Токосъемная вставка токоприемника электротранспортного средства и способ ее изготовления

Изобретение относится к изделиям скользящего контактного токосъема, в частности к токосъемным вставкам для железнодорожного и городского электротранспорта и технологии ее получения. Токосъемная вставка токоприемника электротранспортного средства включает основание и контактную поверхность и выполнена из композиционного материала, содержащего следующие компоненты, мас.%: графит 12,0-60,0, кокс 10,0-50,0, железный порошок 2,0-5,0, коксовый остаток - остальное. Также раскрывается способ изготовления данного материала, предусматривающий смешение всех компонентов, получение заготовки, карбонизующий обжиг заготовки, ее последующую пропитку, повторный карбонизующий обжиг и механическую обработку заготовки с получением вставки. Техническим результатом является снижение удельного электрического сопротивления до значений 10-11 мкОм/м и менее; снижение интенсивности изнашивания при повышенных токах и повышенных скоростях движения, что позволит использовать данную токосъемную вставку для электрифицированного транспорта с повышенными скоростями движения. 2 н. и 3 з.п. ф-лы, 1 табл.

 

Изобретение относится к изделиям скользящего контактного токосъема, в частности к токосъемным вставкам для железнодорожного и городского электротранспорта и технологии ее получения.

В патенте RU 2150444 раскрывается токосъемная вставка и способ ее изготовления.

Токосъемная ставка выполнена из материала, содержащего, в мас.%: частицы естественного графита 10-90, коксовый остаток 5-20 и пиролитический углерод 6-70.

Способ предусматривает смешение частиц графита и связующего, формирование материала путем прессования данной смеси, обжиг прессованной смеси при 800-1100°С в течение 0,5-1,5 ч в условиях, обеспечивающих получения открытой пористости не менее 10% и последующее насыщение полученной пористой заготовки пироуглеродом.

Материал, из которого выполнена вставка, характеризуется следующими свойствами: предел прочности на сжатие - 49 МПа, удельное электрическое сопротивлением - 2,8 мкОм·м, износостойкость вставки при трении с токосъемом - 0,1-0,14 мм на 1000 км, уменьшенный в 2-5 раз износ медного контртела, предельно допустимая линейная плотность электрического тока, выше которой начинается катастрофический износ материала и/или медного контртела, - более 20 А/мм.

Наиболее близкое техническое решение раскрыто в патенте на полезную модель RU 109703. В данном патенте описывается токосъемная вставка токоприемника электротранспортного средства, которая включает основание и контактную поверхность и выполнена из композиционного материала, содержащего следующие компоненты, мас.%: графит 5,0-30,0, кокс 50,0-80,0, железный порошок 0,5-1,5, коксовый остаток - остальное.

Вставки получали следующим образом: частицы графита, кокса и связующего смешивали в закрытом вращающемся барабане. Затем путем прессования в стальной форме формовали заготовку, после чего полученную заготовку обжигали для получения коксового остатка при температуре 800-1000°С в условиях, обеспечивающих получение пористости, содержащей не более 10% закрытой пористости.

Из полученного материала механической обработкой изготавливалось токосъемное контактное изделие в виде пластины с «ласточкиным хвостом».

Как следует из описания к известному патенту, вставка демонстрирует приемлемый уровень износостойкости при высоких плотностях тока и отличную интенсивность изнашивания при низких плотностях тока и при скольжении без тока, что позволяет использовать материал в производстве контактов, как электровозов, так и электричек. Такие универсальные углеродные вставки одинаково надежно могут эксплуатироваться при любых токах без скачков в интенсивности изнашивания и без аварийной замены.

К недостаткам известного технического решения относятся следующие:

Вследствие того что выход коксового остатка из связующего составляет не более 50%, к недостаткам наиболее близкого технического решения относится пониженная плотность, как следствие этого, высокая интенсивность изнашивания при повышенных плотностях тока (>12 А/мм);

Вставка обладает повышенной интенсивностью изнашивания при повышенных скоростях движения (>140 км/час);

Вследствие пониженной плотности у вставки повышенное удельное электрическое сопротивление (>12 мкОм·м)

Задачей изобретения является устранение присущих известным техническим решениям недостатков, в частности: снижение удельного электрического сопротивления до значений 10-11 мкОм·м и менее; снижение интенсивности изнашивания при повышенных токах и повышенных скоростях движения. Подобная задача важна, например, для движения электрифицированного транспорта с повышенными скоростями, т.е. для скоростей движения более 140 км/час. Для таких скоростей движения требуется повышенная токовая нагрузка, при которой плотности тока могут превышать 12 А/мм.

