Способ оптического мониторинга поверхности в области воздействия лазерного излучения и устройство для его осуществления

Изобретение относится к области измерительной техники и может быть использовано при измерении температуры поверхности в области лазерного воздействия. Спектральные линии регистрации теплового излучения поверхности пирометром и спектральные полосы регистрации теплового излучения поверхности видеокамерой и спектральные линии излучения источников подсветки располагаются в спектральной полосе пропускания гальвосканера по обе стороны спектральной линии лазерного излучения в ее непосредственной близости. Устройство содержит гальвосканер с линзой, оптический пирометр и видеокамеру с объективом, а также поворотное зеркало с эллиптической областью в центре с покрытием, имеющим 100% отражение на длине волны лазера, или эллиптическое отверстие, а периферическая область зеркала обладает или высоким пропусканием в области спектра вне полосы излучения лазера или широкополосным отражающим покрытием. Изобретение обеспечивает полный мониторинг поверхности в области лазерного воздействия с минимальной погрешностью при использовании серийной оптики. 3 н. и 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к области измерительной техники и может быть использовано при мониторинге поверхности в области лазерного воздействия.

Известен способ оптического мониторинга поверхности в области лазерной обработки путем измерения температуры [1], состоящий в регистрации теплового излучения поверхности в 2-х спектральных интервалах.

Недостатком данного способа является то, что его невозможно применить в системе с гальвосканером с F-teta линзой и ограниченный уровень информации.

Наиболее близким по технической сущности к заявляемому изобретению является реализованный в устройстве [2] способ оптического мониторинга поверхности в области лазерной обработки, состоящий в регистрации теплового излучения поверхности в двухспектральных интервалах.

Недостатком данного способа является то, что регистрация теплового излучения осуществляется в спектральных интервалах значительно удаленных от полосы излучения лазера, что приводит при сканировании поверхности к значительному смещению изображения поверхности в свете этих длин волн по отнощению к изображению в свете длины волны лазера вследствие аберраций промышленной F-teta линзы гальвосканера и, как следствие, к искажению результатов измерения и необходимости разработки специальной F-teta линзы, что существенно усложняет и удорожает лазерную систему.

Задачей заявляемого изобретения является создание способа оптического мониторинга поверхности, позволяющего получить полный объем информации о состоянии поверхности в области лазерного воздействия путем измерения максимальной температуры поверхности в области воздействия лазерного излучения, распределения температуры в области воздействия, визуализации области воздействия с измерением ванны расплава и других структур при сканировании поверхности с помощью гальваносканера с серийно выпускаемой F-teta линзой и устройства для его осуществления.

В заявляемом способе спектральные линии регистрации теплового излучения поверхности с помощью многоканального пирометра и спектральные полосы регистрации теплового излучения поверхности видеокамерой, а также спектральные линии излучения источников подсветки поверхности располагают в полосе отражения зеркал гальвосканера по обе стороны линии лазерного излучения в ее непосредственной близости.

Сущность способа поясняется схемой фиг.1, где представлена зависимость пропускания оптической системы гальваносканера от длины волны излучения.

Длины волн излучения регистрируемого многоканальным пирометром 3 длины волн излучения источников подсветки поверхности 2 и полосы регистрации видеокамер 5; 4 располагаются в полосе максимального пропускания оптической системы гальваносканера и вблизи линии излучения лазера 1. Это обеспечивает минимальные искажения и высокую точность результатов измерений ввиду малости аберраций F-teta линзы в этой области длин волн.

Известно устройство [1], содержащее сканер и двухканальный оптический пирометр с объективом.

Данное устройство не обеспечивает точности измерения температуры в малых пятнах воздействия лазерного излучения при использовании сканера с F-teta линзой ввиду сильной хроматической аберрации F-teta линз, которые рассчитываются для использования одной длины волны и могут быть скорректированы еще только на одной длине волны.

Наиболее близким по технической сущности к заявляемому устройству является представленное в [2] устройство, содержащее гальвосканер с F-teta линзой и двухканальный оптический пирометр с объективом, видеокамеру.

