Способ измерения отклонений расположения плоскостей относительно центра наружной сферической поверхности

Изобретение относится к измерительной технике, в частности для измерения взаимного расположения плоскостей и наружной сферической поверхности. Заявленный способ измерения отклонений расположения плоскостей относительно центра наружной сферической поверхности заключается в том, что на установочной плоскости размещают базирующий элемент, содержащий коническое отверстие. Устанавливают отсчетное устройство на базирующем элементе, обеспечивая измерительному щупу заданный вылет относительно оси конического отверстия и перпендикулярность осей измерительного щупа и конического отверстия. Устанавливают объект измерения сферической поверхностью в коническое отверстие, располагая измеряемые плоскости по разные стороны от оси конического отверстия и обеспечивая контакт первой измеряемой плоскости с измерительным щупом. Покачивают объект измерения в коническом отверстии, добиваясь прилегания рабочей поверхности измерительного щупа с первой измеряемой плоскостью. Снимают первое показание отсчетного устройства. Переустанавливают объект измерения в базирующем элементе. Повторяют операции, связанные с измерением расположения второй измеряемой плоскости. Снимают второе показание отсчетного устройства. Определяют отклонения от настроенного значения расстояния от измеряемых плоскостей до центра сферической поверхности по показаниям отсчетного устройства, а по их полуразности - отклонение от симметричности плоскостей относительно упомянутого центра. Технический результат, достигаемый от реализации заявленного способа, заключается в том, что обеспечивается упрощение способа, повышение его производительности и точности измерения отклонений расстояния от измеряемых плоскостей до центра наружной сферы. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано в машиностроении, преимущественно для измерения расстояний и симметричности плоскостей относительно центра наружной сферической поверхности.

Известен способ измерения отклонений расстояния между перекрещивающимися осями наружной и внутренней цилиндрических поверхностей, заключающийся в том, что размещают стойку на установочной плоскости, размещают на стойке две измерительные головки с одинаковыми по отношению к оси стойки вылетами измерительных щупов, устанавливают базирующую призму на установочную плоскость в положение, при котором бессекторная плоскость упомянутой призмы перпендикулярна осям измерительных щупов и расположена на заданном расстоянии от оси стойки, устанавливают во внутреннюю цилиндрическую поверхность объекта измерения центрирующую оправку, устанавливают объект измерения наружной цилиндрической поверхностью на базирующую призму с возможностью взаимодействия центрирующей оправки с измерительными щупами, вращают объект измерения на базирующей призме до положения, при котором показания измерительных головок будут одинаковыми, а отклонение искомого расстояния определяют по отклонению показания измерительной головки от настроенного значения [Патент RU №2125707 C1, МПК G01B 5/00, Бюл. №3, 1999 (аналог)].

Однако этим способом возможно измерение расстояния только между осями цилиндрических поверхностей и невозможно измерение параметров расположения плоскостей относительно центра сферической поверхности: расстояния и отклонения от симметричности.

Прототип - способ измерения отклонений расположения плоскостей относительно центра наружной сферической поверхности, заключающийся в том, что размещают стойку на установочной плоскости, устанавливают прижим на стойке, устанавливают на базирующем элементе отсчетное устройство, обеспечивая его измерительному щупу заданный вылет в коническом отверстии базирующего элемента, размещают базирующий элемент на установочной плоскости в положение, при котором ось конического отверстия перпендикулярна рабочей поверхности прижима, устанавливают объект измерения сферической поверхностью в коническое отверстие, обеспечивая контакт первой измеряемой плоскости объекта измерения с измерительным щупом, подводят прижим к объекту измерения и одновременно вращают объект измерения в базирующем элементе, добиваясь прилегания рабочей поверхности со второй измеряемой плоскостью, снимают первое показание отсчетного устройства, отводят прижим, переустанавливают объект измерения в коническом отверстии, обеспечивая контакт второй измеряемой плоскости с измерительным щупом, повторяют подвод прижима с вращением объекта измерения в базирующем элементе, добиваясь прилегания рабочей поверхности прижима с первой измеряемой плоскостью, снимают второе показание отсчетного устройства, определяют отклонения от настроенного значения расстояния от измеряемых плоскостей до центра сферической поверхности по показаниям отсчетного устройства, а по их полуразности - отклонение от симметричности плоскостей относительно упомянутого центра [Патент RU №2456539 C1, МПК G01B 5/00, Бюл. №20, 2012 (прототип)].

