Сверхширокополосный вакуумный туннельный фотодиод для детектирования ультрафиолетового, видимого и инфракрасного оптического излучения и способ для его реализации

Изобретение относится к оптоэлектронике и вакуумной микроэлектронике и может быть использовано при создании сверхширокополосных фотодетекторов в ультрафиолетовой, видимой и ИК области спектра для оптической спектроскопии и диагностики, систем оптической связи и визуализации. Cверхширокополосный вакуумный туннельный фотодиод, детектирующий оптическое излучение в УФ, видимой и ИК спектральной области, характеризующийся тем, что форма поверхности фотоэмиттера представляет 3D пространственно наноградиентную структуру с заданным коэффициентом усиления локальной напряженности электростатического поля, расстояние между фотоэмиттером и анодом формируется в микро- или нанометровом диапазоне. Фотодиод создан на основе матрицы диодных ячеек планарно-торцевых автоэмиссионных структур с лезвиями α-углерода. Также предложен способ создания сверхширокополосного вакуумного туннельного фотодиода в УФ, видимой и ИК спектральной области, характеризующийся тем, что поверхность фотоэмиттера, имеющего работу выхода А, создают в виде 3D пространственно наноградиентной структуры с заданным коэффициентом усиления локальной напряженности электростатического поля β, формируют расстояние между фотоэмиттером и анодом в микро- или нанометровом диапазоне, при этом граничная величина напряжения на аноде Umax, соответствующая максимальному туннельному фотоэмиссионному току при детектировании оптического излучения с заданной длиной волны λ, определяется из предложенного соотношения. Изобретение обеспечивает возможность создания сверхширокополосного вакуумного туннельного фотодиода, позволяющего детектировать оптическое излучение в УФ, видимой и ИК спектральной области при использовании одного наноструктурного эмиттера с управляемой, изменением напряженности электростатического поля, «красной» границей фотоэффекта. 2 н. и 1 з.п. ф-лы, 7 ил.

 

Изобретение относится к оптоэлектронике и вакуумной микроэлектронике и может быть использовано при создании сверхширокополосных фотодетекторов в ультрафиолетовой, видимой и ИК области спектра для оптической спектроскопии и диагностики, систем оптической связи и визуализации.

Известен способ детектирования оптического излучения видимого и ИК диапазона с помощью полупроводникового фотосопротивления или фотодиода, включающий облучение их поверхности оптическим пучком, при условии, что энергия фотона hν больше ширины запрещенной зоны Еg в полупроводнике с собственным типом проводимости или в p-n переходе полупроводника с электронным и дырочным типом проводимости и измерении фототока, пропорционального интенсивности детектируемого оптического излучения при включении фотодиода в обратном направлении при подаче низковольтного напряжения или в фотогальваническом режиме (Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. М.: Наука, 1990, 668 с.).

Основным недостатком данного метода является ограниченность спектральной полосы. Например, для самых распространенных фотодиодов из кремния, используемых во всех ПЗС матричных фотодетекторах в цифровых фотоаппаратах и видеокамерах, ширина запрещенной зоны равна 1 эВ, поэтому длинноволновая «красная» граница составляет 1200 нм в соответствии с квантовым характером внутреннего фотоэффекта и определяемым соотношением λ (нм)≤ 1240/Еg (эВ) (Гауэр Дж. Оптические системы связи. М.: Радио и связь. 1989. С.554). Чувствительность практически любого полупроводникового фотодиода или фотосопротивления экспоненциально уменьшается с уменьшением длины волны в УФ диапазоне вследствие сильного поглощения (106 см-1) УФ фотонов в поверхностном слое полупроводника и экспоненциального уменьшения числа фотонов, достигающих p-n перехода полупроводникового диода. Для детектирования оптического излучения в средней и дальней ИК области спектра используются узкозонные полупроводники с шириной запрещенной зоны Еg=0.3-0.1 эВ, однако при таких незначительных энергетических ширинах Еg очень сильно возрастает уровень темновых шумов, что требует охлаждения полупроводников жидким азотом, что сильно ограничивает область применения таких фотодетекторов.

