Способ измерения коэффициента усиления антенн и устройство для его осуществления

Изобретение относится к технике антенных измерений и может быть использовано для проведения экспериментальной оценки коэффициента усиления антенн, различных радиоэлектронных систем в диапазоне частот.

Способ основан на генерировании высокочастотного сигнала на заданной частоте f, измерении его мощности Pэ и излучении с помощью эталонной антенны в направлении исследуемой антенны, расположенной в дальней зоне, приеме исследуемой антенной сигнала, измерении его мощности Pи и вычислении коэффициента усиления антенны по формуле G и = P и 4 π R 2 P э S э ф ф , где R = 12 h 2 f c , h - высота размещения фазовых центров эталонной и исследуемой антенн от подстилающей поверхности, Sэфф - эффективная площадь эталонной антенны. При этом вычисляют соответствующее каждому значению заданной частоты f расстояние между фазовыми центрами эталонной и исследуемой антенн R, измеряют реальное расстояние между фазовыми центрами эталонной и исследуемой антенн Rn, вычисляют разность расстояний R-Rn и перемещают исследуемую антенну вдоль линии, соединяющей фазовые центры эталонной и исследуемой антенн, до тех пор, пока R-Rn=0. Устройство содержит последовательно соединенные генератор сигналов, измеритель мощности и эталонную антенну, а также устройство позиционирования, на котором размещены исследуемая антенна и приемное устройство. При этом в него введены последовательно соединенные устройство измерения дальности, устройство обработки и управления, также формирователь команд управления, выход которого соединен со входом устройства позиционирования, второй выход, второй и третий входы устройства управления соединены со входом генератора сигналов, со вторым выходом измерителя мощности, с выходом приемного устройства через устройство коммутации соответственно, причем устройство измерения дальности размещено на устройстве позиционирования. Технический результат заключается в снижении временных затрат для проведения измерений и повышении точности измерений. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к технике антенных измерений и может быть использовано для проведения экспериментальной оценки коэффициента усиления антенн, различных радиоэлектронных систем в диапазоне частот.

Известен способ измерения коэффициента усиления антенн [Л.Н. Захарьев, А.А. Леманский, В.И. Турчин, Н.М. Цейтлин, К.С. Щеглов. Методы измерения характеристик антенн СВЧ. «Радио и связь», М. - 1984, стр. 71-79], который основан на генерировании и излучении высокочастотного сигнала с помощью эталонной (измерительной) антенны в направлении исследуемой антенны, расположенной в дальней зоне на расстоянии R, причем высоты антенн выбираются с учетом уменьшения влияния отражений от поверхности земли, приеме исследуемой антенной сигнала, измерении его мощности Pи и вычислении коэффициента усиления антенны по формуле G и = P и 4 π R 2 P э S э ф ф , где Pэ - мощность сформированного сигнала, Sэфф - эффективная площадь эталонной антенны.

Известно устройство (аналог), которое содержит последовательно соединенные устройство генерирования сигналов, измеритель мощности и эталонную антенну, а также устройство позиционирования, на котором размещены исследуемая антенна и приемное устройство.

Этот способ и устройство для его осуществления применимы только для антенн СВЧ-диапазона. Традиционно используемые в указанном частотном диапазоне антенны обладают небольшим коэффициентом усиления и, как следствие, значительным угловым удалением направлений нулевого и максимального приема (излучения) Δθ, достигающим 90 и более градусов. По этой причине, если Δθ<90 град, для реализации указанного способа необходимо размещать антенны на очень большой высоте от поверхности земли, а в случае, когда Δθ≥90 град, этот метод вообще нереализуем.

Недостатком известного способа и устройства для его осуществления является низкая точность измерений коэффициента усиления антенн, функционирующих в метровом диапазоне длин волн.

Наиболее близким по технической сущности и достигаемому техническому результату (прототип) является способ измерения коэффициента усиления антенн [Россия, патент №2345374, G01R 29/10, 2009], включающий формирование высокочастотного сигнала и измерение его мощности Pэ, излучение сигнала с помощью эталонной антенны с эффективной площадью Sэфф в направлении исследуемой антенны, прием исследуемой антенной сигнала, измерение его мощности Pи и определение коэффициента усиления исследуемой антенны по формуле G и = P и 4 π R 2 P э S э ф ф , причем фазовые центры эталонной и исследуемой антенн находятся на одинаковой высоте h от подстилающей поверхности и на расстоянии между фазовыми центрами антенн R = 12 h 2 f c .

Наиболее близким по технической сущности и достигаемому техническому результату (прототип) является устройство, которое содержит последовательно соединенные генератор сигналов, измеритель мощности и эталонную антенну, а также устройство позиционирования, на котором размещены исследуемая антенна и приемное устройство, причем фазовые центры эталонной и исследуемой антенн находятся на одинаковой высоте h от подстилающей поверхности и на расстоянии между фазовыми центрами антенн R = 12 h 2 f c .

