Способ стрельбы ракетой, управляемой по лучу лазера

Изобретение относится к системам наведения ракет и может быть использовано в комплексах ПТУР и ЗУР. Способ стрельбы ракетой, управляемой по лучу лазера, включает измерение дальности до цели и ввод измеренного значения в наземную систему управления, установку начального превышения Y0 оси луча относительно линии визирования цели, запуск управляемой ракеты, подъем оси луча до максимального превышения Ymax относительно линии визирования цели, полет ракеты на максимальном превышении до момента времени, установленного в наземной системе управления в соответствии с измеренной дальностью до цели, и совмещение оси луча с линией визирования цели. При этом осуществляют последовательное изменение превышения: в течение времени от момента запуска ракеты до момента , где ωcp - частота среза системы управления ракетой, рад/с, начальное превышение Y0 сохраняют неизменным, причем его значение устанавливают по зависимости , где - минимальное возможное значение вертикального отклонения ракеты от линии визирования на этом участке полета, м; Rл - радиус луча, м, а в течение времени от момента t1 до момента , где Vп - максимально допустимая скорость подъема луча, м/с, превышение увеличивают до значения Ymax. Технический результат заключается в повышении точности стрельбы ракетой. 2 ил.

 

Изобретение относится к способам стрельбы управляемыми ракетами и может быть использовано в системах наведения (СН) с телеориентацией ракеты в луче лазера.

Одной из задач, решаемых при разработке СН управляемых ракет, является повышение точности их наведения.

Известны способы стрельбы управляемыми ракетами, использующие метод наведения «по трем точкам» (Кузовков Н.Т. Системы стабилизации летательных аппаратов (баллистических и зенитных ракет). М.: «Высшая школа», 1976, с.220), при котором ракета в процессе полета находится на линии, соединяющей пусковое устройство и цель, т.е. на линии визирования цели (ЛВЦ).

В ряде известных способов используется принцип телеориентации управляемой ракеты в лазерном луче, информационная ось которого совмещена с ЛВЦ (Патент США 5427328, НКИ 244-3.13, 12.02.85; Патент ФРГ 4137843, МКИ F41G 1/38, 19.05.93). Недостатком этих способов является:

ухудшение видимости цели и низкая помехозащищенность линии связи вследствие влияния дыма двигателя ракеты на процесс сопровождения цели и наведения ракеты;

высокая вероятность обнаружения комплекса вследствие того, что в процессе полета ракеты центр луча направлен на цель.

Указанных недостатков лишен способ, при котором стрельба производится с отклонением оси луча относительно ЛВЦ (с превышением над ЛВЦ) и их совмещением перед подлетом к цели (Патент RU 2126946, МКИ6 F41G 7/26, 25.11.97). Программное изменение фокусного расстояния в оптической системе (прицеле), реализующей этот способ, обеспечивает постоянство линейного размера луча и величины превышения на всех дальностях полета ракеты, начиная с момента начала изменения фокусного расстояния (начала сужения луча). До этого момента луч и превышение имеют постоянный начальный угловой размер, а их линейные размеры увеличиваются пропорционально полетной дальности.

Согласно этому способу стрельба в режиме с превышением может осуществляться на дальность не менее некоторого значения Dmin, которое определяется временем подъема ракеты на превышение и спуском с него. Перед запуском ракеты в электронной схеме прицела производится сравнение измеренной дальности до цели Dц с хранящимся в памяти значением дальности Dmin, допускающей введение превышения. При Dц>Dmin стрельба производится в режиме с превышением, а при Dц<Dmin - без превышения. Кроме того, в электронной схеме прицела устанавливается время начала снятия превышения в соответствии с измеренной дальностью до цели Dц.

В этом способе и реализующем его прицеле подъем превышения на максимальную величину производится перед запуском ракеты, т.е. в момент выстрела луч поднят вверх на максимальную величину.

Для обеспечения положительных качеств указанного способа величина превышения должна быть не менее высоты цели (высота объектов бронетанковой техники обычно составляет 2,0-2,5 м). Как правило, величина превышения устанавливается 3,0…5,0 м.

Радиус лазерного луча Rл (или его половинный размер при квадратном сечении) выбирается из условий:

обеспечения нахождения ракеты в луче в процессе полета;

обеспечения требуемых энергетических запасов СН на всех дальностях полета ракеты для повышения точности наведения,

т.е. луч должен быть, с одной стороны, достаточно широким, а с другой - достаточно узким (Динамическое проектирование систем управления автоматических маневренных летательных аппаратов; под редакцией Е.А.Федосова. М.: «Машиностроение», 1997, с.271). Обычно радиус лазерного луча составляет 1,5…3,0 м, например, в ПТРК «MAPATS», Израиль и «Red Arrow 9», Китай (Высокоточное оружие зарубежных стран. Том 1. ПТРК: обзорно-аналитический справочник. КБП, ГУП, Тула: «Бедретдинов и Ко», 2008, с.275, 278, 320), т.е. он меньше величины превышения.