Однако наличие таких операций, как размещение стойки на установочной плоскости, установка прижима на стойке, а также выполнение по два раза подвода и отвода прижима, усложняют способ и снижают его производительность, а размещение измерительного щупа в коническом отверстии и при установке отсчетного устройства снижает точность измерения отклонений расстояния от каждой измеряемой плоскости до центра сферической поверхности ввиду влияния отклонений диаметра упомянутой сферической поверхности на показания отсчетного устройства.

В основу настоящего изобретения была положена задача упрощения способа, повышения его производительности, а также повышение точности измерения отклонений расстояния от плоскостей до центра наружной сферической поверхности.

Это достигается тем, что размещают базирующий элемент, содержащий коническое отверстие, на установочной плоскости, устанавливают на базирующем элементе отсчетное устройство, обеспечивая его измерительному щупу заданный вылет и перпендикулярность оси измерительного щупа к оси конического отверстия, устанавливают объект измерения сферической поверхностью в коническое отверстие базирующего элемента, располагая измеряемые плоскости по разные стороны от оси конического отверстия и обеспечивая контакт одной из измеряемых плоскостей с измерительным щупом, покачивают объект измерения в базирующем элементе, добиваясь прилегания измеряемой плоскости с рабочей поверхностью измерительного щупа, снимают первое показание отсчетного устройства, переустанавливают объект измерения в коническом отверстии, располагая измеряемые плоскости по разные стороны от оси конического отверстия и обеспечивая контакт другой измеряемой плоскости с измерительным щупом, покачивают объект измерения в базирующем элементе, добиваясь прилегания измеряемой плоскости с рабочей поверхностью измерительного щупа, снимают второе показание отсчетного устройства и по показаниям судят об отклонениях от настроенного расстояния от каждой из измеряемых плоскостей до центра сферической поверхности, а по их полуразности - о симметричности измеряемых плоскостей относительно центра сферической поверхности.

Таким образом, исключение из прототипа таких операций, как размещение стойки на установочной плоскости, установка прижима на стойке, двух подводов и отводов прижима обеспечивает упрощение и повышение производительности предлагаемого способа. Кроме того, размещение измерительного щупа не в коническом отверстии, как это имеет место в прототипе, а в положении, при котором ось измерительного щупа перпендикулярна к оси конического отверстия, как реализовано в предлагаемом способе, дает повышение точности измерения отклонений расстояния от измеряемых плоскостей до центра сферической поверхности за счет исключения погрешности, вызванной отклонениями диаметра сферической поверхности.

На фигуре представлена схема измерения предложенным способом.

Предлагаемый способ заключается в следующем. На установочной плоскости 1 размещают базирующий элемент 2, содержащий коническое отверстие 3, устанавливают на базирующем элементе 2 отсчетное устройство 4, обеспечивая его измерительному щупу 5 заданный вылет относительно оси конического отверстия 3 и перпендикулярность осей измерительного щупа 5 и конического отверстия 3. Устанавливают объект измерения 6 сферической поверхностью 7 в коническое отверстие 3, располагая измеряемые плоскости 8 и 9 по разные стороны от оси конического отверстия 3 и обеспечивая контакт плоскости 8 объекта измерения 6 с измерительным щупом 5, покачивают объект измерения 6 в коническом отверстии 3, добиваясь прилегания измеряемой плоскости 8 с рабочей поверхностью 10 измерительного щупа 5. Снимают первое показание Δ1 отсчетного устройства 4. Затем переустанавливают объект измерения 6 в коническом отверстии 3, располагая измеряемые плоскости 8 и 9 по разные стороны от оси конического отверстия 3 и обеспечивая контакт измеряемой плоскости 9 с измерительным щупом 5. Покачивают объект измерения 6 в коническом отверстии 3, добиваясь прилегания измеряемой плоскости 9 с рабочей поверхностью 10 измерительного щупа 5. Снимают второе показание Δ2 отсчетного устройства 4. Определяют отклонения от настроенного значения расстояния от измеряемых плоскостей 8 и 9 до центра сферической поверхности 7 по показаниям Δ1 и Δ2 отсчетного устройства 4, а по их полуразности - отклонение от симметричности плоскостей относительно упомянутого центра.