Известен способ создания широкополосного фотодетектора на основе болометра «черного тела», включающий облучение поверхности «черного тела» оптическим излучением, поглощающим это электромагнитное излучение и преобразующим его в тепловую энергию поверхности твердого тела и измерение этой энергии, вызывающей, например, изменение сопротивления черненной поверхности болометра (Лебедева В.В. Экспериментальная оптика. М.: МГУ. 1990. С.352). Спектральная область таких фотодетекторов от УФ до среднего ИК. Основным недостатком таких фотодетекторов является очень большая инерционность, составляющая секунды, что сильно ограничивает применение таких фотодетекторов, кроме того, чувствительность не превышает мВт/cм2.

Известен способ создания широкополосного фотодетектора на основе нанографитовой пленки при оптическом выпрямлении (детектировании) импульсного лазерного излучения (Зонов Р.Г. Исследование взаимодействия лазерного излучения с нанографитовыми пленками для создания фотоприемника на оптическом выпрямлении. Автореферат диссертации, к.ф.-м.н. Ижевск. 2006 г.). При прохождении мощного лазерного импульса через нелинейно-оптический кристалл возникает электрическая поляризация, изменяющаяся во времени пропорционально огибающей мощности лазерного импульса на металлических электродах на торцах кристалла. Однако данный нелинейно-оптический способ может быть реализован только для лазерных импульсов с мегаваттной мощностью, так как эффективность нелинейного преобразования в средах с квадратичной нелинейностью, используемых для детектирования излучения, пропорциональна квадрату интенсивности и не может быть реализована для детектирования слабых оптических потоков с микро- и милливаттной оптической мощностью.

Наиболее близким к предлагаемому является способ создания вакуумного фотодиода, включающий облучение фотоэмиттера оптическим излучением УФ или видимого диапазона, при условии, что энергия фотона hν больше работы выхода А (в электрон-вольтах -эВ) электронов из эмиттера, представляющего металлические пленки или их сплавы и измерение фототока, пропорционального интенсивности детектируемого оптического излучения при подаче ускоряющего напряжения на анод (Фотоэмиссионные приемники излучения. Левин Г.Э., Степанов Б.М., Шефов А.С. Справочник по лазерам. Под ред. А.М. Прохорова. М.: Советское радио. 1978. Т.2, с.158-174).

Основным недостатком таких вакуумных фотодетекторов является существование красной границы фотоэффекта, вследствие того, что работа выхода А для металлов может изменяться от 6 до 1.8 электрон-вольт (ЗиС. Физика полупроводниковых приборов. М.: Мир, 1984. 456 с.) и поэтому максимальная длина волны, для которой наблюдается фотоэффект, определяется соотношением λ(нм)≤ 1240/А(эВ), т.е. уже в ближней инфракрасной области с длинами волн более 800 нм не наблюдается фотоэффект и соответственно нет вакуумных фотодетекторов.

Задачей изобретения является возможность создания сверхширокополосного вакуумного туннельного фотодиода, позволяющего детектировать оптическое излучение в ультрафиолетовой, видимой, ближней и средней инфракрасной области спектра при использовании одного наноструктурного эмиттера с управляемой, изменением напряженности электростатического поля, «красной» границей фотоэффекта.

Поставленная задача решается тем, что в сверхширокополосном вакуумном туннельном фотодиоде, детектирующем оптическое излучение в УФ, видимой и ИК спектральной области, характеризующемся тем, что форма поверхности фотоэмиттера представляет 3D пространственно наноградиентную структуру с заданным коэффициентом усиления локальной напряженности электростатического поля, расстояние между фотоэмиттером и анодом формируется в микро- или нанометровом диапазоне.

Фотодиод создан на основе матрицы диодных ячеек планарно-торцевых автоэмиссионных структур с лезвиями α-углерода.