Очевидно, что для обеспечения встреливания ракеты в луч соответственно указанному способу (с подъемом превышения на максимальную величину перед запуском ракеты) на носителе должна быть реализована установка двух разных углов пуска между осью ракеты и осью луча в момент запуска ракеты для двух указанных режимов стрельбы: с превышением и без превышения. Такая реализация возможна при наличии привода наведения пусковой направляющей (или ствола орудия, из которого производится запуск), на который поступает электрический сигнал с переключателя режима стрельбы для установки одного из двух значений угла пуска.

Недостатком такого способа является невозможность обеспечения двух режимов стрельбы в случае жесткой конструкции пускового устройства (например, малогабаритной переносной установки), где не предусмотрена возможность изменения угла пуска в зависимости от режима стрельбы.

С одной стороны, стрельба с единым углом пуска в двух режимах не обеспечивает встреливание ракеты в луч в одном из них. С другой стороны, работа только в режиме с превышением на все дальности увеличивает ближнюю дальность стрельбы (так называемую «мертвую зону» комплекса), поскольку стрельба на дальность менее Dmin при этом не обеспечивается.

Наиболее близким к предлагаемому является способ стрельбы ракетой, управляемой по лучу лазера, включающий измерение дальности до цели и ввод измеренного значения в наземную систему управления, установку начального превышения Y0 оси луча относительно линии визирования цели, запуск управляемой ракеты, подъем оси луча после запуска ракеты до максимального превышения Ymax относительно линии визирования цели, полет ракеты на максимальном превышении до момента времени, установленного в наземной системе управления в соответствии с измеренной дальностью до цели, и совмещение оси луча с линией визирования цели (Патент RU 2205347, МКИ7 F41G 7/00, 7/26, F42B 15/01, 30.05.2001).

Этот способ обеспечивает возможность стрельбы с единым углом пуска между осью ракеты и осью луча для двух режимов стрельбы: с превышением и без превышения.

Недостатком способа является низкая вероятность встреливания в луч ракет с низкой начальной скоростью (менее 100 м/с).

Встреливание в луч таких ракет характеризуется их большими отклонениями на участке переходного процесса вследствие влияния начальных возмущений по угловой скорости продольной оси ракеты, ветра, ускорения от действия силы тяжести и других факторов, а также значительной длительностью переходного процесса (выхода ракеты на ось луча).

Как известно, время переходного процесса tп в СН при ее аппроксимации апериодическим звеном первого порядка с постоянной времени Т определяется по зависимости (В.А.Бесекерский, Е.П.Попов. Теория систем автоматического регулирования. М.: «Наука», 1972, с.71):

tп=3T

или с учетом того, что T = 1 ω c p , где ωcp - частота среза СН, рад/с,

t п = 3 ω c p ( 1 )

Частота среза СН, в свою очередь, связана с аэродинамическими характеристиками ракеты и тем ниже, чем ниже ее скорость, что соответственно увеличивает длительность переходного процесса.

Поскольку согласно известному способу подъем оси луча до максимального превышения производится непосредственно после запуска ракеты, высока вероятность выхода ракеты из луча за его нижнюю границу в случае, если возмущающие факторы действуют в направлении отклонения ракеты вниз. Для ракет с низкой начальной скоростью это обусловлено ограничением максимальной команды вверх, что не позволяет осуществить требуемый маневр (подъем траектории).

Задачей предлагаемого изобретения является повышение точности стрельбы в режиме с превышением.

Поставленная задача решается за счет того, что по сравнению с известным способом стрельбы ракетой, управляемой по лучу лазера, включающим измерение дальности до цели и ввод измеренного значения в наземную систему управления, установку начального превышения Y0 оси луча относительно ЛВЦ, запуск управляемой ракеты, подъем оси луча до максимального превышения Ymax относительно ЛВЦ, полет ракеты на максимальном превышении до момента времени, установленного в наземной системе управления в соответствии с измеренной дальностью до цели, и совмещение оси луча с ЛВЦ, в предлагаемом способе в течение времени от момента запуска ракеты до момента t 1 = 2,5 3,5 ω c p , где ωcp - частота среза системы управления ракетой, рад/с, начальное превышение Y0 сохраняют неизменным, причем его значение устанавливают по зависимости

Y 0 = Y min p + ( 0,5 ÷ 1,0 ) R л , ( 2 )

где Y min p - минимальное возможное значение вертикального отклонения ракеты от ЛВЦ на этом участке полета, м; Rл - радиус луча, м, а в течение времени от момента t1 до момента

t 2 = t 1 + Y max Y 0 V п , (3)

где Vп - максимально допустимая скорость подъема луча, м/с, превышение увеличивают до значения Ymax.

