеющих толщину от 0,5 мм до максимальной толщины, с которой полосу можно наматывать в рулон.

В соответствии с предпочтительным вариантом осуществления изобретения предусмотрены две, или более, последовательно установленные горелочные мосты для горелок 1 (DFI), причем расположенные один после другого на маршруте транспортировки.

Предпочтительно, что горелочный мост или мосты расположены в печи. Однако в некоторых вариантах применения горелочного моста или мостов они могут быть установлены в раме без окружающего корпуса.

В соответствии со вторым вариантом осуществления изобретения холоднокатаная алюминиевая полоса 3 направляется непосредственно от клети 6 к упомянутому маршруту транспортировки, (см. фиг.2). В соответствии с этим вариантом осуществления защитное ограждение 7 расположено между печью 2 (DFI) и клетью, потому что используемые смазочные материалы при прокатке могут быть воспламеняемыми.

В соответствии с третьим вариантом осуществления изобретения, проиллюстрированным на фиг.З, подвергнутая тепловой обработке и намотанная в рулон 5 полоса помещается в нагревательную печь 8 для частичного отжига, то есть для удаления дислокаций. Нагревательная печь должна предпочтительно быть заполнена газообразным азотом для минимизирования наращивания пленки оксида.

В таком варианте в нагревательной печи поддерживается температура, которая соответствует температуре алюминиевой полосы, достигнутой в результате нагревания посредством упомянутых горелок (DFI). Таким образом, достигается, что отжиг алюминиевой рулонной полосы начинается немедленно в нагревательной печи по всему рулону.

Фиг.4 иллюстрирует, что холоднокатаная алюминиевая полоса 3 направляется непосредственно от прокатной клети к упомянутому маршруту транспортировки, то есть к печи (DFI), после чего она наматывается в рулон и помещается в нагревательную печь.

Фиг.5 иллюстрирует пятый вариант осуществления изобретения, где холодная алюминиевая полоса 3 разматывается из рулона 4, подвергается тепловой обработке в печи 2 (DFI) и направляется через печь 9 непрерывного нагревания, после чего она наматывается в рулон 10.

Фиг.6 иллюстрирует вариант осуществления, изображенный на фиг.5, но в котором холодная алюминиевая полоса 3 направляется непосредственно от клети 6 к упомянутому маршруту транспортировки, то есть печи 2, после чего она направляется через нагревательную печь 9 непрерывного действия, после чего она наматывается в рулон 10.

Настоящим изобретением решены все проблемы, упомянутые во вводной части. Кроме того, обеспечивается очень быстрый процесс, так как полоса нагревается в то время, когда она разматывается.

Выше описаны нескольких вариантов осуществления изобретения. Однако изобретение может быть изменено специалистом в этой области техники без отклонения от идеи изобретения.

Таким образом, настоящее изобретение не ограничивается вышеописанными вариантами изобретения, но может быть изменено в рамках объема приложенной формулы изобретения.

1. Способ отжига холоднокатаных алюминиевых полос, отличающийся тем, что холоднокатаную полосу (3) из алюминия непрерывно транспортируют по маршруту транспортировки, в котором расположен, по меньшей мере, один горелочный мост с горелками (1) прямого воздействия пламени (DFI) для нагревания полосы, причем упомянутый горелочный мост расположен перпендикулярно, или, по существу, перпендикулярно к направлению движения полосы (3), горелки (1) прямого воздействия пламени (DFI) взаимно расположены так, чтобы полоса (3) нагревалась по всей ширине до одинаковой или, по существу, почти одинаковой температуры, причем скорость прохождения полосы (3) через горелочный мост и тепловую мощность горелок (1) устанавливают такими, чтобы при тепловой обработке выполнялся отжиг полосы, и подвергнутая отжигу полоса наматывалась в рулон (5).

2. Способ по п.1, отличающийся тем, что, по меньшей мере, один горелочный мост расположен выше, а, по меньшей мере, один горелочный мост расположен ниже упомянутого маршрута транспортировки упомянутой полосы (3).

3. Способ по п.1, отличающийся тем, что предусмотрены два, или более, последовательно расположенных горелочных моста для горелок (1) прямого воздействия пламени (DFI).

4. Способ по п.1, отличающийся тем, что горелочный мост или мосты расположены в печи (2).

5. Способ по п.1, отличающийся тем, что холодный рулон (4) алюминиевой полосы разматывается, причем размотанная полоса (3) подвергается тепловой обработке.

6. Способ по п.1, отличающийся тем, что холоднокатаная алюминиевая полоса (3) направляется непосредственно от прокатной клети (6) к упомянутому маршруту транспортировки.

7. Способ по п.1, отличающийся тем, что подвергнутую тепловой обработке и намотанную в рулон (5) полосу помещают в нагревательную печь (8) для частичного отжига, то есть для удаления дислокаций.



