Способ получения наполнителя, наполнитель и колонка

Группа изобретений относится к области хроматографии. Предложен способ получения наполнителя. Способ включает первую стадию взаимодействия неорганической частицы, имеющей гидроксильную группу, с силановым связывающим агентом, имеющим алкенильную группу с числом углерода от 2 или более и 8 или менее и/или алкинильную группу с числом углерода от 2 или более и 7 или менее, и вторую стадию взаимодействия неорганической частицы, прореагировавшей с силановым связывающим агентом, с соединением, представленным общей формулой (1):

При этом R1 представляет собой алкильную группу с числом углерода от 4 или более и 50 или менее или арильную группу с числом углерода от 6 или более и 30 или менее, и каждый из R2 и R3 представляет собой независимо атом водорода, хлор или алкильную группу с числом углерода от 1 или более и 4 или менее. Первая стадия дополнительно включает взаимодействие неорганической частицы, прореагировавшей с упомянутым силановым связывающим агентом, с силановым агентом, не имеющим алкенильной или алкинильной группы. Группа изобретений обеспечивает получение наполнителя для колонки, в которой обеспечивается малая степень уширения пика основного вещества. 3 н. и 1 з.п. ф-лы, 3 ил., 3 пр.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу получения наполнителя, наполнителю и колонке.

Уровень техники

Традиционно силикагель с поверхностью, на которой силанольная группа химически модифицирована силилированием любым силановым связывающим агентом, использовался, в общем, в качестве наполнителя для заполнения колонки, используемой в жидкостной хроматографии. В качестве силанового связывающего агента предусматривается октадецилхлорсилановое соединение, октилхлорсилановое соединение, бутилхлорсилановое соединение, цианопропилхлорсилановое соединение, фенилхлорсилановое соединение или тому подобное, и среди них октадецилхлорсилановое соединение используется наиболее широко.

Однако такой наполнитель обладает большой степенью взаимодействия с полярным веществом, в особенности основным веществом, потому что силанольная группа остается на поверхности силикагеля и создает проблему большей степени уширения пика основного вещества в колонке.

Патентный документ 1 раскрывает способ взаимодействия агента, связывающего концевые группы, с силанольной группой, оставшейся на химически модифицированном силикагеле или пористом стекле, при температуре реакции 250°С или выше в газовой фазе.

Однако даже если используют такой способ, силанольная группа по-прежнему остается на поверхности силикагеля или пористого стекла и, соответственно, желательно, чтобы уширение пика основного вещества в колонке уменьшалось.

Патентный документ 1: Публикация Заявки на Японский Патент № 4-212058

Раскрытие изобретения

Проблемы, решаемые изобретением

Задача настоящего изобретения заключается в том, чтобы предоставить способ получения наполнителя, который пригоден для разработки колонки, в которой обеспечивается малая степень уширения пика основного вещества, наполнитель, который получают, используя этот способ получения наполнителя, и колонку, заполненную наполнителем, принимая во внимание существующую проблему вышеупомянутого уровня техники.

Способ решения проблемы

Изобретение, описанное в п.1, представляет собой способ получения наполнителя, включающий первую стадию взаимодействия неорганической частицы, имеющей гидроксильную группу, с силановым связывающим агентом, включающим силановый связывающий агент, имеющий алкенильную группу с числом углеродных атомов от 2 или более и 8 или менее, и/или алкинильную группу с числом углеродных атомов от 2 или более и 7 или менее, и вторую стадию взаимодействия неорганической частицы, прореагировавшей с силановым связывающим агентом, с соединением, представленным общей формулой (1):

(в формуле R1 представляет собой алкильную группу с числом углерода от 4 или более и 50 или менее, или арильную группу с числом углерода от 6 или более и 30 или менее, и каждый из R2 и R3 представляет собой независимо атом водорода, хлор или алкильную группу с числом углерода от 1 или более и 4 или менее).

Изобретение, описанное в п.2, представляет собой способ получения наполнителя, описанного в п.1, отличающийся тем, что первая стадия включает стадию взаимодействия неорганической частицы с силановым связывающим агентом, имеющим алкенильную группу с числом углерода от 2 или более и 8 или менее, и/или алкинильную группу с числом углерода от 2 или более и 7 или менее, и стадию взаимодействия неорганической частицы, прореагировавшей с силановым связывающим агентом, с силановым связывающим агентом, не имеющим алкенильной группы или алкинильной группы.

Изобретение, описанное в п.3, представляет собой наполнитель, отличающийся тем, что изготовлен, используя способ получения наполнителя, описанного в п.1 или п.2.

