Способ измерения характеристик диаграммы направленности активной/пассивной фазированной антенной решетки

Использование: антенная техника, в частности в способах измерения характеристик диаграммы направленности активных и пассивных антенных решеток. Сущность: способ измерения характеристик диаграммы направленности активной/пассивной фазированной антенной решетки состоит в том, что осуществляют формирование сигнала на входе либо приемного, либо передающего канала и обработку принятых сигналов. Для достижения возможности измерения характеристик активных и пассивных ФАР без работы с открытым излучением в предлагаемом способе обработку принятых сигналов производят путем измерения коэффициента передачи и фазы коэффициента передачи каждого приемного и передающего каналов активной/пассивной фазированной антенной решетки и фиксации результатов измерения. Далее осуществляют преобразование коэффициента передачи в амплитуду сигнала, определяют погрешности измерения амплитуды и фазы сигнала, определяют N амплитудно-фазовых распределений с учетом погрешностей измерения, производят построение N диаграмм направленности, определение характеристик диаграммы направленности активной/пассивной фазированной антенной решетки. Технический результат: повышение точности измерений характеристик направленности пассивных и активных ФАР в режимах работы на приём и передачу сигнала. 2 ил.

 

Изобретение относится к области антенной техники, в частности к способам измерения характеристик диаграммы направленности активных и пассивных антенных решеток.

Известен «Способ и средства определения параметров антенной решетки» US 8330662 (2012.12.11). Он описывает способ и средства определения параметров антенной решетки. Примерный вариант метода позволяет определить набор параметров антенной решетки, включая параметры подрешеток. Сигнал на антенную решетку подается с питающей антенной решетки, состоящей из множества элементов. Один из вариантов метода заключается в измерении коэффициентов Rijk, представляющих собой коэффициенты передачи между i-м и k-м излучателями через отражения j-го излучателя (bistatic range - двухпозиционная радиолокация), при различных комбинациях путей распространения сигнала, каждом из возможных путей распространения сигнала от i-го питающего элемента к j-му излучателю антенной решетки, и далее к питающему элементу k. Процедура измерения заключается в излучении энергии элементом i и отражением части энергии элементом j на элемент k питающей решетки. Измеренные сигналы обрабатываются для получения набора параметров. Другой вариант метода применяется для измерения параметров подрешеток антенной решетки и заключается в излучении энергии одним или несколькими элементами решетки, отражении части энергии от нескольких отражающих элементов обратно к элементам решетки, причем каждый отражающий элемент включает в себя перестраиваемый фазовращатель, связанный с ним, переборе значений фазовых сдвигов фазовращателей каждого элемента в соответствии с определенным законом, обработке принятых сигналов для фазовой составляющей отраженной энергии, принятой каждым элементом; и определении взаимного расположения каждого элемента антенны, используя полученные значения фазы для каждого элемента. В результате способ позволяет скомпенсировать искажения характеристик антенны, возникающие вследствие механических и температурных нагрузок на конструкцию антенны.

Наиболее близким к предлагаемому техническому решению является «Способ определения диаграммы направленности фазированной антенной решетки» (RU 2343495 C2, опубл. 20.10.2007, МПК G01R 29/10). Он основан на приеме или излучении сигналов фазированной антенной решеткой, изменении сдвигов фаз одного или нескольких элементов фазированной антенной решетки, измерении амплитуды и фазы сигнала, переданного или принятого вспомогательной антенной, определении из измеренных данных амплитуды и фазы возбуждения элементов и вычислении диаграммы направленности фазированной антенной решетки в соответствии с математической моделью. При этом испытуемая фазированная антенная решетка располагается перед коллиматором в такой области, где излучаемое или принимаемое электромагнитное поле представляет собой плоскую волну, параллельно фронту плоской волны таким образом, чтобы электрические длины путей от элементов фазированной антенной решетки до входа измерительной аппаратуры были одинаковы, а измеренные значения амплитуды фазы сигнала, переданного или принятого вспомогательной антенной, непосредственно используются для восстановления диаграммы направленности в соответствии с вышеупомянутой математической моделью.