Изобретение поясняется следующим графическим материалом.

На фиг.1 представлена циклограмма работы СН в соответствии предлагаемым способом, где обозначено (помимо указанных выше обозначений):

tи - момент измерения дальности до цели;

t0 - момент запуска ракеты;

t3 - момент начала снятия превышения;

t4 - момент совмещения оси луча с ЛВЦ.

На фиг. 2 представлена траектория ракеты в вертикальной плоскости Yp с минимально возможным отклонением от ЛВЦ Y min p , где обозначено (помимо указанных выше обозначений):

Yпр - величина превышения (т.е. положение оси луча);

Yв - верхняя граница луча;

Yн - нижняя граница луча;

tc - момент начала сужения луча.

Стрельба согласно предлагаемому способу осуществляется следующим образом (фиг.1). После измерения дальности до цели Dц в момент времени tи и ввода измеренного значения в наземную систему управления в ее электронной схеме определяется момент времени t3 аналогично известному способу. Затем устанавливается начальное превышение Y0 и производится запуск управляемой ракеты.

В течение времени от момента запуска ракеты t0 до момента t1 значение Y0 сохраняют неизменным. Время t1 соответствует окончанию переходного процесса в СН согласно зависимости (1), которое с учетом возможных разбросов параметров СН определяется как:

t 1 = 2,5 3,5 ω c p

Например, для ракеты с низкой начальной скоростью частота среза СН может составлять 0,25 Гц (0,25·2π рад/с); при этом t1=1,6…2,2 с.

Выполнение условия (2) обеспечивает гарантированное нахождение ракеты в луче на участке переходного процесса (фиг.2). После его окончания производят подъем превышения до максимального значения Ymax с момента времени t1 до момента времени t2.

Минимально возможное время t2 обеспечивается по зависимости (3) при максимально допустимой скорости Vп подъема луча, которая устанавливается с учетом динамических свойств СН и конструктивных особенностей ее реализации в прицеле.

Снятие превышения производят аналогично известным способам.

Предлагаемый способ может быть реализован в СН, представленной в ближайшем аналоге (Патент RU 2205347, МКИ7 F41G 7/00, 7/26, F42B 15/01,30.05.2001).

Применение предлагаемого способа стрельбы ракетами, управляемыми по лучу лазера, позволяет повысить точность наведения на начальном участке полета при стрельбе в режиме с превышением за счет обеспечения постоянного начального превышения требуемой величины до окончания переходного процесса (выхода ракеты на ось луча).

Способ стрельбы ракетой, управляемой по лучу лазера, включающий измерение дальности до цели и ввод измеренного значения в наземную систему управления, установку начального превышения Y0 оси луча относительно линии визирования цели, запуск управляемой ракеты, подъем оси луча до максимального превышения Ymax относительно линии визирования цели, полет ракеты на максимальном превышении до момента времени, установленного в наземной системе управления в соответствии с измеренной дальностью до цели, и совмещение оси луча с линией визирования цели, отличающийся тем, что в течение времени от момента запуска ракеты до момента , где ωcp - частота среза системы управления ракетой, рад/с, начальное превышение Y0 сохраняют неизменным, причем его значение устанавливают по зависимости
,
где - минимальное возможное значение вертикального отклонения ракеты от линии визирования на этом участке полета, м;
Rл - радиус луча, м,
а в течение времени от момента t1 до момента , где Vп - максимально допустимая скорость подъема луча, м/с, превышение увеличивают до значения Ymax.



 

Похожие патенты:

Использование: в способах корректировки траектории полета управляемого снаряда. Сущность: предложено направлять или вращать пучок (12) лазерных лучей относительно центра (13) текущего заданного курса снаряда (1), чтобы снаряд (1) сам определял массив данных и затем выполнял автоматическое корректирование.

Изобретение относится к области оптико-электронного приборостроения. Заявленное устройство включает последовательно соединенные лазер и оптико-электронную систему сканирования, включающую два скрещенных анизотропных акустооптических дефлектора и выходную оптическую систему, а также блок управления дефлекторами, выходы которого подключены к входам управления дефлекторов, а на управляющие входы которого поступают внешние сигналы пуска и схода управляемого изделия, блок выбора режима, на вход которого поступает внешний сигнал разрешения измерения дальности, генератор синхроимпульсов, блок управления модулятором, оптический модулятор добротности резонатора, вход управления которого соединен с выходом блока управления модулятором, выходная оптическая система дальномерного канала и поляризационный призменный блок, установленный между первым и вторым акустооптическими дефлекторами, второй выход которого соединен с входом оптической системы дальномерного канала.