В способе создания сверхширокополосного вакуумного туннельного фотодиода в УФ, видимой и ИК спектральной области, характеризующемся тем, что поверхность фотоэмиттера, имеющего работу выхода А, создают в виде 3D пространственно наноградиентной структуры с заданным коэффициентом усиления локальной напряженности электростатического поля β, формируют расстояние между фотоэмиттером и анодом в микро- или нанометровом диапазоне, при этом граничная величина напряжения на аноде Umax, соответствующая максимальному туннельному фотоэмиссионному току при детектировании оптического излучения с заданной длиной волны λ, определяется из соотношения

Umax≤107 (А-1240/λ)2·Z/β, (1)

где β - усиление локальной напряженности электростатического поля на эмиттере;

Umax - максимальная разность потенциала эмиттер-анод (в вольтах);

Z - расстояние эмиттер-анод в см;

А - работа выхода электронов с поверхности эмиттера (в электрон-вольтах, эВ);

1240/λ=hс/λ=hν - энергия фотона в эВ, вызывающего туннельный фотоэмиссионный ток;

λ - длина волны в нм;

h - постоянная Планка.

Изобретение поясняется чертежами.

На Фиг. 1 изображен фрагмент фотодиода с эмиттером на основе полевой эмиссионной структуры планарно-торцевого типа с нанолезвием из α-углерода (1), анода из молибдена (2), измеренный с помощью сканирующей электронной микроскопии.

На Фиг. 2 представлена схема энергетических уровней системы «металл-вакуум» в сильном электростатическом поле при поглощении фотона с энергией hν электроном эмиттера при условии, что hν ≤ А, т.е. энергия фотона меньше работы выхода электрона из эмиттера; где: (3) - форма потенциального барьера «металл-вакуум» в сильном электростатическом поле при учете потенциала Шоттки (4).

На Фиг. 3 представлена расчетная зависимость уменьшения высоты потенциального барьера«металл-вакуум» от напряженности электростатического поля на эмиттере при значении работы выхода электронов из него, равной 5 эВ.

На Фиг. 4 представлена расчетная зависимость максимальной напряженности электростатического поля на эмиттере для различных значений работы выхода электрона из эмиттера при максимальной спектральной полосе.

На Фиг. 5 представлена экспериментальная вольт-амперная характеристика разработанного вакуумного туннельного фотодиода при лазерном облучении с длиной волны λ=473 нм (энергия фотона 2.62 эВ) углеродного наноразмерного эмиттера с работой выхода 5 эВ для двух уровней лазерной мощности, отличающихся на порядок (В и С) и темнового автоэмиссионного тока (D) от изменения ускоряющего напряжения на аноде при расстоянии эмиттер-анод 1 микрон.

На Фиг. 6 представлена экспериментальная зависимость туннельного фотоэмиссионного тока фотодиода от уровня детектируемой лазерной мощности W/W0 с длиной волны 473 нм для трех значений ускоряющего поля при напряжении: U=21.6 (G), 30.1 (H), 39.5 V (K).

На Фиг. 7 представлена экспериментальная вольтамперная характеристика туннельного фотодиода с наноразмерным углеродным эмиттером: при облучении ИК суперлюминесцентным диодом DL-C 55153A (Denselight), длина волны 1.55 нм, энергия фотона hν=0.8 eВ, выходная мощность 2 мВт (P) и темновая автоэмиссионная характеристика (Q).

Позициями на чертежах обозначены:

1 - фотоэмиттер в виде 3D пространственно наноградиентной структуры с заданным коэффициентом усиления локальной напряженности электростатического поля β;

2 - анод диода, расположенный на расстоянии Z от граничной поверхности эмиттера;

3 - форма потенциального барьера «металл-вакуум» в сильном электростатическом поле;

4 - потенциал сил зеркального изображения (потенциал Шоттки).

Фотодиод представляет собой совокупность эмиттерных гребенок, состоящую из последовательности пространственно-периодических микролезвий с острием кромки длиной 200 нм и толщиной 20 нм с коэффициентом усиления локальной напряженности электростатического поля β не менее100-200, расстоянием между эмиттером и анодом формируется в диапазоне 1-3 мкм, а максимальная разность потенциалов «лезвие эмиттера-анод» Umax не превышает 100 вольт при максимальной спектральной полосе детектируемого оптического излучения.

Способ осуществляется следующим образом.