Недостатками известных способов являются:

сложность технической реализации при измерении активных ФАР в режиме передачи ввиду необходимости открытого излучения;

наличие множества неконтролируемых факторов, влияющих на точность измерений;

низкая точность ввиду отсутствия учета погрешности измерений.

Технический результат предлагаемого решения состоит в том, что достигается возможность измерения характеристик активных и пассивных ФАР с учетом конструктивных особенностей объекта, на котором устанавливается ФАР без работы с открытым излучением, обеспечивается высокая точность измерений характеристик пассивных и активных ФАР, в режимах работы на прием и на передачу сигнала.

Сущность предлагаемого способа измерения характеристик диаграммы направленности активной/пассивной фазированной антенной решетки состоит в том, что осуществляют формирование сигнала на входе либо приемного, либо передающего канала и обработку принятых сигналов без открытого излучения.

Новым в предлагаемом способе является то, что обработку принятых сигналов производят путем измерения коэффициента передачи и фазы коэффициента передачи каждого приемного и передающего каналов активной/пассивной фазированной антенной решетки и фиксации результатов измерения. Далее осуществляют преобразование коэффициента передачи в амплитуду сигнала, определяют погрешности измерения амплитуды и фазы сигнала, определяют N амплитудно-фазовых распределений с учетом погрешностей измерения, производят построение N диаграмм направленности, определение характеристик диаграммы направленности активной/пассивной фазированной антенной решетки.

На фиг.1 представлена блок-схема устройства для измерения характеристик диаграммы направленности фазированной антенной решетки при работе на прием.

На фиг.2 представлена блок-схема устройства для измерения характеристик диаграммы направленности фазированной антенной решетки при работе на передачу.

Устройство для измерения характеристик диаграммы направленности фазированной антенной решетки при работе на прием и на передачу состоит из формирователя сигнала 1, измерителя коэффициента передачи 2, преобразователя коэффициента передачи в амплитуду сигнала 3, определителя погрешностей 4, формирователя амплитудно-фазовых распределений 5, устройства обработки данных и определения характеристик диаграммы направленности 6, активной/пассивной фазированной антенной решетки 7.

В режиме приема на вход приемного канала i-канальной активной/пассивной ФАР подается сигнал с формирователя сигналов 1, например непрерывный монохроматический сигнал. Сигнал с выхода приемного канала (выход активной/пассивной ФАР 7) подается на измеритель коэффициента передачи 2 (фиг.1). По показаниям измерителя коэффициента передачи 2 фиксируются измеренные значения коэффициента передачи и фазы коэффициента передачи для приемного канала i-канальной активной/пассивной ФАР. Для каждого из каналов проводятся аналогичные измерения. В преобразователе коэффициента передачи 3 выполняется преобразование коэффициента передачи в амплитуду сигнала при этом фаза остается неизменной.

Для каждого измеренного значения амплитуды и фазы сигнала проводится определение погрешности измерения. Для каждого измерения может быть определено N величин погрешностей в соответствии с законом распределения истинного значения измеряемой величины (N=1, 2…).

На основании измеренных амплитуды и фазы сигнала с учетом определенных погрешностей в формирователе амплитудно-фазовых распределений 5 формируются N амплитудно-фазовых распределений, представляющих собой амплитуды и фазы сигналов в каждом из i каналов активной/пассивной ФАР.

Устройство обработки 6 на основании полученных N амплитудно-фазовых распределений выполняет построение N диаграмм направленности, с учетом конструктивных особенностей объекта, на котором устанавливается ФАР, по которым и определяются их характеристики и параметры ФАР.