Способ относится к управляемому вооружению. В способе осуществляется топографическая привязка целеуказателя и пусковой установки к местности, цель обнаруживается целеуказателем, координаты цели определяются и передаются в пульт огневой позиции.

Изобретение относится к оптическим прицелам систем наведения управляемых объектов и может быть использовано в системах управления огнем противовоздушной обороны.

Изобретение относится к оптическим прицелам систем наведения управляемых объектов и может быть использовано в системах управления огнем противовоздушной обороны.

Изобретение относится к технике оптического приборостроения и может быть использовано, в частности, при разработке многоканальных обзорно-поисковых систем, осуществляющих обнаружение цели в контролируемой зоне, ее выделение на различных фонах, определение ее координат и отслеживание, а также определение отдельных параметров движения цели, например дальности до нее.

Изобретение относится к области наведения управляемых снарядов и может быть использовано в комплексах танкового и противотанкового вооружения, а также в малогабаритных зенитных комплексах.

Изобретение относится к технике оптического приборостроения и касается устройства имитации инфракрасного излучения наземных объектов. Устройство содержит микрозеркальный матричный сканирующий узел, инфракрасный излучатель, набор линз и зеркал, объективы, приводы объективов, переключатель объективов и систему наведения. Кроме того, устройство содержит входные регистры, блоки оценки эмпирических коэффициентов, блоки оценки коэффициента пропускания атмосферы, элементы задержки, блоки умножения, элементы ИЛИ, группы блоков умножения, группу блоков возведения в степень, группу регистров, блок оценки энергетической яркости излучения, блок выдачи команд переключения, блок индикации, генератор потоковых импульсов и распределитель импульсов. Технический результат заключается в повышении эффективности проведения испытаний. 3 ил.

Изобретение относится к военной технике и может найти применение при изготовлении наземных передвижных ракетных комплексов с крылатыми ракетами средней дальности. Технический результат - повышение точности. Для этого осуществляют сбор данных от маршрутно-навигационной системы топопривязки и ориентирования (МНСТО) из состава самоходной пусковой установки (дСПУ) и результатов измерений угловых рассогласований между осями инерциальной навигационной системы (ИНС) ракеты и МНСТО. При этом осуществляют измерение угловых рассогласований по курсу между продольной осью ИНС ракеты и продольной осью МНСТО и последующим использованием результатов проведенных измерений во время предстартовой подготовки для определения истинного азимутального угла ракеты путем расчета поправки к азимутальному углу, измеренному МНСТО. Массив угловых поправок, измеряемых на заводах-изготовителях ИНС, ракеты и СПУ записывается в постоянные запоминающие устройства. 3 ил., 1 табл.

Изобретение относится к оптическим прицелам систем наведения управляемых объектов и может быть использовано в системах управления огнем противовоздушной обороны. Сущность изобретения заключается в том, что обнаруживают воздушную цель, выбирают угловую скорость наведения оптико-электронного модуля (ОЭМ) путем совмещения перекрестья на экране монитора с целью, переводят ОЭМ в режим автоматического слежения за целью путем ввода изображения цели внутрь строба слежения и выдачи команды «Захват», измеряют текущую дальность до цели путем излучения лазерного излучения в направлении на цель и приеме отраженного от цели излучения, обеспечивают управление пространственным положением лазерного излучения в направлении на цель путем выдачи команд управления, соответствующих угловым координатам цели, на двухкоординатный акустооптический дефлектор, преобразуют цифровой код дальности в видеосигнал, высвечивают его на мониторе в виде цифровой надписи, определяют угловые скорости движения воздушной цели и привода ОЭМ, определяют величину и направления необходимых изменений угловых скоростей движения привода ОЭМ путем сравнения угловых скоростей движения цели и привода ОЭМ, выдают рекомендации наводчику переносного комплекса о необходимой величине и направлении изменения угловой скорости движения привода ОЭМ. Технический результат изобретения - повышение надежности сопровождения быстролетящих и маневрирующих целей. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области военной техники и касается способа засветки оптико-электронных приборов малогабаритных беспилотных летательных аппаратов (МБЛА). Способ включает в себя определение блоком обнаружения распространяющегося от МБЛА излучения, расчет автоматизированной системой обработки информации мощности лазерного излучения, площади и положения светового экрана. Сигналы от автоматизированной системы передаются на источники лазерного излучения, которые вырабатывают расчетную мощность излучения. Перемещение светового экрана в пространстве осуществляется с помощью электроприводов зеркальной системы. Технический результат заключается в улучшении защиты объектов от летательных аппаратов, снабженных оптико-электронными прицелами и приборами наблюдения. 2 ил.