Оптическое излучение, выбранное из спектрального диапазона от ультрафиолетового до инфракрасного, фокусируется на поверхность фотоэмиттера вакуумного фотодиода, как показано на Фиг.1, фотоэмиттер (1) в котором сформирован на основе 3D пространственно наноградиентной структуры заданный коэффициент усиления локальной напряженности электростатического поля β, на анод (2) подается положительное напряжение, которое изменяется от нуля до значения, не превышающего Umax в соответствии с соотношением (1), при этом возникает туннельный фотоэмиссионный ток JPh, экспоненциально возрастающий с ростом напряжения, устанавливается его оптимальное значение по сравнению с уровнем темнового автоэмиссионного тока, порог возникновения которого существенно выше по напряжению (см. Фиг.5, 7). Для измерения переменной составляющей туннельного фотоэмиссионного тока в электрическую цепь эмиттера включено нагрузочное сопротивление, падение напряжение на котором измеряется с помощью осциллографа, спекроанализатора или микровольтметра.

В основе способа создания сверхширокополосного вакуумного туннельного фотодиода в УФ, видимой и ИК спектральной области на основе наноструктурного эмиттера лежит обнаруженный авторами туннельный фотоэффект при энергиях фотонов, существенно меньших работы выхода электрона из эмиттера, который может наблюдаться в случае формирования сильного электростатического поля в межэлектродном промежутке «эмиттер-анод». Физический механизм обнаруженного авторами туннельного фотоэффекта в сильных электростатических полях заключается в возможности управления вероятностью туннелирования неравновесных фотоэлектронов, возникающих вследствие поглощения фотонов с энергией hν и их квантовое туннелирование через потенциальный барьер «металл-вакуум» при уменьшении его высоты и ширины с помощью сильного электростатического поля при учете эффекта Шоттки (ЗиС. Физика полупроводниковых приборов. М.: Мир. 1984. с.456). Соответствующие расчеты изменения высоты потенциального барьера от напряженности электростатического поля представлены на Фиг. 3 и 4.

Использование предложенной модели для оценки влияния сильных электростатических полей с напряженностью в диапазоне 107-108 В/cм показало, что высотой и шириной потенциального барьера можно эффективно управлять, уменьшая их в несколько раз с повышением напряженности поля вплоть до режима возникновения фото- и автоэмиссионого электрического пробоя. Использование модифицированной модели полевой электронной эмиссии Фаулера-Нордгейма (Fowler R.H., Nordheim L. Electron Emission in Intense Electric Fields //Proc. Roy. Soc. Lond. 1928. A119. P. 173-181), учитывающей изменение уровня Ферми для неравновесных фотоэлектронов, позволяет получить соотношение, определяющее изменение энергетического расстояния от уровня Ферми до вершины потенциального барьера для неравновесных электронов, поглотивших энергию фотонов hν

Δφ=А- hν- (е3βU/Z)1/2, (5)

где е - заряд электрона; β - форм-фактор усиления локальной напряженности электростатического поля; U - разность потенциалов внешнего электростатического поля на зазоре Z эмиттер-анод.

Выражение (5) позволяет оценить те значения напряженности полей F=β U/Z, соответствующих вероятности туннелирования неравновесных фотоэлектронов или равновесных автоэмиссионных электронов, стремящиеся к 1, что соответствует условию автоэмиссионного пробоя, а в случае оптического облучения эмиттера с энергией фотона hν условию фотоэмиссионного пробоя. Расчеты напряженности электростатического поля Fmax=β U/Z, соответствующего максимально допустимому току пробоя от значения работы выхода эмиттера, представлены на Фиг. 3.

Результаты апробации данного способа были экспериментально протестированы на устройстве при измерении вольт-амперных фотоэмиссионных характеристик при облучении углеродного наноразменого эмиттера лазерным излучением в синей спектральной области с длиной волны излучения λ=473 нм и темновой автоэмиссионной характеристики представлены на Фиг. 5 и 6. На Фиг. 5 представлена зависимость туннельного фотоэмиссионного тока при лазерном облучении с длиной волны λ=473 нм (энергия фотона 2.62 эВ) углеродного наноразмерного эмиттера, с работой выхода 5 эВ для двух уровней лазерной мощности отличающихся на порядок (В и С) и темнового автоэмиссионного тока (D) от изменения ускоряющего напряжения на аноде вакуумного микродиода при расстоянии эмиттер анод Z=1 микрон.