Поставленная задача решается токосъемной вставкой токоприемника электротранспортного средства, включающей основание и контактную поверхность, выполненной из композиционного материала, содержащего графит, кокс, железный порошок и коксовый остаток при следующем соотношении компонентов, мас.%:

Графит 12,0-60,0
Кокс 10,0-50,0
Железный порошок 2,0-5,0
Коксовый остаток остальное

В частных воплощениях изобретения поставленная задача решается вставкой, основание которой выполнено в виде «ласточкиного хвоста».

Поставленная задача также решается способом изготовления токосъемной вставки токоприемника электротранспортного средства, в соответствии с которым осуществляют смешение частиц графита, кокса, связующего и железного порошка, формирование из полученной смеси заготовки, последующий обжиг полученной заготовки при условиях, обеспечивающих карбонизацию связующего с получением коксового остатка, содержащего не менее 10 об.% сквозных пор, последующую пропитку связующим полученной карбонизованной заготовки, повторный обжиг для карбонизации пропитанной заготовки с получением результирующей заготовки и механическую обработку результирующей заготовки с получением вставки.

В частных воплощениях изобретения поставленная задача решается способом, в котором в качестве связующего используют высокотемпературный нефтяной или каменноугольный пек.

В частных воплощениях изобретения поставленная задача решается также тем, что пропитку связующим осуществляют под давлением от 40 МПа до 50 МПа в защитной атмосфере.

Сущность изобретения состоит в следующем.

Вставка выполнена из материала со значительно большим содержанием железа, чем в известном материале, а при изготовлении данной вставки дополнительно производится пропитка карбонизованной заготовки связующим и последующий повторный обжиг для карбонизации связующего, проводимый в защитной атмосфере.

Данные отличительные признаки изобретения позволяют достичь декларируемый технический результат - снижения износа при повышенных плотностях тока и повышенных скоростях движения, снижения удельного электрического сопротивления.

Под снижением интенсивности изнашивания при повышенных плотностях тока и повышенных скоростях движения понимается значительное, минимум в 1,5-2 раза, снижение интенсивности изнашивания при скоростях более 140 км/час и/или при плотностях тока более 12% по сравнению с наиболее близким решением. Изобретение может быть полезно для электрифицированного транспорта с повышенными скоростями движения (>140 км/час). Движение с такими скоростями осуществляется обычно при плотностях тока более 12 А/мм. Для снятия тока с такой плотностью необходимо удельное электрическое сопротивление 10-11 мкОм·м и менее.

Снижение интенсивности изнашивания при повышенных скоростях и повышенных плотностях тока обусловлено проявлением каталитического действия порошка железа при трении. Железо ускоряет прохождение физико-химических процессов, способствующих снижению интенсивности изнашивания. Железный порошок служит катализатором этой химической реакции. Интенсификация (ускорение) этой реакции приводит к значительному снижению интенсивности изнашивания. Каталитическое действие железа заметно повышается при его содержании более 2% мас. и значительнее проявляется в жестких условиях трения, т.е. при высоких скоростях и плотностях тока.

Функция, выполняемая железом в настоящем изобретении, иная, чем в известном изобретении. Если в известном техническом решении железо в достаточно небольших пределах содержания вводилось для снижения механической доли изнашивания, то содержание железа в предложенной вставке в интервале 2-5 мас.% оказывает каталитическое действие, интенсифицируя несамопроизвольные физико-химические процессы при трении, на которые расходуется часть энергии трения.

К таким процессам относятся не самопроизвольные химические реакции, т.е. реакции с отрицательным производством энтропии. В скользящем электрическом контакте это, например, реакция восстановления углерода из оксида углерода медью. В результате снижается часть энергии трения, затрачиваемая на изнашивание.