Изобретение, описанное в п.4, представляет собой колонку, отличающуюся тем, что заполнена наполнителем, описанным в п.3.

Изобретение, описанное в п.5, представляет собой колонку, описанную в п.4, отличающуюся тем, что фактор асимметрии пика амитриптилина составляет 0,9 или более и 2,0 или менее.

Обеспечивающий преимущество эффект изобретения

Согласно настоящему изобретению возможно предоставить способ получения наполнителя, который пригоден для получения колонки, в которой обеспечивается малая степень уширения пика основного вещества, наполнитель, который производится, используя способ получения наполнителя и колонку, заполненную наполнителем.

Краткое описание чертежей

Фиг.1 представляет собой диаграмму, иллюстрирующую результат измерения фактора асимметрии пика для колонки, заполненной наполнителем, в практическом примере 1.

Фиг.2 представляет собой диаграмму, иллюстрирующую результат измерения фактора асимметрии пика для колонки, заполненной наполнителем, в практическом примере 2.

Фиг.3 представляет собой диаграмму, иллюстрирующую результат измерения фактора асимметрии пика для колонки, заполненной наполнителем, в сравнительном примере 1.

Наилучший вариант осуществления изобретения

Далее варианты осуществления настоящего изобретения будут описаны со ссылкой на чертежи.

Способ получения наполнителя согласно настоящему изобретению включает первую стадию взаимодействия неорганической частицы, имеющей гидроксильную группу, с силановым связывающим агентом, включающим силановый связывающий агент, имеющий алкенильную группу с числом углерода от 2-8, и/или алкинильную группу с числом углерода от 2-7 (именуемый ниже как первый силановый связывающий агент), и вторую стадию взаимодействия неорганической частицы, прореагировавшей с силановым связывающим агентом, с соединением, представленным общей формулой (1),

(в формуле R1 представляет собой алкильную группу с числом углерода от 4-50 или арильную группу с числом углерода от 6-30, и каждый из R2 и R3 представляет собой независимо атом водорода, хлор или алкильную группу с числом углерода от 1-4). Так как силановый связывающий агент, соответственно, реагирует с неорганической частицей, имеющей гидроксильную группу до введения алкильной группы с числом углерода от 4-50 или арильной группы с числом углерода от 6-30 на поверхности неорганической частицы, возможно уменьшить количество оставшихся гидроксильных групп(ы) рядом с поверхностью неорганической частицы. Как результат возможно получить наполнитель с малой степенью уширения пика основного вещества.

Если первый силановый связывающий агент имеет алкенильную группу с числом углерода от 9 или более и/или имеет алкинильную группу с числом углерода от 8 или более, взаимодействие силанового связывающего агента с неорганической частицей, имеющей гидроксильную группу, неохотно протекает из-за стерического затруднения.

Если R1 представляет собой алкильную группу с числом углерода от 3 или менее в соединении, представленном общей формулой (1), невозможно получить наполнитель с малой степенью уширения пика основного вещества. Более того, если R1 представляет собой алкильную группу с числом углерода от 51 или более, или арильную группу с числом углерода от 31 или более, взаимодействие соединения, представленного общей формулой (1), с неорганической частицей, с введенной алкенильной группой с числом углерода от 2-8 и/или алкинильной группой с числом углерода от 2-7, неохотно протекает из-за стерического затруднения. Кроме того, если R2 и R3 представляют собой алкильную группу с числом углерода от 5 и более, взаимодействие соединения, представленного общей формулой (1), с неорганической частицей, с введенной алкенильной группой с числом углерода от 2-8 и/или арильной группой с числом углерода от 2-7, неохотно протекает из-за стерического затруднения.

В отношении неорганической частицы, имеющей гидроксильную группу, нет особых ограничений и предусматривают кварц, оксид титана, оксид цинка, оксид циркония, оксид алюминия, цеолит или тому подобное. Среди них пористая частица, имеющая гидроксильную группу, такая как частица силикагеля, пористого стекла, монолита кварца или тому подобного, является предпочтительной.

Средний размер частицы неорганической частицы, имеющей гидроксильную группу, предпочтительно составляет 1-200 мкм и более предпочтительно 3-50 мкм. Более того, размер поры пористой частицы, имеющей гидроксильную группу, предпочтительно составляет 1-100 нм и более предпочтительно 4-50 нм. Кроме того, удельная площадь поверхности пористой частицы, имеющей гидроксильную группу, предпочтительно составляет 50-800 м2/г и более предпочтительно 100-600 м2/г.

В описании и пунктах формулы настоящего изобретения неорганическая частица, имеющая гидроксильную группу, включает в себя органическо-неорганический гибрид частицы, имеющей гидроксильную группу, такую как частица, полученная взаимодействием силанового связывающего агента, имеющего гидроксильную группу, с неорганической частицей, имеющей гидроксильную группу.