Линейность туннельного фотоэмиссионного тока подтверждается экспериментальными результатами, представленными на Фиг. 6, где показана Ватт-амперная характеристика, измеренная модуляционным методом, которая близка к линейной, что свидетельствует о наблюдении однофотонного туннельного фотоэмиссионного эффекта. Нелинейность начинает проявляться лишь при уровне лазерной мощности P/P0>0.6 (плотность оптической мощности 120 Вт/cм2). Экспериментально детектировалось оптическое светодиодное излучение УФ (380 nm) и фиолетовой областей (405 нм), светодиодное излучение ближнего ИК диапазона с длинами волны 840 и 950 nm (фотодиод АЛ-107).

Детектирование ИК излучения представлено на Фиг. 7, где представлены исследования туннельного фотоэмиссионного тока при облучении углеродного наноструктурированного эмиттера излучением суперлюминесцентного диода с λ=1550 нм с одномодовым световодным выходом с диаметром сердцевины волокна 9 мкм. Из результатов, представленных на Фиг. 7, видно, что потенциал появления порогового туннельного фототока почти совпадает с порогом возникновения темнового автоэмиссионного тока. Однако с повышением напряжения U уровень фототока нелинейно возрастает. Поэтому рабочую точку фотодетектора необходимо выбирать при U, близких к предпробойному, а для устранения влияния автоэмиссионного тока - использовать режим модуляции оптического излучения. Потенциально такой детектор может регистрировать ИК излучение с длиной волны вплоть до 50 мкм, при котором энергия фотонов будет соизмерима с kT при комнатной температуре, а при охлаждении эмиттера до температуры жидкого азота (77 К) возможно регистрировать ИК излучение с длиной волны до 150 мкм.

1. Сверхширокополосный вакуумный туннельный фотодиод, детектирующий оптическое излучение в УФ, видимой и ИК спектральной области, характеризующийся тем, что форма поверхности фотоэмиттера представляет 3D пространственно наноградиентную структуру с заданным коэффициентом усиления локальной напряженности электростатического поля, расстояние между фотоэмиттером и анодом формируется в микро- или нанометровом диапазоне.

2. Фотодиод по п.1, отличающийся тем, что он создан на основе матрицы диодных ячеек планарно-торцевых автоэмиссионных структур с лезвиями α-углерода.

3. Способ создания сверхширокополосного вакуумного туннельного фотодиода в УФ, видимой и ИК спектральной области, характеризующийся тем, что поверхность фотоэмиттера, имеющего работу выхода А, создают в виде 3D пространственно наноградиентной структуры с заданным коэффициентом усиления локальной напряженности электростатического поля β, формируют расстояние между фотоэмиттером и анодом в микро- или нанометровом диапазоне, при этом граничная величина напряжения на аноде Umax, соответствующая максимальному туннельному фотоэмиссионному току при детектировании оптического излучения с заданной длиной волны λ, определяется из соотношения
Umax≤107 (А- 1240/λ)2·Z/β (1)
где:
β - усиление локальной напряженности электростатического поля на эмиттере;
Umax - максимальная разность потенциала эмиттер-анод (в вольтах);
Z - расстояние эмиттер-анод в см;
А - работа выхода электронов с поверхности эмиттера (в электрон-вольтах, эВ);
1240/λ=hс/λ=hν - энергия фотона в эВ, вызывающего туннельный фотоэмиссионный ток;
λ - длина волны в нм;
h - постоянная Планка.



 

Похожие патенты:

Изобретение относится к технологии получения индиевых микроконтактов для соединения больших интегральных схем (БИС) и фотодиодных матриц. В способе изготовления микроконтактов матричных фотоприемников согласно изобретению формируют на пластине с матрицами БИС или фотодиодными матрицами металлический подслой (например, Cr+Ni) круглой формы, защищают кристалл пленкой фоторезиста с окнами круглой формы в местах контактов, напыляют слой индия толщиной, соответствующей высоте микроконтактов, формируют на слое индия маску фоторезиста круглой формы, затем формируют микроконтакты травлением ионами инертного газа до полного распыления индия в промежутках между контактами, удаляют остатки фоторезистивной маски на вершинах микроконтактов и нижней защитной пленки в органических растворителях или травлением в кислородной плазме.