Сущность способа измерения коэффициента усиления антенн и устройства для его осуществления, взятых за прототип, состоит в выборе такой схемы взаимного размещения фазовых центров антенн, при которой интерференционный множитель ослабления обращается в единицу, то есть обеспечиваются условия «свободного пространства». В связи с тем, что перед проведением измерения расстояние между фазовыми центрами антенн R = 12 h 2 f c должно отдельно выбираться для каждого значения частоты f, то процесс измерений коэффициента усиления антенн в диапазоне частот будет занимать очень продолжительное время. Выполнение «вручную» большого количества повторяющихся аналогических операций для каждой частоты из исследуемого диапазона (задание значения частоты, вычисление соответствующего ей требуемого расстояния между эталонной и исследуемой антеннами, измерение реального расстояния между эталонной и исследуемой антеннами перемещение устройства позиционирования, до устранения разницы между требуемым и реальным расстоянием, измерение мощностей сформированного и принятого сигнала, вычисление коэффициента усиления антенны) приводит к погрешности измерений, обусловленной «человеческим фактором».

Недостатками известного способа и устройства для его осуществления являются низкая точность измерений и большие временные затраты, необходимые для проведения измерений коэффициента усиления антенн в диапазоне частот.

Техническим результатом данного изобретения является существенное снижение временных затрат, необходимых для проведения измерений коэффициента усиления антенн при одновременном повышении точности измерений в диапазоне частот.

Технический результат достигается за счет того, что в известном способе измерения коэффициента усиления антенн, включающем генерирование высокочастотного сигнала, измерение его мощности Pэ и излучение на выбранной частоте f с помощью эталонной антенны с известной эффективной площадью Sэфф в направлении исследуемой антенны, расположенной в дальней зоне, приеме этой антенной сигнала, измерение его мощности Pи и вычисление коэффициента усиления антенны по формуле G и = P и 4 π R 2 P э S э ф ф , при этом эталонная и исследуемая антенны размещаются так, чтобы их фазовые центры находились на одинаковой высоте h от подстилающей поверхности и на расстоянии между антеннами R = 12 h 2 f c , дополнительно вычисляют соответствующее каждому заданному значению частоты f расстояние между фазовыми центрами эталонной и исследуемой антенн R, измеряют реальное расстояние между фазовыми центрами эталонной и исследуемой антенн Rn, вычисляют разность расстояний R-Rn и перемещают исследуемую антенну вдоль линии, соединяющей фазовые центры эталонной и исследуемой антенн, до тех пор, пока R-Rn=0.

В устройство измерения коэффициента усиления антенн, содержащее последовательно соединенные генератор сигналов, измеритель мощности и эталонную антенну, а также устройство позиционирования, на котором размещены исследуемая антенна и приемное устройство, введены последовательно соединенные устройство измерения дальности, устройство обработки и управления, также формирователь команд управления, выход которого соединен со входом устройства позиционирования, второй выход, второй и третий входы устройства управления соединены со входом генератора сигналов, со вторым выходом измерителя мощности, с выходом приемного устройства через устройство коммутации соответственно, причем устройство измерения дальности размещено на устройстве позиционирования.

Сущность предлагаемого изобретения заключается в том, что за счет повышения технологичности процесса измерений существенно снижаются временные затраты, необходимые для проведения измерений коэффициента усиления антенн при одновременном повышении точности измерений в диапазоне частот.

На фиг. 1 представлена структурная схема устройства для осуществления способа измерения коэффициента усиления антенн.

На фиг. 2 представлена структурная схема устройства управления.

Устройство состоит (фиг. 1) из генератора сигналов 1, измерителя мощности 2, эталонной антенны 3, исследуемой антенны 4, приемного устройства 5, устройства позиционирования 6, устройства измерения дальности 7, устройства обработки и управления 8, формирователя команд управления 9, устройства коммутации 10.

Генератор сигналов 1 через измеритель мощности 2 присоединен к эталонной антенне 3, которая связана с исследуемой антенной 4 посредством излучаемых электромагнитных волн. Последовательно соединенные исследуемая антенна 4 и приемное устройство 5 размещены на устройстве позиционирования 6. Причем исследуемая антенна 4 размещается так, чтобы высота ее фазового центра h от подстилающей поверхности была равна высоте фазового центра эталонной антенны 3, а расстояние между фазовыми центрами антенн составляло R = 12 h 2 f c . Кроме того, на устройство позиционирования 6 установлено устройство измерения дальности 7, к выходу которого присоединено устройство обработки и управления 8, которое первым выходом через формирователь команд управления 9 соединено с устройством позиционирования 6. Второй выход, второй и третий входы устройства обработки и управления 8 соединены со входом генератора сигналов 1, со вторым выходом измерителя мощности 2, с выходом приемного устройства 5 через устройство коммутации 10 соответственно.