Для соединения, представленного общей формулой (1), предусматривают октадецилдиметилсилан или тому подобное и два или более вида могут быть использованы в сочетании.

Хотя неорганическая частица, имеющая гидроксильную группу, может взаимодействовать с одним первым силановым связывающим агентом на первой стадии в настоящем изобретении, предпочтительно взаимодействует с первым силановым связывающим агентом и силановым связывающим агентом, не имеющим алкенильной группы или алкинильной группы (именуемый ниже как второй силановый связывающий агент), так как возможно контролировать количество введенных алкенильных групп. Наиболее предпочтительным является то, что неорганическая частица, имеющая гидроксильную группу, взаимодействует с предопределенным количеством первого силанового связывающего агента и последовательно взаимодействует с избыточным количеством второго силанового связывающего агента. Таким образом, возможно контролировать количество введенных алкенильных групп и/или алкинильных групп на поверхности неорганической частицы и уменьшить количество оставшихся гидроксильных(ой) групп(ы).

Кроме того, неорганическая частица, имеющая гидроксильную группу, может взаимодействовать с первым силановым связывающим агентом и/или вторым силановым связывающим агентом более одного раза на первой стадии.

В отношении первого силанового связывающего агента нет особых ограничений, и предусматривают соединение, представленное общей формулой (2):

(в формуле, по меньшей мере, один из R1, R2, R3 и R4 представляет собой алкенильную группу с числом углерода от 2-8 или алкинильную группу с числом углерода от 2-7, по меньшей мере, один из R1, R2, R3 и R4 представляет собой атом водорода, атом галогена, гидроксильную группу или алкоксильную группу с числом углерода от 1-4, и каждый из R1, R2, R3 и R4 за исключением вышеуказанных представляет собой независимо замещенную или незамещенную алкильную группу с числом углерода от 1-8, замещенную алкенильную группу с числом углерода от 2-8, замещенную алкинильную группу с числом углерода от 2-7 или замещенную или незамещенную арильную группу с числом углерода от 6-12), соединение, представленное общей формулой (3):

(в формуле n составляет от 1-100, по меньшей мере, один из R1, R2, R3 и R4 представляет собой алкенильную группу с числом углерода от 2-8 или алкинильную группу с числом углерода от 2-7, каждый из R1, R2, R3 и R4 за исключением вышеуказанных представляет собой независимо атом водорода, атом галогена, гидроксильную группу, винилдиметилсилоксильную группу, алкоксильную группу с числом углерода от 1-4, замещенную или незамещенную алкильную группу с числом углерода от 1-8, замещенную алкенильную группу с числом углерода от 2-8, замещенную алкинильную группу с числом углерода от 2-7 или замещенную или незамещенную арильную группу с числом углерода от 6-12, и множество R1 и R3 или R3, в случае, когда присутствуют многочисленные радикалы, может представлять собой множество идентичных или разных радикалов), соединение, представленное общей формулой (4):

(в формуле n составляет 3-50, по меньшей мере, один из многочисленных R1 и R2 представляет собой алкенильную группу с числом углерода от 2-8 или алкинильную группу с числом углерода от 2-7, каждый из R1 и R2 за исключением вышеуказанных представляет собой независимо атом водорода, атом галогена, гидроксильную группу, алкоксильную группу с числом углерода от 1-4, замещенную или незамещенную алкильную группу с числом углерода от 1-8, замещенную алкенильную группу с числом углерода от 2-8, замещенную алкинильную группу с числом углерода от 2-7 или замещенную или незамещенную арильную группу с числом углерода от 6-12 и X представляет собой окси-группу или имино-группу), соединение, представленное общей формулой (5):

(в формуле, по меньшей мере, один из многочисленных R1, R2 и R3 представляет собой алкенильную группу с числом углерода от 2-8 или алкинильную группу с числом углерода от 2-7, каждый из R1, R2 и R3 за исключением вышеуказанных представляет собой независимо атом водорода, атом галогена, гидроксильную группу, алкоксильную группу с числом углерода от 1-4, замещенную или незамещенную алкильную группу с числом углерода от 1-8, замещенную алкенильную группу с числом углерода от 2-8, замещенную алкинильную группу с числом углерода от 2-7 или замещенную или незамещенную арильную группу с числом углерода от 6-12, X представляет собой одинарную связь, имино-группу или группу, представленную общей формулой:

(в формуле каждый из R4 и R5 представляет собой независимо атом водорода или триметилсилильную группу и n является целым числом от 1-8), 1,1-бис(триметоксисилилметил)этилен или тому подобное, где два или более видов из этого могут быть использованы в сочетании.