Соответственно снижается интенсивность изнашивания. Каталитическое действие железа начинается при его содержании 2,0%, содержание порошка железа более 5% может привести к значительному увеличению интенсивности изнашивания медного контртела - контактного провода.

Снижение интенсивности изнашивания с помощью порошка железа позволяет увеличить относительное содержание графита, что способствует снижению удельного электрического сопротивления.

Для повышения плотности токосъемной вставки и снижения пористости осуществляется дополнительная пропитка пеком с последующим карбонизирующим обжигом. Это позволяет дополнительно снизить удельное электрическое сопротивление.

Качественные и количественные соотношения других компонентов материала вставки выбраны из следующих соображений.

Кокс обеспечивает токосъемной вставке необходимую твердость. Содержание кокса менее нижнего предела приведет к снижению твердости и, как следствие, значительному увеличению механической части изнашивания. Коксовый остаток обеспечивает такие характеристики, как Пределы Прочности на сжатие и на статический изгиб.

Содержание коксового остатка менее нижнего предела приведет к снижению пределов прочности на сжатие и статический изгиб и, как следствие, к разрушению вставки при механических нагрузках.

Повышение содержания кокса и коксового остатка выше верхнего предела приводит к повышению интенсивности изнашивания контактного провода.

Содержание кокса и коксового остатка в заявленном изобретении в целом ниже его содержания в наиболее близком изобретении. Однако интенсивность изнашивания вставки при этом не растет, а наоборот снижается. Это происходит вследствие того, что часть механической моды изнашивания вставки переводится в химическую моду с помощью каталитического действия железа. Снижение содержания кокса и коксового остатка позволяет увеличить содержание графита, что приводит к снижению удельного сопротивления и интенсивности изнашивания контактного провода, а также к увеличению дугостойкости. Для дополнительного повышения содержания коксового остатка и снижения пористости проводят дополнительную жидкофазную пропитку пеком.

При выходе за пределы содержания кокса данные свойства значительно ухудшаются.

Графит необходим для обеспечения достаточного удельного электрического сопротивления, самосмазывающих свойств, высокой дугостойкости. Выход за заявленный нижний предел приводит к резкому снижению дугостойкости электроконтактной вставки, увеличению удельного электрического сопротивления, увеличению интенсивности изнашивания контактного провода. Выход за заявленный верхний предел приводит к резкому снижению механических свойств, т.к. содержание графита может быть увеличено только за счет снижения содержания кокса и коксового остатка.

Графит в примерах реализации использован природный, поскольку он привлекателен своей ценой, но может быть использован и искусственный графит.

Как уже сообщалось, при получении вставки осуществляются две дополнительные операции - проведение пропитки и проведение последующего повторного карбонизирующего обжига.

В качестве связующего при изготовлении вставки может быть использован любой карбонизирующийся материал с высоким коксовым остатком - нефтяные и каменноугольные пеки, фенолформальдегидные смолы, полиамидные смолы и пр.

Для некоторых воплощений изобретения наиболее привлекательным является использование высокотемпературных пеков. Использование таких пеков обеспечивает изобретению наиболее оптимальные условия получения материалов, работающих в условиях токоприемников с повышенной плотностью тока вследствие разогрева зоны трения до температур около 1000°С.

В других реализациях изобретения возможным является использование в качестве связующего термореактивных смол. В этом случае улучшаются механические характеристики материала, однако при этом несколько ухудшаются электрические свойства, и выбор связующего зависит от конкретных условий эксплуатации.

Пример реализации изобретения.

Частицы графита марки ЭУЗ или ЭУТ по ГОСТ 10274, кокса марки КПЭ по ГОСТ 3213, связующего - высокотемпературного каменноугольного пека по ГОСТ 1038 и порошок железа по ГОСТ 9849 смешивали в рассчитанных количествах в закрытом вращающемся барабане в течение двух часов со скоростью вращения 60 об/мин.