В режиме передачи на вход передающего канала i-канальной активной/пассивной ФАР подается сигнал с формирователя сигналов 1 (например, импульсный). Сигнал с выхода передающего канала подается на измеритель коэффициента передачи. По показаниям измерителя коэффициента передачи фиксируются измеренные значения коэффициента передачи и фазы коэффициента передачи для передающего канала активной/пассивной ФАР. Аналогичные измерения проводятся для каждого из передающих каналов активной/пассивной ФАР. Последующие действия с сигналами аналогичны действиям в режиме приема.

Для измерения характеристик диаграммы направленности и параметров активной ФАР необходимо проводить измерения как в режиме передачи, так и в режиме приема. В случае пассивной ФАР достаточно провести измерения в одном из режимов для получения полного объема характеристик.

Способ измерения характеристик диаграммы направленности активной/пассивной фазированной антенной решетки, основанный на формировании сигнала на входе либо приемного, либо передающего канала, обработке принятых сигналов, отличающийся тем, что обработку принятых сигналов производят путем измерения коэффициента передачи и фазы коэффициента передачи каждого приемного и передающего каналов активной/пассивной фазированной антенной решетки, фиксации результатов измерения, преобразовании коэффициента передачи в амплитуду сигнала, определения погрешностей измерения амплитуды и фазы сигнала, формирования N амплитудно-фазовых распределений с учетом погрешностей измерения, построения N диаграмм направленности, определения характеристик диаграммы направленности активной/пассивной фазированной антенной решетки, где N - целое число.



 

Похожие патенты:

Изобретение относится к области радиотехники. Характеристики диаграммы направленности АФАР определяются в процессе СВЧ-контроля излучателей и связанных с ними ППМ при работе АФАР на прием дополнительно проводится оценка состояния многоступенчатого управляемого аттенюатора каждого i-го ППМ и оценка характеристик входящего в состав приемного канала каждого i-го ППМ АФАР малошумящего усилителя, а при работе АФАР на передачу проводится оценка состояния многокаскадного управляемого усилителя мощности передающего канала каждого i-го ППМ.

Изобретение относится к антенным измерениям и может быть использовано для определения поляризационных характеристик антенн (коэффициент эллиптичности, угол наклона большой оси эллипса, направление вращения вектора напряженности электрического поля).

Изобретение относится к области радиолокационной техники и может быть использовано для измерения радиолокационных характеристик тяжелых малоотражающих объектов.

Изобретение относится к радиотехнике и может быть использовано при радиотехнических испытаниях систем антенна-обтекатель. .

Изобретение относится к области радиолокационной техники и может быть использовано при калибровке техники, измеряющей рассеивающие свойства различных радиолокационных целей.

Изобретение относится к технике антенных измерений и может быть использовано в радиолокационной технике. .

Изобретение относится к области измерений радиолокационных характеристик объектов. .

Изобретение относится к технике антенных измерений и может быть использовано для измерения диаграммы направленности (ДН) антенны, установленной на поворотном устройстве.

Изобретение относится к радиотехнике и может быть использовано для определения радиотехнических характеристик крупногабаритных антенн для космических аппаратов без их непосредственных измерений. Технический результат - повышение достоверности измерений радиотехнических характеристик крупногабаритных антенн для космических аппаратов в условиях воздействия Земной гравитации, обеспечение исследований зависимостей требуемой точности профиля рефлектора от диапазона рабочих частот без проведения непосредственных измерений в дальней зоне. Для этого осуществляют построение трехмерной модели рефлектора с использованием высокоточного бесконтактного лазерного сканера Leica Lazer Radar LR200, осуществляют построение объемных амплитудной и фазовой ДН облучателя по измеренным главным сечениям амплитудной и фазовой ДН, осуществляют расчет энергетических характеристик крупногабаритных антенн с использованием разработанного программно-алгоритмического комплекса. 7 ил.

Изобретение относится к области антенных измерений. Измерения параметров антенных систем осуществляют с использованием метода пространственно-временной селекции. При этом измерения проводятся при помощи системы автоматизированной настройки параметров временной фильтрации помеховых составляющих СВЧ сигнала, где в качестве генератора и приемника используется векторный анализатор цепей. Технический результат заключается в повышении точности измерения диаграмм направленности, ширины диаграмм направленности и уровня боковых лепестков различных антенных систем, а также для измерения эффективной площади рассеяния объектов и электромагнитной совместимости. 3 ил.