Таким образом обеспечивается измерение двух параметров расположения плоскостей относительно центра сферы. При этом упрощается способ, повышается его производительность, а также повышается точность измерения отклонений расстояния от измеряемых плоскостей до центра наружной сферы.

Способ может быть использован на машиностроительных предприятиях при измерении деталей, содержащих требования к взаимному расположению конструктивных элементов в виде плоскостей и сферы.

Способ измерения отклонений расположения плоскостей относительно центра наружной сферической поверхности, заключающийся в том, что размещают базирующий элемент, содержащий коническое отверстие, на установочной плоскости, устанавливают на базирующем элементе отсчетное устройство, обеспечивая его измерительному щупу заданный вылет, устанавливают объект измерения сферической поверхностью в коническое отверстие базирующего элемента, обеспечивая контакт одной из измеряемых плоскостей объекта измерения с измерительным щупом, покачивают объект измерения в базирующем элементе, снимают первое показание отсчетного устройства, переустанавливают объект измерения в коническом отверстии, обеспечивая контакт другой измеряемой плоскости с измерительным щупом, покачивают объект измерения в базирующем элементе, снимают второе показание отсчетного устройства, по показаниям отсчетного устройства судят об отклонениях от настроенного расстояния от каждой из измеряемых плоскостей до центра сферической поверхности, а по полуразности показаний - о симметричности измеряемых плоскостей относительно центра сферической поверхности, отличающийся тем, что при установке отсчетного устройства обеспечивают перпендикулярность оси измерительного щупа к оси конического отверстия, при установке и переустановке объекта измерения его измеряемые плоскости располагают по разные стороны от оси конического отверстия, а при покачиваниях объекта измерения добиваются прилегания измеряемой плоскости с рабочей поверхностью измерительного щупа.



 

Похожие патенты:

Изобретение может быть использовано для контроля крупногабаритных изделий, отладки и контроля стабильности и точности технологических процессов механической обработки, для определения отклонений формы и расположения деталей машин в полевых условиях.

Способ калибровки рычажных профилемеров включает установку прибора с раскрытыми рычагами, последующую установку калибрующего устройства сверху на профилемер с совмещением пазов калибрующего устройства и паза для перемещения рычага под калибрующим элементом, выставленным на определенный размер радиуса раскрытия рычагов, затем перемещение калибровочного устройства вдоль оси прибора и установку под калибрующим элементом другого рычага калибруемого профилемера, при этом наружная поверхность калибруемого профилемера и опорная поверхность калибровочного устройства совмещаются соосно и беззазорно с помощью прижима опорной поверхности калибруемого прибора и опорной поверхности калибровочного устройства, и величины раскрытия всех рычагов последовательно калибруются однонаправленным устройством.

Изобретение относится к области измерительной техники и может быть использовано в производстве арматуры питания газогидравлических машин для изготовления компенсирующих втулок.

Изобретение относится к измерительной технике, в частности к устройствам для измерения профиля поверхностей низкомодульных вязкоупругих листовых материалов легкой промышленности, а именно искусственных и натуральных кож, нетканых материалов и пр.

Изобретение относится к измерительной технике, в частности, для измерения взаимного расположения плоскостей и наружной сферической поверхности. .

Изобретение относится к области полупроводниковых диагностических технологий, к кристаллографии и петрографии, в частности к анализу кристаллических наноразмерных гетероструктур с помощью электронного томографа с управляемой когерентностью, позволяющего бесконтактно определять толщину и число межплоскостных атомных нанослоев полупроводниковых кристаллических гетероструктур и картирования ориентации кристаллитов для исследования динамических процессов и фазовых переходов.

Изобретение относится к области технических измерений и может быть использовано при измерении геометрических параметров (отклонений формы и биений) преимущественно крупногабаритных корпусных изделий.