Кроме того, в отношении алкенильной группы с числом углерода от 2-8 или алкинильной группы с числом углерода от 2-7 в общих формулах (2)-(5) нет особых ограничений до тех пор, пока реакция гидросилилирования с соединением, представленным общей формулой (1), разрешена и предусматривают винильную группу, этинильную группу или тому подобное. Более того, на галогеновую группу нет особых ограничений до тех пор, пока реакция конденсации с гидроксильной группой, которую несет неорганическая частица, возможна, и предусматривают хлор группу, бром, иод или тому подобное. Кроме того, заместитель для алкильной группы, алкенильной группы, алкинильной группы или арильной группы не ограничен до тех пор, пока заместитель не замедляет реакцию, и предусматривают циано-группу, гидроксильную группу, карбоксильную группу, амидную группу, имидную группу, сульфо-группу, амино-группу, глицероильную группу или тому подобное.

В качестве соединения, представленного общей формулой (2), предусматривают винилтрихлорсилан, винилтриметоксисилан, винилтриэтоксисилан, винилтриизопропоксисилан, винилтрифеноксисилан, винилфенилметилсилан, винилфенилметилхлорсилан, винилфенилдиэтоксисилан, винилфенилдихлорсилан, винилдифенилхлорсилан, винилдифенилэтоксисилан, винилоктилдихлорсилан, винилдиметилсилан, винилдиметилхлорсилан, дивинилдихлорсилан, тривинилхлорсилан, тривинилметоксисилан, тривинилэтоксисилан, тривинилсилан или тому подобное.

В качестве соединения, представленного общей формулой (3), предусматривают 1,5-дивинил-3,3-дифенил-1,1,5,5-тетраметилтрисилоксан или тому подобное.

В качестве соединения, представленного общей формулой (4), предусматривают 1,3,5-тривинил-1,3,5-триметилциклотрисилоксан, 1,3,5-тривинил-1,3,5-триметилциклотрисилазан или тому подобное.

В качестве соединения, представленного общей формулой (5), предусматривают 1,3-дивинилтетраметилдисилоксан, 1,3-дивинилтетраметилдисилазан или тому подобное.

В отношении второго силанового связывающего агента нет особых ограничений и предусматривают соединение, представленное общей формулой (6):

(в формуле каждый из R1, R2 и R3 представляет собой независимо алкильную группу с числом углерода от 1-9 и X представляет собой одинарную связь или имино-группу), соединение, представленное общей формулой (7):

(в формуле n составляет 0-50, 1-3 из многочисленных R1, R2 и R3 представляют собой атомы водорода или алкоксильную(ые) группу(ы) с числом углерода от 1-4 и каждый из R1, R2 и R3 за исключением вышеуказанных представляет собой независимо алкильную группу с числом углерода от 1-9), соединение, представленное общей формулой (8):

(в формуле n составляет 1-50, и каждый из R1, R2 и R3 представляет собой независимо алкильную группу с числом углерода от 1-9), соединение, представленное общей формулой (9):

(в формуле n составляет 3-10, каждый из R1 и R2 представляет собой независимо алкильную группу с числом углерода от 1-9 и X представляет собой окси-группу или имино-группу), или тому подобное, где два или более видов из этого могут быть использованы в сочетании.

В качестве соединения, представленного общей формулой (6), предусматривают гексаметилдисилан, гексаметилдисилазан или тому подобное.

В качестве соединения, представленного общей формулой (7), предусматривают диметилдиметоксисилан, диэтилметилсилан, триэтилсилан, триметилметоксисилан, 1,1,3,3-тетраметилдисилоксан, 1,1,3,3,5,5-гексаметилтрисилоксан, 1,3-диметокситетраметилдисилоксан или тому подобное.

В качестве соединения, представленного общей формулой (8), предусматривают гексаметилдисилоксан, тетрадекаметилгексасилоксан или тому подобное.

В качестве соединения, представленного общей формулой (9), предусматривают гексаметилциклотрисилоксан, октаметилциклотетрасилоксан, декаметилциклопентасилоксан, додекаметилциклогексасилоксан, гексаметилциклотрисилазан или тому подобное.

Когда неорганическая частица, имеющая гидроксильную группу, взаимодействует с силановым связывающим агентом в настоящем изобретении, возможно использовать общеизвестный способ и, например, реакцию проводят при 0-400°С в течение 30 минут-72 часов в присутствии растворителя, такого как толуол.

