Способ получения низкоконцентрированных гелей на основе n-ацетил-l-цистеина и нитрата серебра

Изобретение относится к области супрамолекулярной химии, в частности получению низкоконцентрированных гелей на основе N-ацетил-L-цистеина и нитрата серебра. Способ получения низкоконцентрированных гелей на основе N-ацетил-L-цистеина и нитрата серебра включает приготовление водного раствора N-ацетил-L-цистеина и водного раствора нитрата серебра, смешивание растворов таким образом, чтобы концентрации компонентов в смеси были равны и находились в диапазоне от 1 мМ до 1,8 мМ. Затем смесь оставляют вызревать в защищенном от света месте на 18 ч при комнатной температуре. 1 табл., 4 ил.

 

Изобретение относится к области супрамолекулярной химии, изучающей способы получения супрамолекулярных структур, с определенным пространственным расположением атомов и обладающих заданными свойствами.

Супрамолекулярная структура - это пространственно организованная совокупность атомов и молекул, полученная спонтанной ассоциацией большого числа малых молекул, которая может быть расчленена на небольшие подсистемы таким способом, что при этом не разрываются химические связи. Супрамолекулярная структура, заполняющая весь объем, занятый растворителем, называется перколяционной. Если перколяционная структура обладает определенной механической прочностью, она проявляет себя как гель. Наиболее сложной задачей является получение гелей из сильно разбавленных водных растворов низкомолекулярных веществ, т.е. низкоконцентрированных гелей.

Таким образом, низкоконцентрированные гели - это супрамолекулярные структуры, полученные в результате ассоциации молекул растворенных компонентов в трехмерную сетку, заполняющую все пространство, занимаемое растворителем, причем массовая доля растворенных веществ, участвующих в построении каркаса сетки, много меньше массовой доли растворителя. Структура геля обусловлена характером межмолекулярного взаимодействия между строительными элементами трехмерной сетки, энергия которого гораздо слабее энергии ковалснтных химических связей. Низкоконцентрированные гели перспективны для применения в области нанотехнологий, биомедицины, фармакологии, моделирования живых систем.

Образование гелей в сильно разбавленных растворах низкомолекулярных соединений является редко наблюдаемым физико-химическим феноменом. Ранее было известно, что германат кальция способен образовывать гель при концентрации 0,067% [1].

Совершенно другого типа гели были получены на основе восьми производных L-цистина. Оказалось, что раствор в диметилсульфоксиде, такого производного, как, например, N,N′-дибензоил-L-цистин диамида, при разбавлении его водой желируется. При этом концентрация растворенного вещества в геле составляет всего 0,5 мМ [2].

Исследованием уровня техники установлено, что аналогом получения низкоконцентрированных гелей на основе N-ацетил-L-цистеина и нитрата серебра являются низкоконцентрированные гели, полученные на основе L-цистеина и нитрата серебра посредством двухстадийного процесса. Согласно этому способу на первом этапе из L-цистеина и нитрата серебра, взятого в избытке, получают раствор, содержащий совокупность очень разветвленных и разреженных сеточных молекулярных структур, построенных из наноразмерных, положительно заряженных фрактальных кластеров. Эту совокупность молекулярных структур названа L-цистеин-серебряным раствором [3]. На втором этапе L-цистеин-серебряный раствор с концентрацией по серебру 0,25÷0,8 мМ смешивают с водным раствором сульфата щелочного или щелочноземельного металла при молярном соотношении L-цистеина и сульфата щелочного или щелочноземельного металла, изменяющемся в диапазоне от 1:0,015 до 1:0,030 [4]. Через определенное время, зависящее от концентрации компонентов, жидкая система превращается в гель. Однако способ получения гелей на основе L-цистеин-серебряного раствора и сульфатов щелочных или щелочноземельных металлов не дает алгоритма для синтеза гелей на основе N-ацетил-L-цистеина и нитрата серебра.

Технический результат настоящего изобретения заключается в том, что разработан способ получения низкоконцентрированных гелей на основе N-ацетил-L-цистеина и нитрата серебра.

Технический результат достигается тем, что водный раствор N-ацетил-L-цистеина смешивают с водным раствором нитрата серебра таким образом, чтобы молярные концентрации компонентов в смеси были одинаковы и находились в диапазоне от 1 мМ до 1,8 мМ. Смесь перемешивают энергичным встряхиванием и оставляют в защищенном от света месте при комнатной температуре на 18 часов. В течение этого времени в системе формируется гель.

Ранее способов получения низкоконцентрированных гелей на основе N-ацетил-L-цистеина и нитрата серебра описано не было.

Задача синтеза низкоконцентрированных гелей на основе N-ацетил-L-цистеина и нитрата серебра решается путем приготовления смесей заданного состава, проведения реакции и контроля реологических свойств конечной системы с помощью предложенной шкалы прочности. Структура гелей фиксируется с помощью методов просвечивающей электронной микроскопии (ПЭМ), динамического светорассеяния (ДСР), УФ-спектроскопии.