Недостатком данного устройства является то, что дихроичными поворотными зеркалами возможно выделение области спектра излучения, посылаемого на пирометр, только в области слабого отражения зеркал гальвосканера и удаленной от волны излучения лазера, что приводит к ошибкам измерения вследствие сдвига изображения, формируемого F-teta линзой и объективом пирометра на входной диафрагме пирометра и искажений изображения на видеокамере из-за сильных аберраций F-teta линзы при использовании излучения с длиной волны, удаленной от лазерной длины волны.

Для решения поставленной задачи предлагается устройство для измерения температуры поверхности и ее распределения в области воздействия лазерного излучения, содержащее гальвосканер с F-teta линзой, многоканальный оптический пирометр с объективом и видеокамеру с объективом и источник подсветки поверхности.

С помощью поворотных зеркал с градиентом коэффициента отражения по плоскости зеркала осуществляют ввод лазерного излучения в гальвосканер через область зеркала с 100% или нулевым отражением, а тепловое излучение поверхности и рассеянное поверхностью излучение источников подсветки направляют на детекторы - видеокамеру и пирометр через области зеркала с максимальным пропусканием или отражением вне полосы частот лазерного излучения, но вблизи длины волны лазерного, в ее непосредственной близости.

Устройство дополнительно содержит поворотное градиентное зеркало с 100% коэффициентом отражения или 100% пропусканием его центральной части на длине волны лазера, оптически связанное с лазером, двухканальным оптическим пирометром с объективом и видеокамерой, причем пирометр регистрирует тепловое излучение поверхности в нескольких узких спектральных интервалах вблизи спектральной полосы.

Сущность заявляемого устройства поясняется чертежом (фиг.2), где 1 - лазер, 2 - градиентное поворотное зеркало, 3 - гальваносканер, 4 - объектив 5 - обрабатываемая поверхность, 6 - F-teta линза, 7 - дихроичное зеркало, 8 - диафрагма пирометра, 9 - световод, 10 - пирометр, 11 - фильтр 12 - объектив 13 - видеокамера.

Устройство работает следующим образом. Излучение лазера 1 проходит через центральную область поворотного зеркала и вводится на зеркала гальвосканера 3 и с помощью F-teta объектива 6 фокусируется на поверхности обработки 5. При вращении зеркал сканера фокус лазера перемещается по поверхности 5. Изображение фокальной области строится на диафрагме пирометра 8 с помощью F-teta линзы и объектива пирометра 4. Пирометр 10 регистрирует тепловое излучение нагретой поверхности в узких спектральных участках вблизи линии излучения лазера. С помощью объектива 12 и F-teta линзы изображение поверхности на длине волны, вырезаемой фильтром 11, регистрируется видеокамерой 13. У поворотного зеркала на 100% отражение работает периферия поворотного зеркала, а лазерное излучение пропускается центральной эллиптической областью с 100% коэффициентом пропускания. Так как измерения проводятся на длинах волн вблизи линии генерации лазера, то хроматические аберрации F-teta линзы будут приводить к пренебрежимо малым смещениям изображения на диафрагме пирометра при сканировании поверхности и минимальным искажениям изображения регистрируемого видеокамерой.

Изображение области поверхности с помощью F-teta линзы и объектива строится в плоскости матрицы видеокамеры. С помощью зеркал и фильтра выделяется узкая область спектра теплового излучения поверхности вблизи линии излучения лазера. Полученное изображение области лазерной обработки имеет пренебрежимо малые искажения и дает возможность построить распределение яркостной температуры поверхности в области обработки. Многоканальный пирометр при числе каналов больше двух позволяет определить излучательную способность поверхности, что позволяет получить и распределение термодинамической температуры.

В устройстве на фиг.3 градиентное зеркало имеет 100% отражение центральной области на длине волны лазера при 100% пропускании периферии зеркала в широкой области спектра.

