Способ испытания на сульфидную коррозию жаропрочных порошковых никелевых сплавов

Изобретение относится к области определения коррозионной стойкости металлов и может быть использовано для контроля подверженности к сульфидной коррозии деталей из порошковых никелевых сплавов газотурбинных двигателей. Способ включает нанесение агрессивного реагента на поверхность заготовки, нагревание и оценку степени коррозионного поражения с использованием агрессивного реагента, содержащего сульфат натрия и легкоплавкий сульфат аммония, при этом сначала проводят нагревание заготовки до 250° С, наносят первый слой агрессивного реагента, повторно нагревают заготовку до 250° С и наносят второй слой агрессивного реагента, затем проводят стабилизирующий нагрев при 600° С в течение 0,5-1,0 час и охлаждение на воздухе с последующим проведением оценки степени коррозионного поражения к сульфидной коррозии по снижению сопротивления материала заготовки малоцикловой усталости. Технический результат: возможность проведения оценки качества деталей при заводском контроле, повышение коррозионной стойкости и увеличение ресурса деталей в 1,25 - 1,5 раз. 1 табл.

 

Предлагаемое изобретение относится к порошковой металлургии, в частности к порошковым никелевым сплавам, и может использоваться при изготовлении заготовок тяжелонагруженных деталей для газотурбинных двигателей, работающих при повышенных температурах.

Известен способ испытания элементов газотурбинного двигателя путем термоциклического воздействия на элемент газовым потоком, который заключается в том, что сначала проводят химическую обработку в электролите, затем электрохимическую анодную обработку, далее механическое нагружение, состоящее из нагружения на вибростенде и статистического нагружения, после чего термоциклическое воздействие в агрессивной атмосфере СО и SO2 и далее механическое нагружение, причем цикл производят многократно (Патент РФ 2270431, С1 2004 года).

Недостатком этого способа является то, что он требует большого расхода металла, сложен в процедуре проведения и не предусматривает оценочные характеристики, связанные с условиями эксплуатации изделий. Способ предусматривает только определение потери массы и глубины поражений после коррозионных испытаний. Эти параметры не отражают специфику работы деталей газотурбинных двигателей, поскольку они подвергаются в эксплуатации циклическим нагрузкам.

Наиболее близким способом по технической сущности к заявленному является способ испытания для лопаток газотурбинных двигателей.

В этом способе для составления агрессивной среды используются следующие компоненты, масс.%:

Сульфат натрия Na2SO4 66,2
Пятиокись ванадия V2O5 1,8
Окись железа Fe2O3 20,4
Окись никеля NiO 8,3
Окись кальция CaO 3,3

Эти компоненты смешиваются и на их основе готовится суспензия на этиловом спирте. Суспензия равномерно наносится на поверхность образцов в количестве ~ 120 г/м2. Покрытые образцы помещаются в алундовые тигли, которые в свою очередь располагаются в замкнутом контейнере. Через контейнер продувается воздух со скоростью 20 л в минуту. Испытания проводятся при постоянной температуре в интервале 700 - 900°С. Степень коррозионных повреждений определяется по потере массы (г/м2) и глубине коррозии (мкм) (Е.Б.Качанов, Ю.А.Тамарин Покрытия для защиты лопаток турбин от сульфидной коррозии./ Технология легких сплавов 2005, №1-4, с.175 - прототип).

Недостатком этого способа является то, что он не предусматривает оценку влияния сульфидной среды на малоцикловую усталость - наиболее чувствительную характеристику коррозионного поражения металла.

Предлагаемый способ отличается от прототипа тем, что на поверхность образцов наносится слой из водного раствора сульфата натрия Na2SO4 с добавкой более легкоплавкого сульфата аммония (NH4)2SO4 с последовательностью и параметрами по нанесению слоя: нагрев до 250°С, нанесение первого слоя, нагрев до 250°С, нанесение второго слоя, стабилизирующий нагрев при 600°С 0,5-1,0 часа - охлаждение на воздухе.