Более того, когда неорганическая частица, прореагировавшая с силановым связывающим агентом, взаимодействует с соединением, представленным общей формулой (1) на второй стадии, возможно использовать общеизвестный способ, и например, реакцию проводят при 50-300°С в течение 2 часов или более в присутствии растворителя, такого как толуол. В качестве катализатора возможно использовать рутений, родий, палладий, осмий, иридий или соединение платины, где соединение палладия или соединение платины является предпочтительным. В отношении соединения палладия нет особых ограничений и предусматривают хлорид палладия(II), тетраамминхлорпалладат(II) аммония, оксид палладия(II), гидроксид палладия(II) или тому подобное. В отношении соединения платины нет особых ограничений и предусматривают хлорид платины(II), тетрахлорплатиновую кислоту(II), хлорид платины(IV), гексахлорплатиновую кислоту(IV), гексахлорплатинат(IV) аммония, оксид платины(II), гидроксид платины(II), диоксид платины(IV), оксид платины(IV), дисульфид платины(IV), сульфид платины(IV), гексахлорплатинат(IV) калия или тому подобное.

Кроме того, силанольную группу, оставшуюся на неорганической частице и образованной из силанового связывающего агента, можно заблокировать, используя общеизвестный способ после второй стадии.

Так как колонку согласно настоящему изобретению заполняют наполнителем, изготовленным способом получения наполнителя согласно настоящему изобретению, возможно предусмотреть малую степень уширения пика основного материала, и что фактор асимметрии пика амитриптилина составит 0,9-2,0. Кроме того, можно использовать колонку согласно настоящему изобретению в жидкостной хроматографии и возможно анализировать и фракционировать образец.

Практические примеры для настоящего изобретения в дальнейшем будут подробно описаны ниже. Кроме того, настоящее изобретение никоим образом не ограничивается ими.

Экспериментальный пример 1

1 г силикагеля со средним размером частицы 5 мкм и удельной площадью поверхности 450 мм2/г загружали в ампулу и сушили при 120°С и пониженном давлении в течение 10 часов. Затем ампулу охлаждали, добавляли 0,55 мл винилметилдиметоксисилана и герметизировали ее в атмосфере азота, и реакцию проводили при 350°С в течение 12 часов. Далее продукт извлекали и промывали 10 мл хлороформа и 10 мл метанола, сушку проводили при 120°С и пониженном давлении в течение 10 часов.

Затем 0,7 г полученных частиц диспергировали в 3 мл безводного толуола, добавляли 3,1 мл октадецилдиметилсилана и перемешивали. Затем добавляли 14,45 мкл 3%масс. раствора хлорплатиновой кислоты в толуоле и реакцию проводили при 70°С в течение 8 часов, охлаждали и фильтровали. Далее полученный осадок промывали 10 мл хлороформа и 10 мл метанола, сушку проводили при 120°С и пониженном давлении в течение 10 часов, получая наполнитель.

Экспериментальный пример 2

15 г силикагеля со средним размером частицы 5 мкм и удельной площадью поверхности 450 мм2/г диспергировали в 60 мл безводного толуола. Затем после добавления 5,79 мл пиридина и 3,12 мл винилтрихлорсилана смесь нагревали и кипятили в течение 3 часов, охлаждали и фильтровали. Полученный осадок промывали 100 мл толуола, 100 мл ацетонитрила и 100 мл 60%масс. водным раствором ацетонитрила. Более того, диспергировали в 100 мл 60%масс. водного раствора ацетонитрила, перемешивали при комнатной температуре в течение 1,5 часов и фильтровали. Далее полученный осадок промывали 100 мл 60%масс. водного раствора ацетонитрила и 100 мл метанола, сушку проводили при 120°С и пониженном давлении в течение 10 часов. Содержание углерода в полученных частицах составило 4,00 %масс.

2 г полученных частиц загружали в ампулу и проводили сушку при 120°С и пониженном давлении в течение 10 часов. Затем ампулу охлаждали, добавляли 0,416 мл диметилдиметоксисилана и герметизировали ее в атмосфере азота и реакцию проводили при 350°С в течение 6 часов. Далее продукт извлекали и промывали 20 мл хлороформа и 20 мл метанола, сушку проводили при 120°С и пониженном давлении в течение 10 часов.

После 0,7 г полученных частиц диспергировали в 3 мл безводного толуола, добавляли 3,1 мл октадецилдиметилсилана и перемешивали. Затем после добавления 14,45 мкл 3%масс. раствора хлорплатиновой кислоты в толуоле реакцию проводили при 70°С в течение 8 часов, охлаждали и фильтровали. Затем полученный осадок промывали 10 мл хлороформа и 10 мл метанола, сушку проводили при 120°С и пониженном давлении в течение 10 часов, получая наполнитель.