В устройство на фиг.4 дополнительно введен источник подсветки поверхности 16, излучение которого с помощью телескопа поворотного зеркала 18 и градиентного зеркала вводится в гальваносканер и фокусируется в области обработки. Изображение поверхности в свете этого источника строится с помощью F-teta линзы и объективов 4,12 в плоскости матрицы видеокамеры 13. Фильтрами 11 выделяется либо излучение подсветки, либо тепловое излучение поверхности.

Таким образом, заявляемый способ и устройство обеспечивают полный мониторинг поверхности в области лазерного воздействия при ее сканировании с помощью гальвосканера с F-teta линзой с минимальной погрешностью при использовании серийной оптики.

Литература

1. Патент JP №2007190576 A.

2. Чивель Ю.А., Смуров И., Лаже Б. // Патент RU 2371704, 27.10.2009.

1. Способ оптического мониторинга поверхности в области воздействия лазерного излучения при сканировании поверхности с помощью гальвосканера с линзой, состоящий в регистрации температуры поверхности и ее распределении в области воздействия путем регистрации теплового излучения поверхности в нескольких спектральных интервалах и регистрации изображения поверхности в свете излучения источника внешней подсветки поверхности, отличающийся тем, что спектральные линии регистрации теплового излучения поверхности пирометром и спектральные полосы регистрации теплового излучения поверхности видеокамерой и спектральные линии излучения источников подсветки располагаются в спектральной полосе пропускания гальвосканера по обе стороны спектральной линии лазерного излучения в ее непосредственной близости.

2. Устройство для оптического мониторинга поверхности в области воздействия лазерного излучения, содержащее гальвосканер с линзой, оптический пирометр с объективом и видеокамеру с объективом, отличающееся тем, что дополнительно содержит поворотное зеркало, имеющее в центре эллиптическую область с покрытием, имеющим 100% отражение на длине волны лазера, а периферическая область зеркала обладает высоким пропусканием в области спектра вне полосы излучения лазера.

3. Устройство для оптического мониторинга поверхности в области воздействия лазерного излучения, содержащее гальвосканер с линзой, оптический пирометр с объективом и видеокамеру с объективом, отличающееся тем, что дополнительно содержит поворотное зеркало, имеющее центральное эллиптическое отверстие с 100% пропусканием лазерного излучения и с широкополосным отражающим покрытием на периферии зеркала.

4. Устройство по п.3, отличающееся тем, что дополнительно содержит источник подсветки поверхности в области лазерной обработки, оптически связанный с гальвосканером и видеокамерой, причем длина волны излучения источника располагается вблизи линии излучения лазера и в спектральной полосе отражения зеркал гальвосканера.



 

Похожие патенты:
Изобретение относится к области аналитической химии, а именно к люминесцентному способу определения самария. Способ включает перевод его в люминесцирующее соединение с органическим реагентом.
Изобретение относится к области аналитической химии, а именно к способу люминесцентного определения тербия. Способ включает перевод тербия в люминесцирующее соединение с органическим реагентом.