Состав агрессивного слоя и способ его нанесения на поверхность испытуемых образцов позволяет получить стойкое покрытие, допускающее проведение испытаний на малоцикловую усталость.

Испытания на общую коррозию и малоцикловую усталость проводятся при температурах в интервале 600-800°С.

Введение в агрессивную среду легкоплавкой добавки позволяет значительно сократить время испытаний - с 200 часов до 30-60 часов.

Технический результат - выявление влияния сульфидной коррозии не только по потере массы, но и по сопротивлению малоцикловой усталости.

Пример

Для опробования методом порошковой металлургии был изготовлен никелевый сплав ВВ750П по ГОСТ 52802-2007, содержащий: хром, кобальт, вольфрам, молибден, титан, алюминий, ниобий.

Результаты опробования определения сульфидной коррозии по предлагаемому способу и прототипу приведены в таблице 1.

Таблица 1
Результаты испытаний на сульфидную коррозию, при температуре 750°С
Способ По потере массы 1) По сопротивлению малоцикловой усталости 2)
Время испытаний, час Скорость коррозии, г/м2ч Стойкость испытуемого сплава Среднее число циклов до разрушения Коэффициент влияния среды, nс/nв
Баллы Состояние Испытания на воздухе, nв Испытания в агрессивной
среде, nс
Заявленный 30 0,035 4 Стойкое 10035 3) 8270 0,824
Прототип 200 0,031 4 Стойкое Не определяется из-за осыпания агрессивного слоя
Примечание: 1) По ГОСТ 13819-68 Коррозионная стойкость оценивается группой и баллом: совершенно стойкие - 1; весьма стойкие - 2,3; стойкие - 4,5; понижено стойкие - 6,7; мало стойкие - 8,9; не стойкие - 10.
2) Частота 1 Гц, напряжение 1060 МПа.
3) Время 2,8 ч.

Из таблицы 1 видно, что предлагаемый способ позволяет оценить влияние сульфидной коррозии по потере массы. При этом время проведения испытаний сокращается в 6,7 раза. Кроме того, степень коррозионного поражения при этом методе может быть достаточно надежно оценена по снижению сопротивления материала малоцикловой усталости (отношение числа циклов до разрушения в среде и на воздухе - nс/nв). Поэтому становится возможным проводить оценку качества при заводском контроле. Это позволит за счет повышения коррозионной стойкости увеличить ресурс изделий в 1,25-1,5 раз.

Способ испытания заготовок элементов газотурбинного двигателя из никелевых порошковых сплавов на сульфидную коррозии, включающий нанесение агрессивного реагента на поверхность заготовки, нагревание и оценку степени коррозионного поражения, отличающийся тем, что используют агрессивный реагент, содержащий сульфат натрия и легкоплавкий сульфат аммония, при этом сначала проводят нагревание заготовки до 250 °С, наносят первый слой агрессивного реагента, повторно нагревают заготовку до 250°С и наносят второй слой агрессивного реагента, затем проводят стабилизирующий нагрев при 600 °С в течение 0,5-1,0 час и охлаждение на воздухе с последующим проведением оценки степени коррозионного поражения к сульфидной коррозии по снижению сопротивления материала заготовки малоцикловой усталости.



 

Похожие патенты:
Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов. Может использоваться в газотурбинных двигателях (ГТД) для изготовления тяжелонагруженных деталей, работающих при повышенных температурах.
Изобретение относится к порошковой металлургии, в частности к получению металлокерамических электроконтактных материалов Cu-Cd/Nb. Из порошков меди и ниобия готовят шихту, проводят холодное прессование и спекание.
Изобретение относится к области металлургии, в частности к способу получения сплавов на основе титана, плавка и разливка которых проводится в вакуумных дуговых гарнисажных печах.
Изобретение относится к металлургии и литейному производству, в частности к способу модифицирования легированного чугуна с шаровидным графитом для изготовления быстроизнашивающихся деталей, например мелющих элементов рудо- и угольных размольных мельниц.
Изобретение относится к получению наноструктур. Содержащую карбид наноструктуру получают осаждением на основу нанослоя металла или неметалла, или их окислов и последующей карбидизацией путем обработки в угарном газе в присутствии угля или сажи при температуре 1400-1500°С.