Устройство обработки и управления 8 предназначено для:

- задания частоты генератора сигналов 1 и управления перемещением устройства позиционирования 6 в горизонтальной плоскости в соответствии с программой измерений;

- сбора измерительной информации (Pэ, Rn и Pи) от измерителя мощности 2, устройства измерения дальности 7, приемного устройства 5;

- вычисления значения расстояния между фазовыми центрами эталонной и исследуемой антенн R = 12 h 2 f c , которое соответствует каждому заданному значению частоты f сигнала;

- вычисления соотношения разности расстояний R-Rn;

- вычисления коэффициента усиления антенны по формуле G и = P и 4 π R 2 P э S э ф ф .

Устройство обработки и управления 8 может быть выполнено в виде устройства (фиг. 2), имеющего в своем составе блок съема данных 11, блок обработки данных 12, две сетевые карты 13.1 и 13.2, канал общего пользования (КОП) 14 и шесть адаптеров 15.1-15.6.

При этом адаптеры 15.1-15.6 обеспечивают связь следующим образом:

15.1 - связь КОП 14 с блоком съема данных 11;

15.2 - связь КОП 14 с генератором сигналов 1;

15.3 - связь КОП 14 с измерителем мощности 2;

14.4 - связь КОП 14 с приемным устройством 5 через устройство коммутации 10;

15.5 - связь КОП 14 с формирователем команд управления 9;

15.6 - связь КОП 14 с устройством измерения дальности 7.

Сетевые карты 13.1 и 13.2 обеспечивают взаимодействие между собой блока съема данных 11 и блока обработки данных 12.

Для реализации технического решения может быть использовано стандартное промышленное оборудование.

В качестве генератора сигналов 1 и измерителя мощности 2 могут использоваться стандартные измерительные приборы соответствующего частотного диапазона, которые должны быть оснащены интерфейсными платами.

В качестве эталонной антенны 3 может быть использована, например, антенна измерительная П6-33A [http://www.printsip.ru/cgi/shop/item/P6-33].

В качестве приемного устройства 5 может использоваться анализатор спектров, например, C4-85 [http://www.printsip.ru/cgi/shop/item/S4-85].

В качестве устройства измерения дальности 7 может быть использован лазерный дальномер, который должны быть оснащен интерфейсной платой [http://tut.ru/Rangefinders/1670/].

Формирователь команд управления 9 может быть выполнен в виде последовательно соединенных интерфейсной платы, цифроаналогового преобразователя и двигателя постоянного тока. Цифроаналоговый преобразователь преобразует цифровой код, поступающий из устройства обработки и управления 8 на интерфейсную плату, в напряжение, необходимое для управления электродвигателем постоянного тока, который выполняет перемещение устройства позиционирования 6 в горизонтальной плоскости на величину, заданную программой измерений.

Устройство коммутации 10 предназначено для передачи от приемного устройства 5 в устройство обработки и управления 8 измеренных значений уровня мощности принятого сигнала Pи в соответствии с программой измерений. Устройство коммутации 10 может быть реализовано на основе кнопочного переключателя [http://ru.aliexpress.com/item/8mm-momentary-push-button-switch-red/758712020.html].

В качестве блока съема данных 11 может быть использован компьютер типа IBM PC, выполняющий функции диспетчерского устройства. Данное устройство осуществляет взаимодействие с блоком обработки данных 12 через сетевые карты 13.1 и 13.2, взаимодействие с каналом общего пользования 14 через адаптер 15.1. Обмен информацией устройства обработки и управления 8 с внешними устройствами осуществляется через платы адаптеров 15.2-15.6 посредством реализации международного стандарта GPIB (IEEE-488-1978) или канала общего пользования (КОП) согласно ГОСТ 26.003-80. Ввод исходных данных в устройство обработки и управления 8 осуществляется в диалоговом режиме.

Программа управления блока съема данных 11 может быть создана с использованием объектно-ориентированного подхода и должна обеспечивать решение следующих задач:

- осуществлять прием измерительной информации от адаптеров 15.3, 14.5, 15.6 в блок съема данных 11;

- осуществлять передачу измерительной информации с блока съема данных 11 в блок обработки данных 12;

- производить передачу в блок обработки данных 12 информации о реальном расстоянии между фазовыми центрами эталонной и исследуемой антенн Rn, получаемой с выхода устройства измерения дальности 7;

- производить ретрансляцию команд управления, получаемых из блока обработки данных 12, на задание значения частоты генератору сигналов 1 и на перемещение устройства позиционирования 6 в горизонтальной плоскости.

В качестве блока обработки данных 12 может быть использован компьютер типа IBM PC, выполняющий функцию счетно-решающего устройства, к которому подключена сетевая карта 13.2, необходимая для осуществления обмена информацией с блоком съема данных 11.

Программа обработки блока обработки данных 12 может быть создана с использованием объектно-ориентированного подхода и должна обеспечивать решение следующих задач:

- сбор, обработку, регистрацию и отображение измерительной информации, получаемой от блока съема данных 11;

- задание значения частоты и передачу этой информации в блок съема данных 11;

- прием и хранение информации о реальном расстоянии между фазовыми центрами эталонной и исследуемой антенн Rn;

- вычисление расстояния между фазовыми центрами эталонной и исследуемой антенн R, разности расстояний R-Rn и коэффициента усиления исследуемой антенны для каждого значения заданной частоты;

- просмотр файлов, содержащих измерительную информацию.