Изобретение относится к области электротехники, в частности для обработки синусоидального электрического сигнала с целью определения параметров его вектора. Способ включает использование цифрового информационно-измерительного устройства, состоящего из нелинейного преобразователя (НП) и линейного преобразователя (ЛП). При этом НП имеет один вход и два выхода, причем к его входу подведен электрический сигнал промышленной частоты fс, а на каждом из двух выходов НП выводится информация, связанная со значениями модуля и угла поворота вектора электрического сигнала промышленной частоты fс. ЛП имеет два входа, каждый из которых связан только с соответствующим выходом НП. При этом ЛП имеет два выхода, причем на эти выходы выводится в формате, необходимом для последующего использования, а именно на его первом выходе выдается информация, которая однозначно связана с параметром, который однозначно определяет модуль вектора, а на другой выход выводят информацию об угле поворота этого вектора. Структура НП включает несколько субблоков, среди которых первый субблок имеет один выход, на который выводят генерируемый им первый вспомогательный синусоидальный сигнал промышленной частоты с единичной амплитудой. Причем аргумент функции синуса задают через сумму двух изменяемых слагаемых, при этом первое слагаемое определяется произведением 2πfс·t, а второе слагаемое является вводимым в вычислительный процесс изменяемым фазовым углом θ. Кроме того, в НП включены второй, третий, четвертый и пятый субблоки. При этом второй субблок имеет один вход и один выход, причем как на его единственный вход, так и на второй вход третьего субблока подают аналоговый электрический синусоидальный сигнал aс(t) промышленной частоты fс, при этом второй субблок определяет такой его интегральный параметр, как действующее значение A, которое однозначно связывают с модулем вектора A _ . При этом информацию о значении A передают на первый вход ЛП и первый вход третьего субблока, при этом третий субблок выполняет операцию деления поданного на его второй вход аналогового электрического синусоидального сигнала ac(t) на поданный со второго субблока на первый вход третьего субблока действующего значения аналогового электрического синусоидального сигнала ac(t). Результат этого деления в виде второго зависимого только от времени t вспомогательного сигнала с выхода третьего субблока подают на первый вход четвертого субблока, а на второй вход четвертого субблока с выхода первого субблока подают первый синусоидальный вспомогательный сигнал, причем четвертый субблок осуществляет перемножение сигналов, поданных соответственно на его первый и второй входы. Результат перемножения в виде третьего вспомогательного сигнала выводят на выход четвертого субблока, при этом третий вспомогательный сигнал является функцией двух параметров, а именно времени t и вводимого в вычислительный процесс изменяемого фазового угла θ. Третий вспомогательный сигнал подают на вход пятого субблока, который осуществляет первое интегрирование по времени t в пределах задаваемого промышленной частотой fc периода, и к полученной после первого интегрирования функциональной зависимости применяют операцию второго интегрирования по параметру вводимого в вычислительный процесс изменяемого угла θ и на интервале от 0 до 2π определяют такое значение угла θ, при котором численное значение второго интегрирования будет равно 2 или с принятой погрешностью близко этому значению. Удовлетворяющий этому условию изменяемый угол θ принимают за угол поворота ψс вектора A _ , являющегося векторным изображением электрического сигнала промышленной частоты fc, причем информация об угле поворота ψс подается на второй выход НП и далее на второй вход ЛП. Технический результат заключается в упрощении алгоритма получения параметров вектора. 2 ил.