Изобретение относится к способу измерения в режиме реального времени толщины пленки не содержащего хром покрытия на поверхности полосовой стали. Способ характеризуется тем, что включает следующие стадии: стадия 1: выбирают два растворимых в воде химических вещества, которые содержат элементы P, Ca, Ti, Ba или Sr и не вступают в реакцию с жидкостью для нанесения не содержащего хром покрытия; стадия 2: добавляют два растворимых в воде химических вещества, выбранные на стадии 1, в жидкость для нанесения не содержащего хром покрытия и перемешивают их до гомогенности, после чего изготавливают эталонный образец пленки покрытия; стадия 3: используют излучение, испускаемое прибором определения в автономном режиме толщины пленки, для возбуждения двух растворимых в воде химических веществ для получения характеристических спектров двух растворимых в воде химических веществ и, тем самым, определения толщины пленки покрытия эталонного образца; толщину пленки покрытия, определенную при использовании растворимого в воде химического вещества, которое обладает интенсивным характеристическим спектром, принимают за фактическую толщину пленки, в то время как толщину пленки покрытия, определенную при использовании растворимого в воде химического вещества, которое обладает слабым характеристическим спектром, принимают за измеренную толщину пленки, разницу между фактической толщиной пленки и измеренной толщиной пленки принимают за величину коррекции толщины; многократно проводят операции получения величин коррекции толщины, соответствующие измеренным толщинам пленки, в результате аппроксимации величин коррекции толщины и измеренной толщины пленки получают выражение корреляционной функции между измеренной толщиной пленки и величиной коррекции толщины; стадия 4: добавляют в жидкость для нанесения не содержащего хром покрытия растворимого в воде химического вещества, которое обладает слабым характеристическим спектром, и используют излучение, испускаемое прибором определения в режиме реального времени толщины пленки покрытия, для возбуждения вещества и для получения, таким образом, измеренной толщины пленки, после чего используют выражение корреляционной функции для получения величины коррекции толщины, и, в заключение, исходя из измеренной толщины пленки и величины коррекции толщины получают фактическую толщину пленки покрытия.

Изобретение относится к технологии производства изделий, в которых в той или иной степени используется сшитый полиэтилен, который может быть использован при производстве электрических кабелей, труб для газоводоснабжения и др.

Изобретение относится к измерительному устройству для определения по меньшей мере одного параметра пробы крови, с проточной измерительной ячейкой (1), в которой размещен по меньшей мере один люминесцентно-оптический сенсорный элемент (ST, SO, SG), приводимый в контакт с пробой крови, с по меньшей мере одним источником (4) света для возбуждения люминесцентно-оптического сенсорного элемента и по меньшей мере одним фотодетектором (6) для приема излученного люминесцентно-оптическим сенсорным элементом люминесцентного излучения.

Изобретение относится к области оптоэлектронной техники, микро- и наноэлектроники и может быть использовано для определения профиля распределения концентрации носителей заряда в полупроводниковой квантово-размерной структуре.

Изобретение относится к технологии водообработки и анализу состава природных и сточных вод, конкретно к устройствам, которые можно использовать для контроля содержания растворенных и диспергированных в сточных водах примесей.

Изобретение относится к устройствам для бесконтактного неразрушающего исследования электрофизических характеристик материалов, в частности, к устройствам исследования их люминесцентных свойств.

Изобретение относится к медицине, а именно к спектроскопическому способу определения в реальном времени скорости абляции в сердечной ткани in-vivo. .

Изобретение относится к лазерному газовому анализу и может быть использовано для бесконтактного и дистанционного определения концентрации молекулярного кислорода в воздушной атмосфере или произвольной смеси газов. Способ измерения концентрации кислорода в газовых смесях включает оптическое возбуждение молекул красителя по схеме записи динамических голографических решеток, тушение кислородом триплетных состояний этих молекул и измерение концентрации кислорода, причем измерение концентрации кислорода проводится по регистрации интенсивности и спектра излучения, генерируемого лазером с распределенной обратной связью, накачка которого осуществляется через записанную голографическую решетку. Изобретение обеспечивает повышение чувствительности измерения концентрации кислорода в газовых смесях, а также дистанционности измерения концентрации молекулярного кислорода. 2 ил.
Изобретение относится к области аналитической химии порошковых материалов, в частности к способам определения массовой доли кислорода в порошках металлов методом атомно-эмиссионной спектроскопии. Способ заключается в подготовке пробы, получении атомно-эмиссионных спектров, идентификации кислорода по спектральной эмиссионной линии с длиной волны 777,19 нм. В качестве источника возбуждения атомно-эмиссионного спектра используют частотный двухимпульсный лазер на основе алюмоиттриевого граната, активированного неодимом, с длиной волны 1064 нм, с задержкой между импульсами, равной 5-10 мкс. Подготовку пробы осуществляют прессованием исследуемого материала с последующей обработкой поверхности образца лазером. При использовании изобретения суммарная относительная погрешность определения массовой доли кислорода в порошках металлов не превышает 15 масс.%; диапазон определения массовой доли кислорода в порошках металлов составляет от 0,1 до 10 масс.%. 3 пр., 1 табл.