Сравнительный пример 1

После того как 10 г силикагеля высушили при 120°С и пониженном давлении в течение 10 часов, проводили охлаждение и диспергирование в 40 мл безводного толуола. Затем после добавления 0,8 мл пиридина и 3,3 мл октадецилдиметилхлорсилана нагревали и кипятили в течение 3 часов с обратным холодительником, охлаждали и фильтровали. Затем полученный осадок промывали 100 мл толуола, 100 мл хлороформа и 100 мл метанола, сушку проводили при 120°С и пониженном давлении в течение 10 часов.

5 г полученных частиц загружали в ампулу и сушку проводили при 120°С и пониженном давлении в течение 10 часов. Затем ампулу охлаждали, добавляли 1,0 мл гексаметилсилазана и герметизировали ее в атмосфере азота и реакцию проводили при 250°С в течение 6 часов. Далее продукт извлекали и промывали 50 мл хлороформа и 100 мл метанола, сушку проводили при 120°С и пониженном давлении в течение 10 часов, получая наполнитель.

Измерение факторов асимметрии пика

Колонку заполняли наполнителями, полученными в экспериментальном примере 1, экспериментальном примере 2 и сравнительном примере 1, подвижную фазу с 20 мМ фосфатный буфер:ацетонитрил, составляющую 60:40 (объемное соотношение), использовали для измерения факторов асимметрии пика амитриптилина в качестве основного вещества.

Фиг.1, Фиг.2 и Фиг.3 иллюстрируют результаты измерения факторов асимметрии пика для колонок, заполненных наполнителями в экспериментальном примере 1, экспериментальном примере 2 и сравнительном примере 1. Фактор асимметрии пика и число теоретических тарелок для заполненной колонки наполнителем в экспериментальном примере 1 составляли 1,39 и 6313 соответственно, и фактор асимметрии пика и число теоретических тарелок для заполненной колонки наполнителем в экспериментальном примере 2 составляли 1,15 и 7814 соответственно. С другой стороны, фактор асимметрии пика и число теоретических тарелок для заполненной колонки наполнителем в сравнительном примере 1 составляли 2,19 и 3292 соответственно.

Настоящая международная заявка притязает на приоритет по заявке на патент Японии № 2009-059290, поданной 12 марта 2009, и полное содержание заявки на патент Японии № 2009-059290 включено путем ссылки в настоящую международную заявку.

1. Способ получения наполнителя, включающий первую стадию взаимодействия неорганической частицы, имеющей гидроксильную группу, с силановым связывающим агентом, имеющим алкенильную группу с числом углерода от 2 или более и 8 или менее и/или алкинильную группу с числом углерода от 2 или более и 7 или менее, и вторую стадию взаимодействия неорганической частицы, прореагировавшей с силановым связывающим агентом, с соединением, представленным общей формулой (1):

где R1 представляет собой алкильную группу с числом углерода от 4 или более и 50 или менее или арильную группу с числом углерода от 6 или более и 30 или менее, и каждый из R2 и R3 представляет собой независимо атом водорода, хлор или алкильную группу с числом углерода от 1 или более и 4 или менее, отличающийся тем, что первая стадия дополнительно включает стадию взаимодействия неорганической частицы, прореагировавшей с силановым связывающим агентом, с силановым связывающим агентом, не имеющим алкенильной группы или алкинильной группы.

2. Наполнитель, изготовленный способом получения наполнителя по п.1.

3. Колонка, заполненная наполнителем по п.2.

4. Колонка по п.3, где фактор асимметрии пика амитриптилина составляет 0,9 или более и 2,0 или менее.



 

Похожие патенты:

Изобретение относится к способу адсорбционного выделения одного соединения из смеси C8 ароматических углеводородов, а именно, пара-ксилола. Способ выделения пара-ксилола из смеси исходного сырья включает введение жидкости, содержащей нежелательный изомер, в контакт со слоем адсорбента, включающего кристаллы металлоорганической каркасной структуры, выбираемые из группы, состоящей из Al-MIL-53, Zn-MOF-5 и их смесей, и извлечение пара-ксилола из адсорбента.