Затем путем прессования в стальной закрытой форме с усилием 80-120 МПа формовали заготовки вставки прямоугольного сечения 30×30 мм длиной до 1200 мм, после чего заготовки подвергали карбонизирующему обжигу при температуре 1050°С и нормальном атмосферном давлении. Время обжига подбирали таким образом, чтобы получить карбонизованную заготовку с количеством открытых сквозных пор не менее 10 об.%. В примере конкретного выполнения для заготовки вставки прямоугольного сечения 30×30 мм длиной 260 мм время выдержки было 2 часа.

Полученная заготовка с пористостью около 20% пропитывалась тем же пеком при температуре 1200°С и давлении 50 атм в среде азота и подвергалась последующему карбонизирующему обжигу при 1200°С после снятия давления.

Затем из заготовки механической обработкой получали электроконтактную вставку.

Вставка представляет собой брусок длиной 240, 400, 600 или 1200 мм, форма сечения может быть любой, но поверхность основания (подошва) должна быть плоской, а контактная поверхность должна быть либо плоской, либо выпуклой. Основание вставки может представлять собой ласточкин хвост. Преимущество ласточкиного хвоста состоит в удобстве крепления вставки к полозу токоприемника.

Полученную электроконтактную вставку подвергали испытаниям.

Определяли эксплуатационные свойства - удельное электрическое сопротивление, твердость, интенсивность изнашивания при повышенных плотностях тока (>12 А/мм), дугостойкость (потеря объема вставки при однократном воздействии электрической дуги с током 2,5 кА в течение 0,5 с).

Свойства вставки в зависимости от состава материала приведены в таблице 1. Примеры 1-4 соответствуют заявленному техническому решению, примеры 5 и 6 - опытные.

Как следует из представленных данных, предложенная электроконтактная вставка, выполненная в соответствии с предложенным способом обладает следующими преимуществами: пониженным удельным электрическим сопротивлением, повышенной дугостойкостью, пониженной собственной интенсивностью изнашивания и пониженной интенсивностью изнашивания контактного провода.

Таблица 1
№п/п Состав материала вставки, % мас. Потеря объема при дуговом воздействии мм3 УЭС, мкОм·м Твер-
дость,
HS
Интенсивность изнашивания, усл. ед.:
Кокс Железный порошок Графит Кокс. остаток
Провод Вставка
1. 10 2,0 60 остальное 42 6 48 1 2,1
2. 50 3,0 25 88 11 65 2,1 1,7
3. 20 5,0 40 61 9 55 1,4 1
4. 40 3,0 12 120 18 72 2,3 2,8
5. 15 1,0 50 53 8 53 3,5 3,8
6. 60 3.0 30 189 10 70 2,5 3,1

1. Токосъемная вставка токоприемника электротранспортного средства, включающая основание и контактную поверхность и выполненная из композиционного материала, содержащего графит, кокс, железный порошок и коксовый остаток, отличающаяся тем, что она выполнена из материала, содержащего компоненты при следующем соотношении, мас.%:

Графит 12,0-60,0
Кокс 10,0-50,0
Железный порошок 2,0-5,0
Коксовый остаток остальное

2. Вставка по п.1, отличающаяся тем, что основание выполнено в виде «ласточкиного хвоста».

3. Способ изготовления токосъемной вставки токоприемника электротранспортного средства, отличающийся тем, что осуществляют смешение частиц графита, кокса, связующего и железного порошка, формирование из полученной смеси заготовки, последующий обжиг полученной заготовки при условиях, обеспечивающих карбонизацию связующего с получением коксового остатка, содержащего не менее 10 об.% сквозных пор, последующую пропитку связующим полученной карбонизованной заготовки, повторный обжиг для карбонизации пропитанной заготовки с получением результирующей заготовки и механическую обработку результирующей заготовки с получением вставки.

4. Способ по п.3, отличающийся тем, что в качестве связующего используют высокотемпературный нефтяной или каменноугольный пек.

5. Способ по п.3, отличающийся тем, что пропитку связующим осуществляют под давлением от 40 МПа до 50 МПа в защитной атмосфере.