Группа изобретений относится к области биотехнологии и направлена на идентификацию микроорганизмов в тестируемом образце. В одном варианте способ идентификации неизвестного микроорганизма включает получение тестируемого образца, который может содержать неизвестный микроорганизм. Затем осуществляют селективный лизис клеток не микроорганизмов с получением лизированного образца. Наносят лизированный образец на плотностный буфер, имеющий гомогенную плотность, в контейнере. Центрифугируют контейнер для отделения неизвестного микроорганизма от других компонентов лизированного образца. При этом указанный микроорганизм проходит через плотностный буфер и образует осадок на дне контейнера. In situ pегистрируют собственную флуоресценцию неизвестного микроорганизма в осадке во фронтальном режиме с получением матрицы возбуждения-испускания (EEM). Идентифицируют до уровня рода, вида и/или штамма неизвестный микроорганизм путем сравнения спектроскопических измерений со снятыми спектроскопическими измерениями известных микроорганизмов. В другом варианте предложен способ идентификации неизвестного микроорганизма из гемокультуры. Преимуществом изобретений является быстрая идентификации микроорганизмов в одном герметичном контейнере, при этом сканирование осадка микроорганизмов во фронтальном режиме повышает процент правильной идентификации микроорганизма. 2 н. и 16 з.п. ф-лы, 13 ил., 10 табл., 10 пр.
Изобретение относится к способу определения меди в природных и питьевых водах. Способ включает концентрирование меди на сорбционном материале, помещенном в патрон, путем пропускания через него анализируемой пробы, элюирование меди азотной кислотой и определение меди методами атомной спектроскопии. При этом концентрирование меди проводят на сшитом N-2-сульфоэтилхитозане со степенью замещения 0.5 со скоростью пропускания пробы через патрон 1.0-2.0 мл/мин. Элюирование осуществляют раствором азотной кислоты с концентрацией 0.1 моль/л. Раствор азотной кислоты пропускают через патрон со скоростью 1.0-2.0 мл/мин. Способ позволяет повысить эффективность концентрирования меди и экспрессность определения меди в природных и питьевых водах. 2 табл., 1 пр.

Изобретение относится к области химического анализа веществ. В способе анализа химического состава материалов, включающем лазерное испарение или абляцию исследуемых образцов, ионизацию продуктов лазерного испарения или абляции исследуемых образцов и детектирование полученных ионов масс-анализатором, используют дополнительно введенную твердую мишень для генерации лазерной плазмы путем воздействия на нее лазерным излучением, а ионизацию продуктов лазерного испарения или абляции образцов осуществляют с использованием полученной лазерной плазмы. Ионизацию продуктов лазерного испарения или абляции образцов ведут в присутствии дополнительно введенного газа-реагента, в качестве которого используются химические соединения, содержащие гидроксильные, или амино-, или сульфгидрильные группы, и осуществляют излучением лазерной плазмы, энергия квантов которого превышает потенциал ионизации продуктов лазерного испарения или газа-реагента. Лазерное испарение осуществляют посредством пространственного сканирования поверхности анализируемого твердого или жидкого образца лазерным лучом, а исследуемый образец размещают с возможностью его перемещения относительно масс-спектрометра и/или лазерного луча. Технический результат - возможность определения широкого класса химических соединений с высокой чувствительностью в реальном времени. 12 з.п. ф-лы, 6 ил.
Изобретение относится к области аналитической химии элементного анализа и может быть использовано для лазерно-искрового эмиссионного определения лантана, церия, празеодима, неодима в металлических сплавах и порошках. Способ основан на воздействии на поверхность исследуемого образца сфокусированного лазерного излучения с энергией импульса 0,12-0,9 Дж и длительностью импульса 0,02-240 мкс. Проводят анализ свечения лазерной искры, что позволяет выделить спектральные линии паров определяемых элементов и идентифицировать спектральные линии. Для определения каждого из элементов используются экспериментально установленные наиболее чувствительные линии лазерной эмиссии элементов в следующих спектральных диапазонах для: лантана 390-415 нм, церия 400-425 нм, празеодима 410-425 нм, неодима 400-415 нм.
Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества. Способ основан на действии двух последовательных коллинеарных лазерных импульсов, направленных в одну точку поверхности пробы, причем величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум. Излучение лазерной плазмы после воздействия второго импульса регистрируют с помощью спектрографа и стробируемой электронно-оптической цифровой камеры, а затем по эмиссионным атомным и ионным линиям проводят количественное определение следовых компонентов пробы. Изобретение обеспечивает увеличение чувствительности и экспрессности анализа при взаимодействии двух импульсов лазерного излучения на пробу.