Изобретение относится к области катализа. Описан способ получения оксида металла на подложке и восстановленного оксида металла на подложке, пригодного для использования в качестве предшественника для катализатора или сорбента, включающий стадии: (i) импрегнирования материала подложки раствором нитрата металла в растворителе, (ii) выдерживания импрегнированного материала в газовой смеси, содержащей оксид азота, при температуре в пределах 0-150°C для удаления растворителя из импрегнированного материала с одновременным высушиванием и стабилизацией нитрата металла на подложке, с получением диспергированного на подложке нитрата металла и (iii) кальцинирования диспергированного на подложке нитрата металла для осуществления его разложения и образования оксида металла на подложке, где кальцинирование осуществляют в газовой смеси, которая состоит из одного или нескольких инертных газов и оксида азота и концентрация оксида азота в газовой смеси находится в пределах 0,001-15% об.
Группа изобретений относится к области биохимии, экологии, охране окружающей среды. Предложен препарат для очистки воды и почвы от нефтяных загрязнений, содержащий микроорганизмы - деструкторы нефти, сорбент, криопротектор - глицерин, микроудобрения - азотнокислый натрий 0,5% и фосфорнокислый калий 0,5%.

Изобретение относится к газопоглощающим материалам, в частности к спеченным неиспаряющимся геттерам, и может быть использовано в вакуумной технике и микроэлектронике, в частности в разрядных приборах.

Изобретение относится к удалению оксидов азота из выхлопных газов и отходящих газов из двигателей внутреннего сгорания и газовых турбин. Способ удаления оксидов азота осуществляется путем введения восстановительного реагента и восстановления оксидов азота в присутствии катализатора, который является слоем катализатора на основе цеолита на волнистом монолитном носителе, при этом носитель обладает плотностью от 50 г/л до 300 г/л и пористостью 50%, пористость монолитного носителя обусловлена порами, обладающими глубиной от 50 до 200 мкм и диаметром от 1 до 30 мкм.

Наполнитель туалета для домашних животных содержит пористые гранулы, выполненные из пенобетона с удельной плотностью от 0,4 до 0,6 г/см3. Для изготовления гранул использованы отходы производства пенобетонных блоков, материал которых включает портландцемент, известь, вспенивающий компонент, кремнеземистый компонент, отходы производства ячеистого бетона-сырца и воду.

Изобретение относится к области воздухоочистки и вентиляции и может найти применение в быту, лечебных учреждениях, в производственных помещениях и т.д. Фотокаталитический воздухоочиститель включает корпус, который выполнен в виде закрученной в спираль постоянной по площади поперечного сечения трубки, образующей фотокаталитический блок, внутренняя поверхность которого покрыта слоем фотокатализатора, насос-вентилятор и пылевой фильтр с органическим или неорганическим адсорбентом.

Изобретение относится к аналитической газовой хроматографии, в частности к способам создания сорбентов для анализа органических веществ, в том числе и загрязнителей окружающей среды.

Изобретение относится к способам получения сорбентов с высокоупорядоченной структурой типа MCM-41. .

Изобретение относится к области получения силикатных материалов. Предложен способ получения обращенно-фазовых гидрофобизированных полисиликатных сорбентов, включающий взаимодействие в водной среде гидрофильного силикатного компонента с амфифильным силикатным компонентом. Реакцию соконденсации упомянутых компонентов осуществляют при мольном отношении воды к сумме силикатных компонентов, равном от 124 до 250. В реакционную смесь вводят также кислотный и/или щелочной компонент до образования полисиликатного гидрогеля. Полученный сорбент предложен к использованию в качестве фильтрующей среды и в качестве энтеросорбента. Технический результат заключается в возможности получения в водной среде трехмерного гидрогеля поликремневой кислоты, содержащего гидрофильные и гидрофобные группы. 3 н. и 14 з.п. ф-лы, 3 табл., 1 ил., 16 пр.

Изобретение относится к получению сорбентов для выделения и детекции рекомбинантных белков, содержащих полигистидиновые последовательности. Предложен способ получения магнитного аффинного сорбента для выделения рекомбинантных белков. Способ включает нанесение пористого кремнеземного слоя на поверхность магнитных микросфер летучих зол от сжигания угля и пропитку раствором, содержащим ионы переходных металлов. В качестве микросфер используют фракцию магнитных микросфер, содержащую 40-41 мас.% стеклофазы. Нанесение пористого кремнеземного слоя осуществляют в гидротермальных условиях. Магнитные микросферы контактируют с жидкой реакционной смесью, содержащей тетраэтоксисилан и гексадецилтриаммоний бромид в качестве структуроформирующего агента. После нанесения кремнезёмного слоя твердую фазу отделяют, промывают, термообрабатывают и активируют при кипячении в водной среде. Изобретение позволяет повысить прочность кремнезёмной оболочки на поверхности микросфер без снижения сорбционной ёмкости по белкам среднего размера. 6 з.п. ф-лы, 2 ил., 3 табл., 9 пр.
Изобретение относится к сорбционным технологиям, в частности к адсорбентам, используемым для осушки от воды газовых сред. Адсорбент для удаления воды из газов содержит пористую матрицу, в поры которой введено активное влагопоглощающее гигроскопическое вещество из группы галогенидов щелочноземельных металлов, при этом в качестве пористой матрицы используют мезопористые силикаты из группы, включающей силикат МСМ-41, алюмосиликат, цирконосиликат или титаносиликат, полученные методом золь-гель метода или темплатного синтеза с последующим прогреванием в токе воздуха при температуре 200-450°C в течение 1-4 ч, в мезопоры которых размером 2-10 нм и общим объемом пор более 1 см3/г методом пропитки из водного раствора введен безводный хлорид кальция в количестве 40-100 вес.% в расчете на сухое вещество матрицы и последующей сушкой адсорбента на воздухе при 100°C в течение 2 ч. Изобретение обеспечивает создание эффективного адсорбента с высокой емкостью по воде.