Группа изобретений относится к области систем наведения снарядов. Способ стрельбы снарядом, управляемым по лучу лазера, включает измерение дальности до цели и ввод измеренного значения Dц в наземную систему управления, сравнение измеренной дальности до цели Dц с хранящимся в памяти наземной системы управления значением дальности Dmin, допускающим введение превышения оси луча относительно линии визирования цели, установку превышения при выполнении условия Dц>Dmin, запуск управляемого снаряда, полет снаряда в луче с превышением над линией визирования цели до момента времени, установленного в наземной системе управления в соответствии с измеренной дальностью до цели, и совмещение оси луча с линией визирования цели. При этом при дальности до цели менее дальности Dmin, но более дальности DЭГ, где DЭГ - дальность до снаряда в момент времени ; ωср - частота среза системы управления снарядом, рад/с, центр информационного поля луча в течение времени от запуска снаряда до момента времени tM, где , смещают вверх относительно оси луча на величину YЭГ=(0,2…0,5)RЛ, где RЛ - радиус луча, после чего их совмещают в течение времени от момента tM до момента tЭГ, а при дальности до цели менее дальности DЭГ стрельбу производят без смещения центра информационного поля луча. Устройство для реализации способа снабжено формирователем электронного смещения, вход которого соединен с выходом формирователя временных интервалов, а выход соединен с первым входом сумматора. Технический результат заключается в обеспечении возможности исключения соприкосновения снаряда с подстилающей поверхностью. 2 н.п. ф-лы, 4 ил.

Изобретение относится к военной технике, преимущественно к тактическим и оперативно-тактическим комплексам управляемого ракетного оружия (УРО) с баллистическими (аэробаллистическими) и высотными крылатыми ракетами. В состав оптико-электронной корреляционно-экстремальной СН ракеты дополнительно вводят лазерный высотомер (ЛВ). Функционирование СН начинают на удалении от цели и при высоте полета ракеты 1…20 км, при этом, в случае приема ЛВ отраженных подстилающей поверхностью сигналов выше порогового уровня, производят корреляционно-экстремальную привязку к подстилающей поверхности и коррекцию пикирующей траектории ракеты вплоть до окончания полета. В случае приема ЛВ отраженных сигналов ниже порогового уровня, осуществляют программный маневр ракеты в плоскости стрельбы с выходом на участок пологого планирования на высоте 100…500 м за 0,5…15,0 км от цели, производят корреляционно-экстремальную привязку к подстилающей поверхности и коррекцию планирующей траектории ракеты, с пикирующим конечным участком за 0,1…2,0 км от цели, вплоть до окончания полета. Изобретение позволяет расширить погодный диапазон применения ракет. 2 ил.

Способ телеориентации движущихся объектов включает формирование ортогонального растра построчным, прямым и встречным реверсивным сканированием лазерного пучка с дублированием прямого сканирования, между которыми выдерживают в каждой строке заданные временные задержки при гашении излучения. Причем между сканированиями выдерживают в каждой строке заданные временные задержки, позволяющие идентифицировать номер строки при определении положения объекта в информационном поле. Технический результат изобретения направлен на увеличение скорости передачи информации в системах телеориентации за счет уменьшения количества растров, необходимых при формировании информационного поля. 2 ил.

Изобретение относится к области оптико-электронного приборостроения и касается оптического прицела системы наведения управляемого снаряда. Прицел содержит соосно установленные визир и прожектор. Прожектор включает в себя два инжекционных лазера, излучающие области которых расположены перпендикулярно осям измеряемых координат, систему вывода излучения лазеров на единую оптическую ось, оптический сканер, панкратический объектив, непрозрачную шторку, растровый диск, два оптронных датчика и формирователь импульсов. Оптический сканер выполнен в виде вращающейся призмы. Непрозрачная шторка установлена на оправу вращающейся призмы и выполнена с прозрачной щелью. Первый оптронный датчик снимает сигнал с непрозрачной шторки, а второй снимает сигнал с растрового диска. Выходы оптронных датчиков подключены ко входам формирователя импульсов, выходы которого соединены с лазерами. Технический результат заключается в повышении точности наведения управляемого снаряда. 2 н.п. ф-лы, 4 ил.
Наверх