Изобретение относится к технике антенных измерений и может быть использовано для измерения коэффициента усиления антенн различных радиоэлектронных средств в натурных условиях, в частности в условиях городской застройки. Устройство содержит генератор сигналов, измеритель мощности, первый направленный ответвитель и эталонную антенну, а также исследуемую антенну, второй направленный ответвитель и приемник. Кроме того, содержит последовательно соединенные регулируемый аттенюатор и фазовращатель, который присоединен ко второму направленному ответвителю, а регулируемый аттенюатор присоединен к первому направленному ответвителю. Также содержит съемное радиопоглощающее устройство, устанавливаемое между антеннами в область пространства, существенную для распространения радиоволн, с учетом соблюдения условий дальней зоны от каждой из антенн до съемного радиопоглощающего устройства. При этом площадь поперечного сечения которого определяется из условия S > π R э 2 S i n 2 D э / 2 , где Dэ - ширина диаграммы направленности эталонной антенны, Rэ - расстояние от эталонной антенны до съемного радиопоглощающего устройства. Технический результат заключается в снижении погрешности результатов измерений и расширении динамического диапазона приемника при измерении коэффициента усиления антенн радиоэлектронных средств в условиях многолучевого распространения радиоволн. 2 ил.
Использование: для разработки подземных антенн. Сущность изобретения заключается в том, что осуществляют подготовку площадки с подстилающей поверхностью, операции уменьшения антенны в M раз, где M - коэффициент моделирования, увеличения частоты в M раз, при этом выбирают параметры подстилающей поверхности, влияющие на электрические и направленные свойства антенн, диэлектрическую проницаемость ε и удельную проводимость σ, проводят измерения диэлектрической проницаемости ε и удельной проводимости σ различных подстилающих поверхностей, в вычислителе создают базы данных диэлектрической проницаемости ε и удельной проводимости σ, задают нужные значения рабочей частоты антенны, с помощью вычислителя выбирают параметры диэлектрической проницаемости ε и удельной проводимости σ, необходимые для получения нужного значения рабочей частоты антенны и напряженности ее поля. Технический результат: расширение функциональных возможностей и повышение точности моделирования при разработке антенн.

Изобретение относится к радиотехнике, в частности к средству электромагнитного испытания объекта. Стенд содержит зонды, безэховые электромагнитные поглотители, опорную конструкцию, систему перемещения, привод устройства механического перемещения, компьютер, интерфейс пользователя, датчик угла положения опоры, контур обратной связи, опорные ролики, а также вторую систему углового перемещения. Опорная конструкция имеет вид дуги или кольца и выполнена таким образом, что опирающиеся на неё зонды распределены в трех измерениях. При этом зонд и опора для объекта контроля перемещаются относительно друг друга в соответствии с траекторией, рассчитываемой на основе заданной статистики углового разброса относительно основного направления наведения зонда. Компьютер выполнен с возможностью ввода статистики углового разброса пользователем, вычисления множества угловых контрольных позиций для управления приводом механического перемещения, а также расчета значений интенсивности и фазы электромагнитного излучения. При этом заданная статистика углового разброса является двойным экспоненциальным законом. Технический результат - расширение функциональных возможностей стенда. 2 н. и 25 з.п. ф-лы, 19 ил.

Изобретение относится к технике антенных измерений и может быть использовано для измерения комплексных амплитуд возбуждения каналов фазированной антенной решетки (ФАР), в частности, в составе штатной аппаратуры радиолокационной станции. Способ реализуется с помощью устройства, содержащего неподвижный зонд, включающий генератор 1 контрольного сигнала со вспомогательной антенной 2 и вырабатывающий контрольный сигнал сверхвысокой частоты, который излучают в направлении ФАР 3. Принятый ФАР контрольный сигнал сверхвысокой частоты поступает на приемник 4, включающий в себя смеситель 5 и гетеродин 6, где производят его усиление и преобразование на промежуточную частоту, соответствующую рабочей полосе частот АЦП 7, осуществляющего преобразование принятого аналогового сигнала в цифровой вид. С выхода АЦП 7 цифровой сигнал поступает в ЭВМ 8, осуществляющую обработку данных. Кроме того, ЭВМ 8, управляя ФАР 3, обеспечивает поочередное переключение во все N-состояний фазовращателей каждого из каналов ФАР 3. Технический результат заключается в упрощении аппаратуры, используемой при измерениях с одновременным повышением точности измерений, а также возможность проведения измерений в составе радиолокационной станции с использованием без доработок ее штатной аппаратуры. 4 з.п. ф-лы, 4 ил.