Изобретение относится к металлургии, в частности к получению карбидочугуна с отсутствием пор в объеме сплава, и может быть использовано для изготовления рабочих частей выглаживателей.
Изобретение относится к области металлургии, в частности к волокнистым композиционным материалам, армированным непрерывными волокнами оксида алюминия, и может быть использовано в качестве конструкционного материала в авиационной технике.

Изобретение относится к углеродсодержащим медным сплавам и может быть использовано в электротехнике для изготовления электрических проводов. Медный сплав получают добавлением графита гексагональной системы в высокотемпературную среду с температурой в диапазоне от 1200°С до 1250°С в количестве, необходимом для получения медного сплава с содержанием углерода в диапазоне от 0,01% до 0,6% по весу.

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов с металлической матрицей из алюминия или его сплавов, армированных керамическим наполнителем из нитридов или карбидов бора и вольфрамом.

Изобретение относится к области порошковой металлургии, в частности к композиционным материалам на основе алюминия, и может быть использовано в качестве конструкционного материала для деталей, работающих в условиях высоких механических и тепловых нагрузок, например для поршней форсированных двигателей внутреннего сгорания, работающих при температурах их нагрева 350°C и выше.

Изобретение относится к области металлургии, а именно к получению литого композиционного материала (ЛКМ) на основе алюминия для изготовления отливок и деформируемых изделий электротехнического назначения. ЛКМ содержит в качестве матричного компонента алюминий технической чистоты, а в качестве армирующего компонента - дискретные керамические частицы углеродсодержащей боридной фазы C2Al3B48 в количестве 0,1-0,6 мас.%, синтезированные в расплаве. Способ получения ЛКМ включает введение в расплав технического алюминия лигатуры Al-В, перемешивание в течение 5-10 мин, введение в расплав при температуре 980-1000°C алмазографитового наноразмерного порошка и выдерживание в течение 10-15 мин для протекания синтеза керамических дискретных частиц и их распределения в объеме расплава, проведение модифицирования расплава лигатурой Al-Sr, перемешивание и разливку при температуре 740-750°C. Техническим результатом является создание ЛКМ на основе алюминия, обладающего повышенной электропроводностью, прочностью и пластичностью, позволяющей подвергать композиционный материал холодной деформации и достигать высокой степени обжатия без промежуточных отжигов, и способа получения ЛКМ, отличающегося экологической безопасностью, снижением трудоемкости и повышением качества композиционного материала. 2 н.п. ф-лы, 1 пр., 1 табл., 1 ил.
Изобретение относится к области металлургии, в частности к жаропрочным порошковым сплавам на основе никеля, обладающим повышенным сопротивлением к сульфидной коррозии, и может быть использовано для изготовления деталей газотурбинных двигателей. Сплав содержит, мас.%: углерод 0,02-0,10, хром 9,0-11,0, кобальт 14,0-16,0, вольфрам 4,2-5,8, молибден 4,5-5,0, титан 3,0-3,9, алюминий 3,2-4,5, ниобий 2,5-3,5, гафний 0,05-0,5, бор 0,005-0,05, цирконий 0,001-0,05, магний 0,001-0,05, скандий 0,001-0,05, марганец 0,001-0,5, кремний 0,001-0,5, железо 0,001-1,0, никель остальное, при этом суммарное содержание титана, молибдена, ниобия не ниже содержания хрома. Сплав характеризуется высокими характеристиками жаропрочности, стойкости к сульфидной коррозии и сопротивления МЦУ в условиях воздействия агрессивной среды. 2 н.п. ф-лы, 1 табл., 1 пр.
Изобретение относится к цветной металлургии, в частности к способам получения лигатур на основе алюминия, и может быть использовано при получении лигатуры алюминий-титан-цирконий, применяемой для модифицирования алюминиевых сплавов. Способ получения лигатуры алюминий-титан-цирконий включает плавление бинарных лигатурных сплавов алюминий-титан и алюминий-цирконий при поддержании отношения по массе титана к цирконию от 0,15 до 1,5, нагрев расплава до температуры на 160-300°С выше температуры ликвидуса, перемешивание расплава, воздействие на расплав низкочастотными колебаниями для равномерного распределения алюминидов не менее 1 минуты и проведение кристаллизации расплава со скоростью 103-104 град/с. Техническим результатом изобретения является повышение модифицирующей способности лигатуры за счет образования комплексных метастабильных алюминидов с решеткой, совпадающей с решеткой матрицы модифицируемых алюминиевых сплавов, и их равномерного распределения в сплаве лигатуры. 1 з.п. ф-лы, 3 пр., 1 табл.
Изобретение относится к порошковой металлургии, в частности к получению пористых многослойных проницаемых материалов. Может использоваться в медицине для изготовления функционально-градиентных имплантатов. Готовят экзотермическую смесь порошков исходных компонентов при их соотношении, обеспечивающем ее самостоятельное горение, и осуществляют гранулирование. Проводят послойное прессование заготовки, чередуя слои крупных и мелких гранул, при одинаковых или разных давлениях прессования, затем осуществляют самораспространяющийся высокотемпературный синтез и последующее охлаждение полученного материала в вакууме. Обеспечивается получение пористого материала с широким диапазоном пор и высоким пределом прочности. 3 пр.