Устройство, реализующее способ измерения коэффициента усиления антенн, работает следующим образом.

Перед началом измерений исследуемую антенну 4 с помощью устройства позиционирования 6 размещают так, чтобы высота ее фазового центра h от подстилающей поверхности была равна высоте фазового центра эталонной антенны 3. В соответствии с программой измерений с устройства обработки и управления 8 путем задания кода частоты сигнала осуществляется управление генератором сигналов 1. Кроме того, с помощью устройства обработки и управления 8 вычисляют соответствующее каждой заданной частоте сигнала расстояние между фазовыми центрами эталонной и исследуемой антенн R. С помощью устройства измерения дальности 7 измеряют реальное (текущее) расстояние между фазовыми центрами эталонной и исследуемой антенн Rn и передают это значение на первый вход устройства обработки и управления 8, в котором вычисляют разность расстояний R-Rn, сигналом, пропорциональным этой разности, с первого выхода через формирователь команд управления 9 управляют перемещением устройства позиционирования 6 в горизонтальной плоскости до тех пор, пока R-Rn=0. Сформированный генератором сигнал через измеритель мощности 2 поступает в эталонную антенну 3. Кроме того, измеренное значение уровня мощности сигнала Pэ со второго выхода измерителя мощности 2 передают на второй вход устройства обработки и управления 8. С помощью эталонной антенны 3 (с известной эффективной площадью Sэфф) сигнал излучают в направлении исследуемой антенны 4. На выходе исследуемой антенны 4 с помощью приемного устройства 5 измеряют значение уровня мощности принятого сигнала Pи, которое через устройство коммутации 10 передают в устройство обработки и управления 8, в котором вычисляют коэффициент усиления антенны на заданной частоте сигнала по формуле G и = P и 4 π R 2 P э S э ф ф . В соответствии с программой измерений оператор управляет открытием устройства коммутации 10. Для каждого значения частоты из исследуемого диапазона цикл измерений выполняется автоматически в соответствии с программой измерений.

Основным узлом устройства измерения коэффициента усиления антенн является устройство обработки и управления 8, которое работает следующим образом.

В соответствии с программой измерений код частоты сигнала с блока обработки данных 12 через сетевые карты 13.1 и 13.2 поступает в блок съема данных 11, с которого через адаптер 15.1 поступает в КОП 14. Далее через адаптер 15.2 код частоты сигнала поступает на второй выхода устройства обработки и управления 8. Измерительная информация (Rn, Pэ и Pи), пришедшая на первый, второй и третий входы устройства обработки и управления 8, через адаптеры 15.3, 15.4, 15.5 поступает в КОП 14. Данная информация представляет собой цифровые коды (Rn, Pэ и Pи). Вся принятая в КОП 14 информация через адаптер 15.1 поступает в блок съема данных 11. Данный блок организует выдачу принятой информации в блок обработки данных 12 через сетевые карты 13.1 и 13.2. Блок обработки данных 12 обрабатывает принятую информацию (вычисляется соответствующее частоте сигнала расстояние между фазовыми центрами эталонной и исследуемой антенн в соответствии с выражением R = 12 h 2 f c ; вычисляется разность расстояний R-Rn и вырабатывается разностный сигнал управления устройства позиционирования 6; вычисляется коэффициент усиления антенны на заданной частоте сигнала в соответствии с выражением G и = P и 4 π R 2 P э S э ф ф ). С блока обработки данных 12 код разностного сигнала через сетевые карты 13.2 и 13.1 поступает в блок съема данных 11, с которого через адаптер 15.1 поступает в КОП 14. Далее через адаптер 15.6 разностный сигнал поступает на первый выход устройства обработки и управления 8.

Таким образом, предложенное изобретение позволяет существенно снизить временные затраты, необходимые для проведения измерений коэффициента усиления антенн при одновременном повышении точности измерений в диапазоне частот.

1. Способ измерения коэффициента усиления антенн, основанный на генерировании высокочастотного сигнала на заданной частоте f, измерении его мощности Pэ и излучении с помощью эталонной антенны в направлении исследуемой антенны, расположенной в дальней зоне, приеме исследуемой антенной сигнала, измерении его мощности Pи и вычислении коэффициента усиления антенны по формуле G и = P и 4 π R 2 P э S э ф ф , где R = 12 h 2 f c , h - высота размещения фазовых центров эталонной и исследуемой антенн от подстилающей поверхности, Sэфф - эффективная площадь эталонной антенны, отличающийся тем, что вычисляют соответствующее каждому значению заданной частоты f расстояние между фазовыми центрами эталонной и исследуемой антенн R, измеряют реальное расстояние между фазовыми центрами эталонной и исследуемой антенн Rn, вычисляют разность расстояний R-Rn и перемещают исследуемую антенну вдоль линии, соединяющей фазовые центры эталонной и исследуемой антенн, до тех пор, пока R-Rn=0.