Изобретение относится к технике антенных измерений и может быть использовано для проведения экспериментальной оценки коэффициента усиления антенн, различных радиоэлектронных систем в диапазоне частот. Способ основан на генерировании высокочастотного сигнала на заданной частоте f, измерении его мощности Pэ и излучении с помощью эталонной антенны в направлении исследуемой антенны, расположенной в дальней зоне, приеме исследуемой антенной сигнала, измерении его мощности Pи и вычислении коэффициента усиления антенны по формуле G и = P и 4 π R 2 P э S э ф ф , где R = 12 h 2 f c , h - высота размещения фазовых центров эталонной и исследуемой антенн от подстилающей поверхности, Sэфф - эффективная площадь эталонной антенны. При этом вычисляют соответствующее каждому значению заданной частоты f расстояние между фазовыми центрами эталонной и исследуемой антенн R, измеряют реальное расстояние между фазовыми центрами эталонной и исследуемой антенн Rn, вычисляют разность расстояний R-Rn и перемещают исследуемую антенну вдоль линии, соединяющей фазовые центры эталонной и исследуемой антенн, до тех пор, пока R-Rn=0. Устройство содержит последовательно соединенные генератор сигналов, измеритель мощности и эталонную антенну, а также устройство позиционирования, на котором размещены исследуемая антенна и приемное устройство. При этом в него введены последовательно соединенные устройство измерения дальности, устройство обработки и управления, также формирователь команд управления, выход которого соединен со входом устройства позиционирования, второй выход, второй и третий входы устройства управления соединены со входом генератора сигналов, со вторым выходом измерителя мощности, с выходом приемного устройства через устройство коммутации соответственно, причем устройство измерения дальности размещено на устройстве позиционирования. Технический результат заключается в снижении временных затрат для проведения измерений и повышении точности измерений. 2 н.п. ф-лы, 2 ил.

Изобретение относится к технике антенных измерений и может быть использовано для измерения коэффициента усиления антенн различных радиоэлектронных средств в натурных условиях, в частности в условиях городской застройки. Способ измерения коэффициента усиления антенн в натурных условиях, включающий формирование высокочастотного сигнала и измерение его мощности, отведение части мощности высокочастотного сигнала, излучение сигнала с помощью эталонной антенны в направлении исследуемой антенны, прием исследуемой антенной сигнала, его суммирование с отведенным высокочастотным сигналом, перекрытие области пространства, существенной для распространения радиоволн между антеннами, с учетом соблюдении условия дальней зоны от каждой из антенн до места перекрытия, площадь поперечного сечения которого определяется выражением S>πRэ 2Sin2Dэ/2, где Dэ - ширина диаграммы направленности эталонной антенны, Rэ - расстояние от места перекрытия до эталонной антенны, изменение уровня и фазы отведенного высокочастотного сигнала с целью получения нулевого уровня мощности суммарного сигнала, открытие между антеннами в плоскости поперечного сечения области пространства, существенной для распространения радиоволн. Предложенный способ позволяет снизить погрешность результатов измерений коэффициента усиления антенн радиоэлектронных средств в условиях многолучевого распространения радиоволн. 2 ил.

Отражатель электромагнитных волн для калибровки устройства радиолокационных систем образован соединением поверхностей минимум трех проводящих прямых круговых цилиндров с одинаковым радиусом основания и разной длиной образующих, лежащих в одной плоскости. Причем длина и радиус выбираются с учетом минимальной и максимальной длины электромагнитной волны излучателей антенн радиолокационных систем. Технический результат заключается в упрощении процесса калибровки и сокращении времени ее проведения. 6 ил.
Наверх