 

Похожие патенты:

Изобретение относится к нанесению покрытий для защиты от окисления деталей из термоструктурных композитных материалов, содержащих углерод. Для получения самовосстанавливающегося слоя на детали из композитного материала на деталь наносят композицию, содержащую: суспензию коллоидного диоксида кремния, бор или соединение бора в виде порошка, карбид кремния в виде порошка, кремний в виде порошка и по меньшей мере один сверхжаропрочный оксид: Y2O3, HfO2, Al2O3, ZrO2.

Изобретение относится к изготовлению сопла или диффузора сопла из композитного материала. Техническим результатом изобретения является повышение прочности изделий.

Изобретение относится к области изготовления заготовок из композиционных углерод-углеродных материалов и предназначено для изготовления фрикционных элементов тормозных дисков для авиационной техники и наземного транспорта.

Изобретение относится к области изготовления фрикционных углерод-углеродных материалов и изделий из углеродистой волокнистой массы в смеси с порошкообразным связующим, в частности к пресс-пакетам, из которых формируются эти материалы и/или изделия.

Изобретение относится к модифицированию поверхности неорганического волокна путем формирования высокоразвитой поверхности неорганического волокна, используемого в качестве наполнителя, за счет формирования на волокнах углеродных наноструктур (УНС) и может найти применение в производстве высокопрочных и износостойких волокнистых композиционных материалов.

Изобретение относится к области изготовления фрикционных изделий, в частности изделий для фрикционного торможения, таких как авиационные тормоза. .

Изобретение относится к области техники фрикционных материалов, например дисков фрикционного тормоза для летательных аппаратов. .

Изобретение относится к композиционным материалам на основе терморасширенного графита, в частности к армированным листовым материалам, и может быть использовано в производстве прокладочных и других изделий, работающих в интервале температур от минус 80 до плюс 250°С.

Изобретение относится к области углерод-углеродных композиционных материалов (УУКМ). .

Изобретение относится к эрозионностойким теплозащитным композиционным материалам и может быть использовано для создания деталей защиты поверхностей гиперзвуковых спускаемых аппаратов (ГСА).

Изобретение относится к области изделий из композиционных материалов. В соответствии с заявленным способом на углеродную заготовку наносят гальваническое покрытие из карбидообразующего металла или сплава металлов и выполняют термообработку в вакууме или защитной газовой среде с карбидизацией гальванического покрытия.
Изобретение относится к области конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, и может быть использовано в химико-металлургической промышленности для создания изделий и элементов конструкций, подвергающихся воздействию агрессивных сред.

Изобретение может быть использовано при получении конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, для химической, нефтехимической, химико-металлургической промышленности и авиатехники.

Изобретение может быть использовано в химической, нефтехимической и химико-металлургической отраслях промышленности, а также в авиатехнике для изготовления конструкционных материалов, подвергающихся воздействию агрессивных сред и механическим нагрузкам.

Изобретение может быть использовано в химической, нефтехимической и химико-металлургической отраслях промышленности, а также в авиатехнике для получения конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды.

Изобретение может быть использовано в химической промышленности и в электротехнике. Во внутренней полости емкости 3 размещают водяную суспензию, содержащую, об.%: частицы кокса 4 с размерами 1-8 мкм - 50-70%; остальное - вода.
Изобретение относится к получению сверхтвердого композиционного материала на основе углерода, который может быть использован для изготовления инструментов для горнодобывающей, камнеобрабатывающей и металлообрабатывающей промышленности.
Изобретение относится к технологии получения изделий из мелкозернистого графита, используемого для производства углеродных и углеродсодержащих материалов, а также в качестве конструкционного материала для изделий различного назначения, в том числе работающих в условиях высоких температур, нейтронного облучения, эрозии, агрессивных сред и режимного трения.
Изобретение относится к технологии создания эрозионностойких углерод-углеродных композиционных материалов (УУКМ) и может быть использовано для изготовления элементов защиты поверхностей гиперзвуковых спускаемых аппаратов.

Изобретение относится к порошковой металлургии, в частности к получению контактных вставок токоприемников троллейбусов. Порошковую композицию на основе углерода выдавливают из контейнера пресса через мундштук с формованием профильной рабочей поверхности вставки и последующим делением полученного полуфабриката на отдельные заготовки.
Наверх