2. Устройство для измерений коэффициента усиления антенн, содержащее последовательно соединенные генератор сигналов, измеритель мощности и эталонную антенну, а также устройство позиционирования, на котором размещены исследуемая антенна и приемное устройство, отличающееся тем, что в него введены последовательно соединенные устройство измерения дальности, устройство обработки и управления, также формирователь команд управления, выход которого соединен со входом устройства позиционирования, второй выход, второй и третий входы устройства управления соединены со входом генератора сигналов, со вторым выходом измерителя мощности, с выходом приемного устройства через устройство коммутации соответственно, причем устройство измерения дальности размещено на устройстве позиционирования.



 

Похожие патенты:

Изобретение относится к технике антенных измерений и может быть использовано для измерения комплексных амплитуд возбуждения каналов фазированной антенной решетки (ФАР), в частности, в составе штатной аппаратуры радиолокационной станции.

Изобретение относится к радиотехнике, в частности к средству электромагнитного испытания объекта. Стенд содержит зонды, безэховые электромагнитные поглотители, опорную конструкцию, систему перемещения, привод устройства механического перемещения, компьютер, интерфейс пользователя, датчик угла положения опоры, контур обратной связи, опорные ролики, а также вторую систему углового перемещения.
Использование: для разработки подземных антенн. Сущность изобретения заключается в том, что осуществляют подготовку площадки с подстилающей поверхностью, операции уменьшения антенны в M раз, где M - коэффициент моделирования, увеличения частоты в M раз, при этом выбирают параметры подстилающей поверхности, влияющие на электрические и направленные свойства антенн, диэлектрическую проницаемость ε и удельную проводимость σ, проводят измерения диэлектрической проницаемости ε и удельной проводимости σ различных подстилающих поверхностей, в вычислителе создают базы данных диэлектрической проницаемости ε и удельной проводимости σ, задают нужные значения рабочей частоты антенны, с помощью вычислителя выбирают параметры диэлектрической проницаемости ε и удельной проводимости σ, необходимые для получения нужного значения рабочей частоты антенны и напряженности ее поля.

Изобретение относится к технике антенных измерений и может быть использовано для измерения коэффициента усиления антенн различных радиоэлектронных средств в натурных условиях, в частности в условиях городской застройки.

Изобретение относится к области электротехники, в частности для обработки синусоидального электрического сигнала с целью определения параметров его вектора. Способ включает использование цифрового информационно-измерительного устройства, состоящего из нелинейного преобразователя (НП) и линейного преобразователя (ЛП).

Изобретение относится к области антенных измерений. Измерения параметров антенных систем осуществляют с использованием метода пространственно-временной селекции.

Изобретение относится к радиотехнике и может быть использовано для определения радиотехнических характеристик крупногабаритных антенн для космических аппаратов без их непосредственных измерений.

Использование: антенная техника, в частности в способах измерения характеристик диаграммы направленности активных и пассивных антенных решеток. Сущность: способ измерения характеристик диаграммы направленности активной/пассивной фазированной антенной решетки состоит в том, что осуществляют формирование сигнала на входе либо приемного, либо передающего канала и обработку принятых сигналов.

Изобретение относится к области радиотехники. Характеристики диаграммы направленности АФАР определяются в процессе СВЧ-контроля излучателей и связанных с ними ППМ при работе АФАР на прием дополнительно проводится оценка состояния многоступенчатого управляемого аттенюатора каждого i-го ППМ и оценка характеристик входящего в состав приемного канала каждого i-го ППМ АФАР малошумящего усилителя, а при работе АФАР на передачу проводится оценка состояния многокаскадного управляемого усилителя мощности передающего канала каждого i-го ППМ.

Изобретение относится к антенным измерениям и может быть использовано для определения поляризационных характеристик антенн (коэффициент эллиптичности, угол наклона большой оси эллипса, направление вращения вектора напряженности электрического поля).

Изобретение относится к технике антенных измерений и может быть использовано для измерения коэффициента усиления антенн различных радиоэлектронных средств в натурных условиях, в частности в условиях городской застройки. Способ измерения коэффициента усиления антенн в натурных условиях, включающий формирование высокочастотного сигнала и измерение его мощности, отведение части мощности высокочастотного сигнала, излучение сигнала с помощью эталонной антенны в направлении исследуемой антенны, прием исследуемой антенной сигнала, его суммирование с отведенным высокочастотным сигналом, перекрытие области пространства, существенной для распространения радиоволн между антеннами, с учетом соблюдении условия дальней зоны от каждой из антенн до места перекрытия, площадь поперечного сечения которого определяется выражением S>πRэ 2Sin2Dэ/2, где Dэ - ширина диаграммы направленности эталонной антенны, Rэ - расстояние от места перекрытия до эталонной антенны, изменение уровня и фазы отведенного высокочастотного сигнала с целью получения нулевого уровня мощности суммарного сигнала, открытие между антеннами в плоскости поперечного сечения области пространства, существенной для распространения радиоволн. Предложенный способ позволяет снизить погрешность результатов измерений коэффициента усиления антенн радиоэлектронных средств в условиях многолучевого распространения радиоволн. 2 ил.