Изобретение относится к области машиностроения и приборостроения, к технике метрологического обеспечения, а именно к средствам активного контроля и измерения действительных размеров наружных поверхностей изделий типа оболочка вращения.

Изобретение относится к железнодорожному транспорту и касается контрольно-сортировочной проверки параметров пружин сжатия, а также подбора пар пружин с заданным полем допуска по требуемым характеристикам для их работы в рессорном комплекте тележек подвижного состава.

Изобретение относится к железнодорожному транспорту и предназначено для проверки параметров пружин сжатия и подбора пружин для рессорного комплекта тележек грузового вагона.

Изобретение относится к устройству для измерения скорости и направления движения грунта относительно подземного трубопровода, расположенного в местах с возможными оползневыми явлениями. Техническим результатом изобретения является повышение точности измерения перемещения грунта. Устройство для измерения скорости и направления движения грунта относительно подземного трубопровода состоит из измерительного телескопического двухзвенного рычага с датчиком удлинения, шарнира, узла отсчета перемещений с блоком акселерометров. Причем устройство дополнительно содержит два измерительных телескопических двухзвенных рычага с датчиками, один из которых шарнирно закреплен на трубопроводе и установлен узлом отсчета перемещений вниз, а второй своим якорем установлен в грунт, не подверженный оползневым явлениям, и соединен шарниром с трубопроводом. 1 ил.

Изобретение относится к настроечному устройству для юстировки ступенчатой коробки передач. Настроечное устройство содержит установленные в корпусе (10) рычага переключения передач главный опорный вал (12) и настроечный элемент (14), входящий в установленный на корпусе (10) рычага направляющий элемент (22). Настроечный элемент (14) расположен вдоль средней оси (16) главного опорного вала (12). Достигается повышение надежности устройства. 8 з.п. ф-лы, 5 ил.

Изобретение относится к механическим средствам измерения контуров и профилей и может быть использовано при формообразовании асферических поверхностей крупногабаритных оптических деталей, в частности при контроле параметров крупногабаритных зеркал телескопов. Для измерения профиля шлифованной асферической поверхности крупногабаритной оптической детали используют линейный трехточечный сферометр с дополнительной боковой регулируемой по высоте ножкой, который обнуляют на эталонном сферическом зеркале, устанавливают крайними ножками перпендикулярно диаметральному сечению в краевую зону детали, перемещают сферометр крайними ножками в зону, в которой до этого располагалась центральная ножка с индикатором, процесс снятия показаний индикатора продолжают до центра детали или до центрального отверстия детали и затем на основании геометрических соотношений строят абсолютный профиль отклонений поверхности от заданного (теоретического) профиля с требуемым вершинным радиусом и эксцентриситетом и необходимым допуском на них. Техническим результатом изобретения является построение абсолютного профиля отклонений формы асферической поверхности оптической детали от требуемой теоретической с необходимой точностью и достижение требуемого значения вершинного радиуса в процессе формообразования. 4 ил.

Изобретение относится к средствам и методам определения ошибки позиционирования рабочих органов станка с ЧПУ. С этой целью станок оснащается калибровочным элементом и, по меньшей мере, одним датчиком. После осуществления рабочим органом станка калибровочного перемещения считывают данные датчика, которые соответствуют расстоянию между точкой на поверхности калибровочного элемента и датчиком или расстоянию, на которое отклоняется контактный элемент датчика. После выполнения следующего калибровочного перемещения считывают вторые данные датчика при нахождении калибровочного элемента во втором положении. Затем осуществляют перемещение указанного датчика таким образом, пока разность между первыми и вторыми данными датчика не станет меньше, чем заранее определенное пороговое значение, или равной ему, а ошибку позиционирования рабочего органа станка определяют на основании упомянутого перемещения датчика. 3 н. и 14 з.п. ф-лы, 5 ил.