Изобретение относится к оптоэлектронным приборам. Полупроводниковый фотоэлектрический генератор содержит прозрачное защитное покрытие на рабочей поверхности, на которое падает излучение, и секции фотопреобразователей, соединенные оптически прозрачным герметиком с защитным покрытием.

Изобретение относится к области полупроводниковых приборов, предназначенных для регистрации инфракрасного излучения. Фотоприемный модуль на основе PbS представляет собой гибридную микросборку, состоящую из фоточувствительного элемента, в виде линейки на основе PbS и кристалла БИС-считывания (мультиплексора), соединенных между собой методом перевернутого монтажа (flip-chip).
Изобретение относится к области электрического оборудования, в частности к фотопреобразователям. Техническим результатом изобретения является улучшение качества контактов и увеличение выхода годных приборов.

Изобретение может быть использовано в различной оптико-электронной аппаратуре для обнаружения инфракрасного излучения. Фотоприемный модуль на основе PbSe согласно изобретению представляет собой гибридную микросборку, состоящую из фоточувствительного элемента, в виде линейки на основе PbSe и кристалла БИС-считывания (мультиплексора), соединенных между собой методом перевернутого монтажа (flip-chip), при этом индиевые столбики наносят на контактные площадки ламелей фоточувствительного элемента, которые помимо слоев Cr, Pd, An содержат подслой Cr и In, и стыкуют с индиевыми столбиками, нанесенными на БИС-считывания, образуя электрическую и механическую связь.

Настоящее изобретение относится к области кремниевых многопереходных фотоэлектрических преобразователей (ФЭП) солнечных батарей. Конструкция «наклонного» кремниевого монокристаллического многопереходного (МП) фотоэлектрического преобразователя (ФЭП) согласно изобретению содержит диодные ячейки (ДЯ) с n+-p--p+ (р+-n--n+) переходами, параллельными горизонтальной светопринимающей поверхности, диодные ячейки содержат n+(p+) и р+(n+) области n+-p--p+(p+-n--n+) переходов, через которые они соединены в единую конструкцию металлическими катодными и анодными электродами, расположенными на поверхности n+(p+) и p+(n+) областей с образованием соответствующих омических контактов - соединений, при этом, что n+(p+) и p+(n+) области и соответствующие им катодные и анодные электроды расположены под углом в диапазоне 30-60 градусов к светопринимающей поверхности, металлические катодные и анодные электроды расположены на их поверхности частично, а частично расположены на поверхности оптически прозрачного диэлектрика, расположенного на поверхности n+(p+) и p+(n+) областей, при этом они с металлическими электродами и оптически прозрачным диэлектриком образуют оптический рефлектор.

Изобретение относится к области фотоэлектрического преобразования солнечной энергии. Согласно изобретению предложен способ изготовления структуры фотоэлектрического элемента, имеющей два электрода и содержащей по меньшей мере один слой соединения кремния, который включает осаждение слоя соединения кремния на несущую структуру, в результате чего одна поверхность слоя соединения кремния расположена на несущей структуре, а вторая поверхность слоя соединения кремния является непокрытой, обработку второй поверхности слоя соединения кремния в заданной кислородсодержащей атмосфере с обогащением тем самым второй поверхности слоя соединения кремния кислородом и воздействие на обогащенную вторую поверхность окружающим воздухом.

Изобретение касается способа изготовления электродов для солнечных батарей, в котором электрод выполнен в виде электропроводящего слоя на основе (1) для солнечных батарей, на первом этапе с носителя (7) на основу (1) переносят дисперсию, содержащую электропроводящие частицы, посредством облучения дисперсии лазером (9), а на втором этапе сушат и/или отверждают перенесенную на основу (1) дисперсию в целях образования электропроводящего слоя.

Изобретение относится к технологии тонкопленочных фотоэлектрических преобразователей с текстурированным слоем прозрачного проводящего оксида. Способ получения слоя прозрачного проводящего оксида на стеклянной подложке включает нанесение на стеклянную подложку слоя оксида цинка ZnO химическим газофазным осаждением при пониженном давлении и последующее текстурирование поверхности слоя ZnO высокочастотным магнетронным травлением в среде рабочего газа с одновременным перемещением электромагнитов магнетрона по площади поверхности слоя ZnO в течение определенных времени и мощности магнетрона.