Отражатель электромагнитных волн для калибровки устройства радиолокационных систем образован соединением поверхностей минимум трех проводящих прямых круговых цилиндров с одинаковым радиусом основания и разной длиной образующих, лежащих в одной плоскости. Причем длина и радиус выбираются с учетом минимальной и максимальной длины электромагнитной волны излучателей антенн радиолокационных систем. Технический результат заключается в упрощении процесса калибровки и сокращении времени ее проведения. 6 ил.

Измерительная установка для измерения эффективной площади рассеяния моделей радиолокационных целей содержит: передатчик, двойной тройник, переменную комплексную нагрузку, приемник, приемно-передающую антенну, опору модели, компенсационную опору, тождественную опоре модели, отражения от которых само компенсируются, БЭК, задняя стена которой установлена под углом больше 45° к электрической оси антенны, и подъемник, на котором жестко установлены две опоры. Подъемник обеспечивает подъем и перемещение двух опор как единого целого вдоль длины диагонали куба с ребром длиной четверть длины волны падающего поля. Технический результат изобретения - увеличение точности измерения ЭПР моделей целей за счет уменьшения, до минимально возможного значения, суммарной когерентной помехи, вызванной зеркальными отражениями от стен БЭК, опоры цели и диффузным рассеянием падающего поля. 2 ил.

Изобретение относится к радиосистемам измерения диаграмм излучения антенн передающих устройств, расположенных на высотных башнях в вертикальной плоскости, в частности в базовых станциях сотовой связи. Комплекс содержит накопитель измеренной информации и бортовой комплект в составе последовательно соединенных антенны-зонда и селективного измерителя мощности, а также GPS/ГЛОНАСС приемника. Дополнительно введены: носитель бортового комплекта - дистанционно управляемый беспилотный летательный аппарат на платформе многомоторного вертолета (многокоптер) и наземный комплект, соединенный с бортовым комплектом через радиоканал Wi-Fi. Причем в состав наземного комплекта входят первый модем Wi-Fi, подключенный к первому порту первого модема пульт управления многокоптером, параллельно подключенные ко второму порту первого модема индикатор отображения измеренных данных в координатах «мощность-высота-время» и накопитель измеренной информации, подключенный к третьему порту первого модема индикатор отображения видеоинформации. При этом в бортовой комплект введены второй модем Wi-Fi, последовательно соединенные блок датчиков и полетный контроллер, первый выход которого подключен к третьему порту второго модема, видеокамера, подключенная ко второму порту второго модема, блок двигателей могокоптера, подключенный ко второму выходу полетного контроллера. Селективный измеритель мощности подключен к первому порту второго модема. В блок датчиков входят GPS/ГЛОНАСС приемник, акселерометр, бародатчик, трехосевой гироскоп, компас, а в блок двигателей входят двигатели многокоптера. Технический результат заключается в увеличении оперативности и точности измерения мощности излучения базовых станций сотовой связи в вертикальной плоскости. 3 ил.

Изобретение относится к области радиосвязи и может быть использовано при решении проблемы электромагнитной совместимости радиоэлектронных средств, а также к исследованию параметров вторичного излучения различных сред. Устройство состоит из генератора тактовых импульсов 1, формирователя спектра излучения 3, коммутатора приемо-передающих антенн 3, приемной антенной системы 4, адаптивного преобразователя 5, формирователя информации излучения вторичных излучателей 6, преобразователя частотного спектра 7, блока фильтров 8, блока анализа спектра излучения 9, блока исследования спектра вторичного излучения 10, высоковольтной облучающей системы 11 (11-1 и 11-2), источника высокого напряжения 12. Технический результат заключается в возможности исследования различных сред на основе их излученного вторичного поля. 17 з.п. ф-лы, 23 ил.