Изобретение относится к области переработки радиоактивных растворов. Состав экстракционно-хроматографического материала для селективного выделения U(VI), Th(IV), Np(IV) и Pu(IV) из азотнокислых растворов содержит три компонента. В качестве комплексообразующих компонентов состав содержит 33 % метилтриоктиламмоний нитрата (МТОАН) и 1-16% фосфорилподанда. В качестве матрицы состав содержит макропористый сферический гранулированный сополимер стирола с дивинилбензолом. В качестве фосфорилподанда используют производные 1,5-бис[2-(оксиэтоксифосфорил)-4-(алкил)фенокси-3-оксапентана общей формулы I, где Alk - алкил C1-C12. Техническим результатом является расширение спектра высокоэффективных селективных сорбентов для извлечения U(VI), Th(IV), Np(IV) и Pu(IV) из азотнокислых растворов. 8 ил.

Изобретение относится к способу получения тонкослойных хиральных пластин для планарной хроматографии стереоизомеров и их рацемических смесей, который включает нековалентное связывание гликопептидного антибиотика эремомицина с кремнезёмным адсорбентом с силикагелевым связующим методом импрегнирования в щелочном водном растворе при рН 8,0÷10,0 при комнатной температуре в одну стадию. 1 з.п. ф-лы, 3 табл., 5 пр.

Изобретение относится к области материаловедения и аналитической химии. Наногибридный функциональный сепарационный материал содержит ковалентно закрепленные на носителе наночастицы золота и ковалентно закрепленные серосодержащие органические лиганды на поверхности наночастиц золота. Изобретение обеспечивает повышение эффективности сепарационного материала. 3 з.п. ф-лы, 6 ил., 4 пр.
Изобретение относится к реагентам, предназначенным для обезвреживания отходов, загрязненных углеводородами, и может быть использовано для обезвреживания и утилизации отходов производства газонефтедобычи и переработки. Реагент для обезвреживания отходов, загрязненных углеводородами, содержит негашеную известь и нефтеотходы в качестве гидрофобизатора. Изобретение обеспечивает повышение эффективности обезвреживания и качества конечных продуктов обезвреживания. 2 табл., 2 пр. .
Изобретение относится к области сорбции. Предложен способ получения сорбента для газохроматографического разделения ароматических полициклических углеводородов. Получают алюминат кальция смешиванием в растворе нитрата кальция, нитрата алюминия и кристаллической лимонной кислотой при мольном соотношении компонентов 1:2:3. После перемешивания производят высушивание при 130°C и отжиг при 1000°C. Полученный продукт смешивают с раствором хлорида натрия, выпаривают на водяной бане до получения сыпучего образца, высушивают при 120°C и прокаливают при 900°C. Изобретение обеспечивает повышение селективности сорбента. 3 табл., 3 пр.
Изобретение относится к реагентам, предназначенным для обезвреживания почвогрунтов, загрязненных углеводородами, и может быть использовано для обезвреживания и утилизации нефтезагрязненных грунтов и отходов производства газонефтедобычи и переработки. Реагент для обезвреживания почвогрунтов, загрязненных углеводородами, содержит негашеную известь и нефтепарафины в качестве гидрофобизатора. Изобретение обеспечивает повышение степени обезвреживания и улучшение гидрофобных свойств продуктов обезвреживания. 1 табл.

Изобретение относится к способам получения сорбентов для хроматографического разделения фуллеренов. Проводят термическую обработку многослойных углеродных нанотрубок при 800-1000°C. Затем производят их смешение с дисперсным фторопластом. Операции осуществляют в среде азота или инертного газа. Изобретение обеспечивает получение эффективного сорбента по упрощенной технологии. 2 ил., 2 пр.
Наверх