 

Похожие патенты:

Изобретение относится к обработке алюминия, в частности к регулированию ресурса работы изделий, изготавливаемых из технически чистого алюминия и эксплуатирующихся в условиях ползучести, и может быть использовано в строительстве, производстве двигателей, автомобиле-, авиа- и судостроении, где наибольшее применение находит алюминий и сплавы на его основе.
Изобретение относится к обработке металлов давлением, например, к производству тонких лент из сплавов систем Al-Mg, Al-Mg-Mn и может быть использовано для производства упаковочной тары в пищевой промышленности.
Изобретение относится к области металлургии и может быть использовано для улучшения качества отливок из алюминиевых сплавов эвтектического типа и сплавов типа твердого раствора за счет устранения в них усадочных пор и раковин.

Изобретение относится к порошковой металлургии, в частности к получению износостойкого антифрикционного самосмазывающегося сплава с большим содержанием олова. Распыленные порошки состава Al-40Sn прессуют в брикет и спекают в инертной атмосфере при температуре 590-615°C в течение 90-30 минут.
Изобретение относится к области металлургии, а именно к разработке новых сплавов и технологий получения из них листовых полуфабрикатов методами термической обработки и обработки давлением.

Изобретение относится к цветной металлургии, в частности к способу термомеханической обработки деформируемых термически неупрочняемых алюминиевых сплавов системы алюминий - магний, получению в результате обработки катаных изделий, например плит и листов, и может быть использовано в транспортном машиностроении, судостроении, авиакосмической технике.

Изобретение относится к области технологии получения высокотемпературных проводников в системе металл - оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами.

Изобретение относится к области металлургии, а именно к разработке способов повышения характеристик усталостной долговечности конструкционных металлов на основе преобразования энергетической структуры материалов как на стадии производства сплавов и полуфабрикатов, так и в эксплуатации.
Изобретение относится к способу изготовления пустотелых изделий из алюминиевых сплавов. .

Изобретение относится к способам получения сверхпластичных листов из алюминиевых сплавов системы алюминий-магний-литий, применяемых для формовки изделий сложной формы, используемых в качестве конструкционных материалов.

Изобретение относится к алюминиевому сплаву для производства подложек для офсетных печатных форм. Алюминиевый сплав содержит следующие компоненты, в мас.%: 0,2% ≤ Fe ≤0,5%, 0,41% ≤ Mg ≤ 0,7%, 0,05% ≤ Si ≤ 0,25%, 0,31% ≤ Mn ≤0,6%, Cu ≤0,04%, Ti ≤ 0,05%, Zn ≤ 0,05%, Cr ≤ 0,01%, остальное - Al и неизбежные примеси, каждая из которых присутствует в количестве не более 0,05%, а в целом они составляют максимум 0,15%. Техническим результатом изобретения является создание алюминиевого сплава и алюминиевой ленты, изготовленной из алюминиевого сплава, которая пригодна для производства подложек для печатных форм, обладающих более высоким сопротивлением усталости при изгибе поперек направления вращения и большей термической устойчивостью без снижения способности к зернению. 2 н. и 5 з.п. ф-лы, 4 табл., 2 ил.

Изобретение относится к способу формования листового компонента из алюминиевого сплава. Способ включает нагрев листовой заготовки из алюминиевого сплава до температуры термообработки на твердый раствор (SHT) на станции нагрева и, в случае сплавов, не подвергаемых предварительной закалке с последующим старением, поддержание температуры SHT до завершения термообработки на твердый раствор, подачу листовой заготовки в течение 10 с на ряд холодных штампов и формование таким образом, чтобы уменьшить до минимума потери тепла от листовой заготовки, закрывание холодных штампов для формования листовой заготовки в отформованный компонент, при этом формование осуществляют менее чем за 0,15 с, выдержку отформованного компонента в закрытых штампах во время охлаждения. Способ позволяет реализовать механизм деформационного упрочнения, позволяющий увеличить пластичность материала и улучшить его формуемость. 2 н. и 13 з.п. ф-лы, 6 ил.,1 табл.
Изобретение относится к способу изготовления плиты большого калибра из алюминиевого сплава, имеющей пониженный уровень остаточного напряжения. Способ включает обеспечение термообработанной на твердый раствор и закаленной плиты из алюминиевого сплава с толщиной, по меньшей мере, 80 мм, снятие напряжений в упомянутой плите холодной прокаткой плиты до достижения обжатия в направлении толщины плиты в диапазоне от 0,5% до 6%, при этом холодную прокатку осуществляют при скорости деформации менее 0,10 сек-1. Способ позволяет изготавливать плиты из дисперсионно-твердеющего алюминиевого сплава с толщиной более 80 мм, имеющего пониженный уровень остаточных напряжений. 13 з.п. ф-лы, 2 пр., 2 табл.