Группа изобретений относится к измерительной технике, а конкретнее к измерению параметров канала фазированной антенной решетки (ФАР) и определению диаграммы направленности элементов ФАР. Технический результат заключается в возможности проводить измерения параметров при неподвижном зонде с высокой точностью, характерной для обычных амплифазометров, т.е. с точностью по фазе ≈2°, а по амплитуде ≈0,2 дБ. Раскрыты способ и устройство измерения параметров канала ФАР, способ и устройство для определения диаграммы направленности элементов ФАР. Способ измерения параметров канала ФАР, в каждом канале которой установлен дискретный многоразрядный фазовращатель, предназначенный для фазовой манипуляции сигнала в данном канале ФАР на частоте Ω/2π манипуляции, содержит этапы, на которых: а) запитывают ФАР начальным сигналом с частотой ω0/2π, осуществляют фазовую манипуляцию сигнала в измеряемом канале ФАР на частоте Ω/2π манипуляции с помощью одного разряда имеющегося в данном канале ФАР дискретного многоразрядного фазовращателя при коммутации его другого разряда; принимают излучаемый ФАР сигнал с помощью измерительной антенны, зафиксированной в промежуточной зоне излучения ФАР; компенсируют в принимаемом сигнале фоновый сигнал, образованный неманипулированными каналами ФАР, за счет использования части начального сигнала с частотой ω0/2π, подбирая величину этой части равной величине фонового излучения и имеющей противоположную фазу; выполняют квадратурную демодуляцию сигнала, полученного после компенсации фонового сигнала, для получения исходного сигнала I синфазного канала и исходного сигнала Q квадратурного канала; фильтруют сигнал I синфазного канала и сигнал Q квадратурного канала на частоте Ω/2π манипуляции; осуществляют синхронное детектирование отфильтрованных сигналов с частотой Ω/2π манипуляции, получая результирующий сигнал I' синфазного канала и результирующий сигнал Q' квадратурного канала; определяют по результирующему сигналу I' синфазного канала и результирующему сигналу Q' квадратурного канала амплитуду А и фазу ϕ измеряемого сигнала, характеризующие измеряемый канал ФАР. Способ определения диаграммы направленности элемента ФАР содержит этапы, на которых выделяют фрагмент упомянутой ФАР, включающий в себя не менее нескольких десятков элементов; устанавливают выделенный фрагмент ФАР на поворотном средстве; осуществляют этапы способа измерения параметров канала ФАР для различных углов поворота упомянутого выделенного фрагмента ФАР по отношению к упомянутой измерительной антенне; строят диаграмму направленности элемента в составе ФАР по найденным амплитудам и фазам каждого элемента упомянутого фрагмента ФАР с учетом геометрии упомянутого выделенного фрагмента ФАР и упомянутой измерительной антенны. 6 н. и 3 з.п. ф-лы. 7 ил.

Изобретение относится к антенной технике, в частности к способам определения диаграммы направленности активных фазированных антенных решеток (АФАР) в процессе их настройки и исследований. АФАР располагают на заданном расстоянии от вспомогательной антенны, излучают формируемое электромагнитное поле в направлении исследуемой АФАР и принимают сигналы, излученные вспомогательной антенной, исследуемой АФАР. При неподвижном опорно-поворотном устройстве измеряют комплексные коэффициенты передачи каждого приемного канала, формируя на их основе калибровочные коэффициенты в режиме приема. Затем принимают исследуемой АФАР сигналы, излученные вспомогательной антенной, и проводят измерения комплексных коэффициентов передачи каждого приемного канала, формируя на их основе комплексные ДН приемных каналов с учетом сферичности фазового фронта принятой электромагнитной волны и сформированных калибровочных коэффициентов в режиме приема, путем вращения АФАР, размещенной на опорно-поворотном устройстве. ДН АФАР в режиме приема определяют на основе математической модели, используя сформированные комплексные ДН приемных каналов. Для получения ДН АФАР в режиме передачи подключают формирователь сигналов поочередно ко входу каждого передающего канала АФАР, измеряют комплексный коэффициент передачи передающего канала при неподвижном опорно-поворотном устройстве и без открытого излучения АФАР в свободное пространство и преобразуют его в амплитуду и фазу сигнала. По результатам преобразованных амплитуд и фаз комплексных коэффициентов передачи каналов определяют амплитудно-фазовое распределение на выходах передающих каналов АФАР. ДН АФАР в режиме передачи находят в виде суммы взвешенных комплексных ДН приемных каналов АФАР с коэффициентами, соответствующими комплексным амплитудам амплитудно-фазового распределения на выходах передающих каналов АФАР. Технический результат заключается в исключении открытого излучения при определении ДН АФАР в передающем режиме. 2 ил.