Настоящее изобретение относится к области кремниевых многопереходных фотоэлектрических преобразователей (ФЭП) солнечных батарей. Согласно изобретению предложено создание «гребенчатой» конструкции фотоэлектрического преобразователя, которая позволяет реализовать в его диодных ячейках максимально возможный объем области пространственного заряда p-n переходов, в котором сбор неосновных носителей заряда происходит наиболее эффективно.

Использование: для регистрации рентгеновского и ультрафиолетового излучения. Сущность изобретения заключается в том, что автономный приемник для регистрации рентгеновского и ультрафиолетового излучения включает металлический корпус, прозрачную диэлектрическую подложку, фоточувствительный слой из АФН-пленки и металлические контакты, при этом между прозрачной диэлектрической подложкой и металлическим корпусом помещено отражающее покрытие, приемник снабжен полусферической зеркальной крышкой, имеющей окно, прозрачное для рентгеновского и ультрафиолетового излучения.

Изобретение относится к области низкоразмерной нанотехнологии и высокодисперсным материалам и может быть использовано при изготовлении детекторов электромагнитного излучения, преимущественно оптического, с наноструктрированным поглощающим (фоточувствительным) слоем.

Изобретение относится к области создания детекторов инфракрасного излучения и касается болометрического ИК-детектора. Детектор состоит из мембраны площадью S с термочувствительным элементом (ТЧЭ) и поглотителем электромагнитной энергии (ПЭЭ), прикрепленной к подложке с помощью токопроводящих шинок.

Изобретение относится к области создания детекторов инфракрасного излучения и касается болометрического ИК-детектора. Детектор состоит из мембраны площадью S с термочувствительным элементом (ТЧЭ) и поглотителем электромагнитной энергии (ПЭЭ), прикрепленной к подложке с помощью токопроводящих шинок.

Изобретение относится к оптоэлектронной технике, точнее к компактным фотоприемникам излучения в инфракрасном (ИК) диапазоне длин волн, применяемым в различных областях науки и техники, в промышленности, а именно в спектроскопии, в медицине, оптических системах связи и передачи информации, в оптических сверхскоростных вычислительных и коммутационных системах.

Изобретение относится к полупроводниковым приборам, чувствительным к излучению, и может быть использовано для разработки фотоприемников, в частности, предназначенных для регистрации инфракрасного излучения.

Изобретение относится к приемникам оптического излучения, а именно для применения в оптоэлектронных и робототехнических устройствах для регистрации параметров оптического излучения.

Изобретение относится к микроэлектронной измерительной технике и может быть использовано в конструкции и технологии производства полупроводниковых датчиков ультрафиолетового излучения (УФИ).

Изобретение относится к приемникам оптического излучения для применения в оптоэлектронных и робототехнических устройствах, служащим для регистрации параметров оптического излучения.

Изобретение относится к полупроводниковой технике и может использоваться для создания полупроводниковых фотоприемников, в частности фоторезисторов для регистрации и измерения светового излучения.

Изобретение относится к инфракрасной технике и может быть использовано при изготовлении микроболометрических матриц, детектирующих излучение в двух инфракрасных (ИК) диапазонах с длинами волн 3-5 мкм и 8-14 мкм, соответствующих окнам прозрачности атмосферы. Инфракрасный микроболометрический детектор включает в себя единственный микромостиковый слой с множеством пикселей, каждый из которых содержит по меньшей мере один структурный слой из нитрида кремния, детектирующий излучение слой из оксида ванадия и слой, содержащий поглощающий материал. Поглощающим материалом является пленка тантала толщиной от 3 до 20 нм, при этом толщина слоя нитрида кремния не превышает 210 нм, а толщина слоя окиси ванадия - 170 нм. Технический результат заключается в создании микроболометрического детектора, имеющего равные коэффициенты поглощения в двух спектральных диапазонах, и повышении его быстродействия без снижения разрешающей способности. 1 табл., 8 ил.
Наверх