Изобретение относится к порошковой металлургии, в частности к получению твердосплавного тела из твердого сплава, содержащего зерна карбида вольфрама и металлическое связующее, содержащее кобальт с определенной концентрацией растворенного в нем вольфрама. Твердосплавное тело имеет граничащие друг с другом область поверхности и внутреннюю область, при этом средняя доля связующего во внутренней области больше, чем в области поверхности. Средняя концентрация углерода в связующем в области поверхности выше, чем во внутренней области, при этом твердосплавное тело не содержит эта-фазу и свободный углерод. Концентрация вольфрама, растворенного в связующем в области поверхности меньше, чем во внутренней области, и определяется как(16,1-σВ)/0,275, где σВ - частное от деления величины магнитного момента твердого сплава в области твердосплавного тела на массовую долю связующего в этой области. Твердосплавное тело получено путем формования неспеченной заготовки, содержащей зерна карбида вольфрама, распределенные в содержащем кобальт связующем, предварительного спекания при 1000-1280°С в течение 1-3 часов, термообработки в науглероживающей среде и жидкофазного спекания при 1320-1400°С. Обеспечивается получение материала с градиентом свойств, имеющего высокую износостойкость и ударную вязкость в области поверхности. 2 н. и 9 з.п. ф-лы, 4 ил., 1 табл., 1 пр.

Изобретение относится к области порошковой металлургии, в частности к получению многослойных композитов на основе системы Nb-Al. Может использоваться для синтеза наноструктурных интерметаллических соединений данной системы. Смесь порошков ниобия и алюминия чистотой не менее 98% и долей алюминия от 1,5 до 45 мас.% подвергают механической обработке в планетарной шаровой мельнице при ускорении шаров от 100 до 600 м/с2 продолжительностью от 0,5 до 20 минут. Компактирование кручением под квазигидростатическим давлением на наковальнях Бриджмена осуществляют при температуре от 10 до 100°С, давлении от 2 до 10 ГПа и относительном повороте наковален при кручении до достижения сдвиговой деформации γ≥50. Полученный композит со слоистой структурой характеризуется наномасштабным размером зерен и слоев, повышенной твердостью и большой удельной площадью межфазных границ. 3 ил., 1 пр.