Изобретение относится к устройствам для определения радиусов кривизны цилиндрических поверхностей бесконечной длины и может быть применено для мониторинга состояния рабочих поверхностей железнодорожного рельса, например в условиях открытых горных работ. Для измерения радиуса кривизны цилиндрической поверхности (выпуклой или вогнутой) используется инструмент на базе штангенциркуля, включающий основание (рамку с нониусом) с вставленной в рамку штангой с измерительной шкалой, измерительные губки, установленный в гильзу индикатор часового типа и стопорный винт, при этом индикатор часового типа установлен вместе с гильзой на дополнительной штанге, установленной на рамке с обратной стороны основной штанги штангенциркуля, соединенной подвижно с последней с возможностью перемещения относительно нее, причем ось измерительного стержня индикатора часового типа перпендикулярна продольной оси дополнительной штанги, а в начальном (нулевом) положении совпадает с плоскостью соприкосновения внутренних поверхностей измерительных губок и конец измерительного стержня индикатора совпадает с плоскостью, проведенной перпендикулярно оси измерительного стержня по крайним точкам измерительных губок. При измерении радиуса кривизны цилиндрической поверхности измерительные губки устанавливаются на измеряемую поверхность рельса на размер ширины дорожки катания L, а ось измерительного стержня часового индикатора устанавливается перемещением дополнительной штанги на размер l по дополнительной шкале, равный половине ширины дорожки катания L, и измеряет высоту сегмента h от хорды, стягивающей дугу окружности контура цилиндрической поверхности дорожки катания. Радиус кривизны цилиндрической поверхности определяется равным частному от деления суммы квадратов полуширины дорожки катания и высоты сегмента, измеренной от хорды, стягивающей дугу окружности контура цилиндрической поверхности дорожки катания, на удвоенную высоту сегмента. 2 з.п. ф-лы, 4 ил.

Изобретение относится к станкостроению и может быть использовано в многоцелевых станках, используемых для многокоординатной обработки. Способ заключается в том, что определяют координаты осей вращения рабочих органов станка, для чего осуществляют измерение координат произвольных точек калибровочной поверхности с помощью измерительного щупа. При этом в качестве калибровочной поверхности используют плоскости рабочих органов станка, параллельные соответствующим осям вращения, а касания измерительным щупом точек калибровочной плоскости осуществляют при различных углах поворота рабочих органов вокруг этих осей в перпендикулярной к ним плоскости. По измеренным координатам точек касания щупом калибровочной плоскости графически определяют положение осей вращения калибровочных плоскостей, совпадающих с осями вращения соответствующих рабочих органов станка. Найденные координаты осей вращения заносят в данные системы ЧПУ станка для его настройки. Изобретение позволяет упростить настройку станка и повысить ее точность. 1 ил., 1 табл.

Устройство для автоматического регулирования положения объекта по двум взаимно перпендикулярным направлениям относится к области приборостроения и может быть использовано для автоматического регулирования положения объекта по двум взаимно перпендикулярным направлениям. Технический результат заключается в расширении функциональных возможностей и исключении ручного управления оператора из процесса позиционирования рупора. Поставленная цель достигается тем, что устройство содержит перемещаемый объект, ходовые винты, электродвигатели, понижающие редукторы, блок управления приводами, абсолютные энкодеры угла поворота, цифровой выход которых подключен к измерительно-вычислительному комплексу. Измерительно-вычислительный комплекс через силовые модули управляет режимами функционирования привода: разгон, номинальное движение, торможение, останов. Измерительно-вычислительный комплекс выполняет измерение радиотехнических параметров, поступающих с контролируемого изделия. 2 з.п. ф-лы, 1 ил.