Изобретение относится к технике антенных измерений. Устройство для измерения параметров диаграммы направленности антенн содержит последовательно соединенные исследуемую антенну, фазовращатель, волновой тройник, измерительный приемник, блок оцифровки и устройство обработки и управления, четвертый, пятый и шестой входы которого соединены соответственно с тремя выходами блока сопряжения, вход которого является выходом устройства наведения и сопровождения, последовательно соединенные первый датчик вал-код, первый следящий привод и поворотный стол азимутального вращения приемной антенны, который механически соединен с горизонтальной осью вращения приемной антенны и первым датчиком вал-код, последовательно соединенные второй датчик вал-код, второй следящий привод и поворотный стол угломестного наклона приемной антенны, который механически соединен с угломестной осью вращения приемной антенны и вторым датчиком вал-код, а также содержащее синхронизатор, три выхода которого соединены соответственно со вторыми входами измерительного приемника, блока оцифровки и устройства обработки и управления, первый выход которого подключен ко второму входу фазовращателя, второй выход - ко второму входу первого следящего привода, третий выход - ко второму входу второго следящего привода, а третий и седьмой входы соответственно ко вторым выходам первого и второго следящих приводов. Дополнительно введены последовательно соединенные устройство приема сигнала синхронизации и формирователь стробов измерения, первый выход которого соединен с первым входом электронного переключателя, второй выход - с первым входом измерителя, а третий выход - с входом генератора сигналов, выход которого является вторым входом электронного переключателя, первый выход которого соединен со вторым входом измерителя, а второй выход - с входом вспомогательной антенны, выход которой является третьим входом электронного переключателя, а также связанное по радиоканалу с устройством приема сигнала синхронизации устройство передачи сигнала синхронизации, вход которого является четвертым выходом синхронизатора, и передающее устройство, выход которого является входом исследуемой антенны, а вход соединен с четвертым выходом синхронизатора. Технический результат - повышение точности и информативности измерения параметров диаграммы направленности антенны за счет синхронизации функционирования измерительных устройств и источников измерительных сигналов устройства на прием/передачу во временной области. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для исследования диаграмм направленности (ДН) антенны методом её облета. Технический результат – расширение функциональных возможностей. Для этого обеспечивают автоматизацию процесса измерения направленности антенны на основе использования беспилотного летательного аппарат (БПЛА), совершающего круговые облеты измеряемой антенны в полностью автоматическом режиме, на расстоянии, удовлетворяющем условию дальней зоны исследуемой антенны. При этом определение глобальных координат БПЛА выполняется посредством бортового приемника сигналов глобальной навигационной спутниковой системы (ГНСС, в том числе ГЛОНАСС). Требуемая точность достигается за счет внесения полученных с контрольно-корректирующей станции (ККС) дифференциальных поправок в результат измерений в процессе постобработки. Для повышения точности измерений амплитуды сигнала в процессе постобработки и построения ДН в результат измерений вносятся поправки на основе данных о положении БПЛА относительно исследуемой антенны в момент измерений и априори известной ДН бортовой антенны. Заданная точность измерения ДН достигается за счет коррекции ошибок измерения глобальных координат, а также ошибок измерения амплитуды сигнала, связанных с эволюциями БПЛА в пространстве в процессе облета и неизотропностью ДН бортовой антенны. В случае измерения параметров направленности передающей антенны измерения мощности поля производятся непосредственно на борту БПЛА с помощью широкополосного измерителя мощности, фиксирующего мощность полезного сигнала, поступающего с входа перестраиваемого полосового фильтра. В случае измерения параметров направленности приемной антенны регистрация амплитуды сигнала производится на Земле посредством приемного измерительного устройства, подключенного к испытуемой антенне. Синхронизация данных измерений амплитуды сигнала и координат БПЛА производится в процессе постобработки по временным меткам, полученным с бортового приемника ГНСС на борту БПЛА и с ККС на Земле. В результате обеспечивается повышение точности, сокращение времени измерения технических характеристик антенн и уменьшение стоимости их исследования. 2 з.п. ф-лы, 2 ил.

Изобретения относятся к технике антенных измерений и может использоваться при измерениях диаграмм направленности азимутальных ДН антенн в составе наземных подвижных объектов больших размеров, в том числе летательных аппаратов (ЛА) в условиях открытых полигонов. Устройство содержит передатчик, исследуемую антенну, приемник, измерительную антенну, блок измерения дальности, блок регистрации и блок радиотехнической системы навигации. Исследуемая антенна установлена на подвижном объекте больших размеров, который размещен на измерительном участке открытого полигона, исследуемая антенна установлена на высоте h1 от его поверхности и подключена к выходу передатчика - источнику радиосигнала, излучаемого через эту антенну при вращении по азимуту, включающего программируемый генератор радиосигналов (ПГР) и широкополосный усилитель мощности (ШУМ). Выход ПГР через ШУМ связан с входом антенны объекта, второй выход ПГР и выходы штатной системы измерения истинного курса и географических координат объекта, а также выход его приемника GPS/ГЛОНАС подключены к входам системы измерения объекта (СИО). Радиосигналы, излученные антенной объекта, принимают две измерительные антенны ортогональной поляризации передвижного наземного измерительного пункта (НИП). Антенны НИП установлены на телескопической мачте с изменяемой высотой установки, выход антенн подключен к входу АСРВ, выходы АСРВ и приемника GPS/ГЛОНАСС НИП подключены через интерфейсы к его ЭВМ управления и регистрации, синхронизацию результатов измерений СИО и НИП реализуют в процедуре слияния данных ЭВМ НИП по единому времени UTC их приемников GPS/ГЛОНАСС. Кроме того, в центре круговых траекторий на высоте h1 от поверхности измерительного участка дополнительно установлена вспомогательная антенна для излучения тестового радиосигнала при измерении коэффициента отражения поверхности измерительного участка и зависимости уровня радиосигнала от дальности, вспомогательная антенна подключена к выходу ШУМ, вход которого соединен с выходом ПГР, которые совместно с автономным источником электропитания установлены в непосредственной близости от вспомогательной антенны. Технический результат заключается в повышении точности оценки ДН антенн. 2 н. и 1 з.п. ф-лы, 4 ил.
Наверх