Изобретение относится к алюминиевому сплаву для производства подложек для офсетных печатных форм. Алюминиевый сплав содержит следующие компоненты, в мас.%: 0,2% ≤ Fe ≤0,5%, 0,41% ≤ Mg ≤ 0,7%, 0,05% ≤ Si ≤ 0,25%, 0,31% ≤ Mn ≤0,6%, Cu ≤0,04%, Ti ≤ 0,05%, Zn ≤ 0,05%, Cr ≤ 0,01%, остальное - Al и неизбежные примеси, каждая из которых присутствует в количестве не более 0,05%, а в целом они составляют максимум 0,15%. Техническим результатом изобретения является создание алюминиевого сплава и алюминиевой ленты, изготовленной из алюминиевого сплава, которая пригодна для производства подложек для печатных форм, обладающих более высоким сопротивлением усталости при изгибе поперек направления вращения и большей термической устойчивостью без снижения способности к зернению. 2 н. и 5 з.п. ф-лы, 4 табл., 2 ил.

Изобретение относится к порошковой металлургии, в частности к получению пористого порошка никелида титана. Может использоваться в медицине для изготовления стоматологических имплантов. Порошки никеля и титана смешивают в эквиатомных количествах и прессуют брикеты. Нагревают брикеты в вакууме со скоростью нагрева не выше 279 К/мин до достижения температуры 950-1100 К, выдерживают при этой температуре в течение 2-3 часов и охлаждают с печью. Полученный спек размалывают в шаровой мельнице на закритической скорости в среде изопропанола в течение 40-48 часов и высушивают. Обеспечивается получение порошка, состоящего из фрактально-структурированных частиц с открытой пористостью. 3 ил., 2 пр.

Изобретение относится к области нанотехнологии композиционных материалов на основе мезопористых матриц, содержащих наноразмерные изолированные металлические частицы, и может быть использовано для получения магнитных материалов. Способ получения композиционного наноматериала на основе металлического железа в порах мезопористой матрицы кремнезема SBA-15, обладающего магнитными свойствами, включает пропитку мезопористой матрицы раствором солей железа с последующим их удалением с внешней поверхности и обработку водородом солей железа в порах мезопористой матрицы до металлического железа. Перед пропиткой мезопористой матрицы ее предварительно высушивают при температуре не более 200°C, навеску высушенной мезопористой матрицы помещают в кварцевый реактор и обрабатывают парами треххлористого алюминия в потоке сухого инертного газа в течение не менее 2 часов. Затем прекращают подачу паров треххлористого алюминия и продолжают обрабатывать потоком сухого инертного газа в течение не менее 12 часов, далее навеску мезопористой матрицы последовательно обрабатывают парами воды в потоке сухого инертного газа в течение не менее 2 часов, прекращают подачу паров воды и продолжают обрабатывать потоком сухого инертного газа в течение не менее 12 часов, после чего полученный алюмокислородный монослой наращивают многократно до задаваемых размеров пор и магнитных свойств мезопористой матрицы. Достигается стабильность намагниченности материала за счет направленного регулирования размера пор и толщины стенок, разделяющих поры. 3 з.п. ф-лы, 2 ил., 3 табл., 4 пр.
Изобретение относится к литейному производству и может быть использовано для получения отливок из алюминиевых сплавов. Алюминиевый расплав перегревают до температуры 700-720°C и фильтруют через фильтр из пенометалла с открытой пористостью на основе сплава алюминий-титан с содержанием титана 5-10%. Использование сплава алюминий-титан для изготовления пенометалла обеспечивает снижение содержания водорода в расплаве и модифицирование расплава за счет растворения титана. Достигается повышение механических свойств сплавов.
Наверх