Изобретение относится к медицине, области нанотехнологий, в частности к усилению контраста и глубины зондирования при получении терагерцовых изображений раковых опухолей и патологий кожи с использованием наночастиц и лазерного нагрева. Способ включает введение плазмонно-резонансных композитных наночастиц в зондируемую биоткань и облучение зондируемой биоткани лазерным пучком с длиной волны 700-900 нм, совпадающей с максимумом поглощения наночастиц. Проводят облучение зондируемой биоткани последовательностью импульсов электромагнитных волн терагерцового диапазона, измерение коэффициента отражения электромагнитных волн терагерцового диапазона при пространственном сканировании зондируемой биоткани. При этом перед облучением проводят местную аппликацию путем наложения биологически совместимого агента в жидкой форме, обладающего гиперосмотическими свойствами: глицерина, или полиэтиленгликоля, или пропиленгликоля, или раствора глюкозы или фруктозы в спирте. Облучение лазерным пучком осуществляют в режиме последовательности фемтосекундных импульсов с периодом следования не более 10 нс, синхронизованных с последовательностью импульсов электромагнитных волн терагерцового диапазона так, чтобы в зондируемую область оба импульса приходили одновременно. Часть лазерного пучка для облучения зондируемой биоткани может быть использована для создания последовательности импульсов электромагнитных волн терагерцового диапазона. Способ обеспечивает повышение контрастности и глубины зондирования биообъектов, с пространственным разрешением не менее 100 мкм. 1 з.п. ф-лы, 3 ил.

Изобретение относится к количественному анализу образцов с помощью лазерно-индуцированной плазмы. Система для классификации движущихся материалов в реальном времени включает в себя генератор лазерных импульсов, выполненный с возможностью создания по меньшей мере первого и второго лазерных импульсов, которые воздействуют на одно и то же место воздействия на движущихся материалах, причем первый и второй лазерные импульсы отстоят во времени на вплоть до 10 микросекунд, и детектор поглощения, выполненный с возможностью получения спектра поглощения в месте воздействия в течение временного интервала обнаружения, составляющего вплоть до 20 наносекунд, после второго лазерного импульса. Изобретение позволяет повысить эффективность классификации. 2 н. и 46 з.п. ф-лы, 3 ил.

Группа изобретений относится к области аналитических исследований и может быть использована в нефтехимической промышленности для качественного и количественного обнаружения полиароматических гетероциклических серосодержащих соединений в нефтепродуктах. Химически модифицированный планарный оптический сенсор содержит последовательно расположенные подложку на основе диэлектрического химически инертного материала, наноструктурированное покрытие толщиной 1-10 мкм на основе наночастиц благородных металлов, размеры которых составляют 20-90 нм, и прозрачную микропористую пленку хитозана, химически модифицированную π-акцепторным соединением, способным распознавать анализируемое вещество и химически связываться с ним путем формирования комплекса с переносом заряда. Также представлены способ получения указанного оптического сенсора и способ анализа полиароматических гетероциклических серосодержащих соединений с использованием данного сенсора. Достигается повышение чувствительности, селективности и экспрессности анализа. 3 н. и 10 з.п. ф-лы, 4 ил., 4 табл.
Наверх