Изобретение относится к металлургии, в частности к способу термообработки алюминиево-кремниевого сплава эвтектического состава. Сплав нагревают с печью до температуры на 5-7°C выше температуры эвтектического равновесия сплава, выдерживают сплав при этой температуре в течение 120-150 мин, затем проводят охлаждение с печью до температуры 420-430°C со скоростью 0,01-0,03 град/с и охлаждение в воде до комнатной температуры. В результате термообработки в сплаве формируется микроструктура, в которой отсутствуют иглообразные кристаллы кремния и состоящая из многогранных кристаллов кремния, распределенных равномерно в матрице твердого раствора на основе алюминия. 3 ил.
Изобретение относится к металлургии деформируемых термически неупрочняемых алюминиевых сплавов, предназначенных для использования в качестве конструкционного материала в виде деформируемых полуфабрикатов в морской и авиакосмической технике, транспортном и химическом машиностроении, в т.ч. в криогенной технике, например судах-газовозах для перевозки сжиженных при низких температурах газов. Способ включает получение слитка из алюминиевого сплава, содержащего магний и скандий, методом полунепрерывного литья, гомогенизирующий отжиг при температуре 300-360°C продолжительностью до 8 часов, механическую обработку слитка, нагрев литых заготовок под прокатку при 340-380°C до 8 часов, горячую прокатку с получением листа или плиты и последующий отжиг при температуре 380-440°C до 4 часов. Способ обеспечивает получение высоких механических свойств при комнатной и низких (криогенных) температурах. 1 пр., 1 табл.

Изобретение относится к обработке металлов давлением и может быть использовано в кузнечных цехах заводов при изготовлении полых деталей из алюминиевых сплавов. Исходную круглую заготовку получают из слитка гомогенизацией при температуре (310-340)°C в течение (1-5) часов с последующим охлаждением до температуры (110-120)°C со скоростью не менее 110°C/ч. Гомогенизированный слиток деформируют путем уменьшения площади поперечного сечения и увеличения длины. Полученную заготовку подвергают объемной горячей штамповке выдавливанием через осесимметричный ручей. Ручей образован поверхностями неподвижного дорна и большей ступени сквозного ступенчатого отверстия контейнера. Штамповку ведут в две стадии. На первой из них прямым выдавливанием осаживают заготовку, нагретую до температуры (270-400)°C, в шайбу. Одновременно к торцу образуемой шайбы прикладывают через контейнер осевое усилие. На второй стадии выдавливают стенку детали. Вторую стадию штамповки осуществляют с нагревом до температуры (420-440)°С. В результате обеспечивается повышение прочности полученных деталей. 3 ил., 1 пр.

Изобретение относится к обработке металлов давлением и может быть использовано в кузнечных цехах металлургических и машиностроительных заводов при изготовлении, например, автомобильных колес, емкостей высокого давления и подобных им изделий. Из исходной цилиндрической заготовки горячей объемной штамповкой в два этапа формируют полуфабрикат. На предварительном этапе путем осадки по переходам изменяют габаритные размеры заготовки с уменьшением высоты и увеличением диаметральных размеров. На заключительном этапе формируют стенки чаши и донную часть. Полученный полуфабрикат подвергают термической и механической обработке. Исходную заготовку изготавливают прессованием из слитка с предварительной гомогенизацией при указанной температуре и охлаждением с указанной скоростью. Приведены интервалы температур нагрева для двух этапов формирования полуфабриката. В результате обеспечивается повышение качества готовых деталей. 2 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к алюминиевым сплавам, применяемым по военному назначению, в частности к способам старения алюминиевых сплавов для достижения улучшенных баллистических характеристик. Способ включает выбор критерия по меньшей мере одной баллистической характеристики, подготовку изделия к старению, определение степени недостаривания термически упрочняемого алюминиевого сплава по кривой старения в зависимости от выбранного критерия, проведение старения с заданной степенью недостаривания. Способ позволяет получить изделия из алюминиевых сплавов с высокими баллистическими характеристиками. 2 н. и 18 з.п. ф-лы, 20 ил., 3 пр.

Изобретение относится к цветной металлургии и может быть использовано для получения сплавов на основе алюминия. Способ включает получения лигатуры алюминий-фосфор в виде таблеток состава, мас.%: фосфор 1,5-3,5, железо 6,0-16, алюминий остальное. При этом осуществляют перемешивание алюминиевых гранул и порошка феррофосфора в шаровой мельнице со скоростью вращения 60-250 об /мин в течение 1-7 часов и холодное прессование компонентов смеси. Таблетки получают диаметром 20-100 мм прессованием с усилием 100-5000 кг при свободной насыпке смеси на гидравлическом прессе. Изобретение позволяет уменьшить средний размер частиц в лигатуре до 1,5-2,5 мкм, формировать вторые фазы и равномерно их распределять по объему формуемой таблетки. 5 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Изобретение относится к обработке давлением металлических сплавов системы алюминий-магний, демонстрирующих прерывистую пластическую деформацию и локализацию деформации в полосах, вызывающих ухудшение качества поверхности и внезапное разрушение этих сплавов, и может быть использовано в авиакосмической и автомобильной отраслях. Способ включает механическую обработку давлением заготовки при комнатной температуре с одновременным пропусканием через нее постоянного электрического тока низкой плотности 20-30 А/мм2, который полностью подавляет полосообразование и прерывистую деформацию алюминий-магниевого сплава. Изобретение позволяет повысить качество обрабатываемой поверхности и увеличить ресурс долговечности алюминий-магниевых сплавов без снижения их прочности и пластичности. 3 ил.
Наверх