Изобретение относится к средствам для измерения координат центра и радиуса цилиндрических участков деталей. Данный способ включает в себя определение координат центра сферического наконечника радиусом Rн измерительной головки при каждом его касании с поверхностью изделия. Измерения выполняют не менее чем в трех точках радиусного участка, для которых определяют координаты центра сферического наконечника Xi и Yi. Вычисляют координаты центра B (xb; yb) и радиус Rb радиусного участка в измерительной системе координат Xизм., Yизм.. После чего выполняют измерения поверхностей конструкторских баз, не совпадающих с измерительными базами, и находят характерные точки конструкторских баз C (xc; yc) и D (xd; yd). По характерным точкам строят конструкторскую систему координат Xкон., Xкон., начало которой смещено относительно начала измерительной системы координат на величины xc и yc, а ее оси повернуты на угол α. В конструкторской системе координат определяют положение центра B радиусного участка относительно характерных точек конструкторских баз C и D по следующим зависимостям: Lx=|(xa-xc)cosα+(ya-yc)sinα|; Ly=|-(xa-xc)sinα+(ya-yc)cosα|; Kx=|((xa-xc)cosα+(ya-yc)sinα)-((xb-xc)cosα+(yb-yc)sinα)|; Ky=|(-(xa-xc)sinα+(ya-yc)cosα)-(-(xb-xc)sinα+(yb-yc)cosα)|; где LX, LY, KX, KY - линейные размеры положения центра радиусного участка относительно характерных точек конструкторских баз. Угол α определяют решением оптимизационной задачи F→min, целевая функция F которой представляет собой сумму отклонений tx, ty, px, py указанных выше расстояний от их значений LXcep, LYcep, KXсер, KYcep, соответствующих серединам полей допусков: F=tx+ty+px+py, tx=|LXcep-LX|; ty=|LYcep-Ly|; px=|KXcep-KX|; py=|KYcep-KY|, где LXcep, LYcep, KXcep, KYcep - середины полей допусков соответствующих линейных контрольных размеров в конструкторской системе координат: LXcep - середина поля допуска линейного контрольного размера CB по оси абсцисс; LYcep - середина поля допуска линейного контрольного размера CB по оси ординат; KXcep - середина поля допуска линейного контрольного размера BD по оси абсцисс; KYcep - середина поля допуска линейного контрольного размера BD по оси ординат. Была решена задача определения относительного положения центров цилиндрических участков детали и значений радиусов этих участков при произвольном или частичном базировании по конструкторским базам. Данное изобретение позволяет определять координаты центра и радиуса цилиндрических участков деталей при произвольном базировании по конструкторским базам. 5 ил.

Изобретение относится к инженерной биологии и биоиндикации окружающей среды измерениями качества ростовых органов различных видов растений, преимущественно древесных растений, например проб в виде листьев древесных растений с простой и небольшой листовой пластинкой: липы, клена полевого или американского, березы, тополя. Технический результат - повышение точности измерения высоты расположения учетного листа над почвой при долговременных наблюдениях за развитием и ростом отдельного учетного листа. На каждой выбранной ветви выделяют пробные листа, их отмечают метками, для измерения высоты листа дерева от почвы применяют миллиметровую линейку метровой длины. Причем за точку начала отсчета высоты принимают место присоединения листа к черешку, а при расположении листа над почвой более одного метра за промежуточные метки для измерения высоты принимают характерные места на одежде человека-измерителя. 4 з.п. ф-лы, 6 ил.

Изобретение относится к измерительной технике, в частности для измерения взаимного расположения плоскостей и наружной сферической поверхности. На установочной плоскости размещают базирующий элемент, содержащий базирующие призмы. Устанавливают ориентирующий механизм на базирующем элементе, обеспечивая перпендикулярность биссекторной плоскости ориентирующей призмы к общей биссекторной плоскости базирующих призм. Устанавливают на базирующем элементе отсчетное устройство, обеспечивая его измерительному щупу заданный вылет относительно биссекторной плоскости ориентирующей призмы и расположение оси измерительного щупа в общей биссекторной плоскости базирующих призм. Устанавливают объект измерения цилиндрическими поверхностями на базирующие призмы. Ориентируют объект измерения вдоль общей биссекторной плоскости базирующих призм путем подвода к нему ориентирующей призмы. Снимают первое показание отсчетного устройства. Переустанавливают и вновь ориентируют объект измерения. Снимают второе показание отсчетного устройства. По показаниям судят об отклонениях от настроенного значения расстояния от каждой из измеряемых плоскостей до центра наружной сферической поверхности, а по их полуразности - о симметричности измеряемых плоскостей относительно упомянутого центра. Предложенное изобретение направлено на повышение точности измерения отклонений расположения плоскостей относительно центра наружной сферической поверхности. 2 ил.
Наверх