Прочность геля на основе N-ацетил-L-цистеина и нитрата серебра оценивается по предложенной нами пятибалльной шкале, фиксирующей характер деформации столбика геля высотой 20 мм при переворачивании пробирки на угол, равный 180°. Под действием собственного веса происходит деформация материала, и определенному уровню деформации присваивается соответствующий балл. В Таблице 1 приведено описание деформации и присвоенный этой деформации балл. С помощью таблицы можно быстро оценить прочность геля, что позволит находить наиболее эффективные композиции за сравнительно короткое время.

Изобретение поясняется графическими материалами (Фиг.1-4) и Таблицей 1.

Фиг.1. Зависимость прочности гелей (а) и pH гель-образцов (б) на основе N-ацетил-L-цистеина и нитрата серебра от концентрации N-ацетил-L-цистеина; соотношение молярных концентраций компонентов 1:1.

Фиг.2. Распределение гидродинамических радиусов структурных элементов пространственной сетки по данным динамического светорассеяния (в единицах интенсивности) для образцов гелей на основе N-ацетил-L-цистеина и AgNO3 в зависимости от времени стояния после момента смешивания исходных растворов: 11 (1) и 22 мин (2), (Сац.-цист.=1.25 мМ, CAgNO3=1.25 мМ).

Фиг.3. Электронно-микроскопический снимок высушенного геля на основе N-ацетил-L-цистеина и AgNO3.

Фиг.4. УФ спектры поглощения образцов геля на основе N-ацетил-L-цистеина и AgNO3 в зависимости от времени стояния после момента смешивания исходных растворов: 1-5 мин, 2-5 часов, (Сац-цист.=1.25 мМ, CAgNO3=1.25 мМ).

Таблица 1. Описание характера деформации и оценка ее в баллах.

Выбор условий образования наиболее прочных гелей осуществлен на основании следующих фактов и экспериментов.

N-ацетил-L-цистеин является производным от L-цистеина, в котором один из атомов водорода аминогруппы замещен на ацетильную группу. N-ацетил-L-цистеин имеет другие, чем L-цистеин, кислотно-основные свойства. Так, константы ионизации L-цистеина имеют значения pKa1=1,96, pKa2=8,36, pKa3=10,28 [5], а соответствующие константы для N-ацетил-L-цистеина равны pKa1=1,7, pKa2=3,2, pKa3=9,75 [6]. Из этих данных следует, что растворы N-ацетил-L-цистеина имеют более низкие значения рН, вследствие меньшего сродства замещенной аминогруппы к протону и большей способности карбоксильной группы к ионизации. По этой причине зарядовые состояния функциональных групп этих молекул в водной среде различаются. Поэтому реакционные свойства L-цистеина и N-ацетил-L-цистеина при их взаимодействии с катионами серебра также различаются.

При сливании водных растворов N-ацетил-L-цистеина и нитрата серебра определенных концентраций образуется прозрачная смесь, которая структурируется в гель. Наиболее прочные гели формируются, когда концентрации исходных компонентов одинаковы. При избытке нитрата серебра прочность гелей уменьшается, и уже при отношении молярных концентраций 1,14 гели не образуются.

По мере увеличения концентрации компонентов прочность гелей возрастает, а затем, после достижения определенной концентрации, монотонно уменьшается (Фиг.1а). Это происходит потому, что формирование гелей происходит лишь в определенном диапазоне значений pH растворов (Фиг.1б), близких к pH изоэлектрической точки, вычисление которой по формулам [5], дает значение 2,45. В изоэлектрической точке отталкивание элементов сеточных структур минимально, а способность к ассоциации наиболее выражено.

Методом ДСР установлено образование в гелеобразующем растворе рассеивающих центров нескольких типов, которые можно идентифицировать как фрагменты сеточных структур. (Фиг.2). Измерение интенсивности динамического светорассеяния осуществляют с помощью спектрометра, включающего AL-SP-81 гониометр и цифровой фотонный коррелятор-структуратор ALV-5000 с углом рассеяния 90°. В качестве источника света используют He-Ne-лазер (длина волны - 632,8 нм) мощностью 36 МВт. Средний гидродинамический радиус частиц рассчитывают из уравнения Эйнштейн-Стокса на основании графика зависимости распределения коэффициента диффузии W(D) от коэффициента диффузии.

На Фиг.3 представлены электронно-микроскопические снимки высушенного на подложке геля, полученные при просвечивании на электронном микроскопе "LEO 912 АВ ОМПСА" (Carl Zeiss, Германия). Видно, что сеточный каркас образован кластерами размерами от 1,6 до 10 нм, которые объединены в пересекающиеся цепочки.

В силу того факта, что на основе N-ацетил-L-цистеина и нитрата серебра можно получить супрамолекулярный гель при малых концентрациях компонентов, кластеры должны иметь фрактальный характер [6, 7].

Спектроскопически гель характеризуется наличием в УФ-спектре двух полос поглощения, одна из которых имеет максимум при λ=265 им, а другая, менее выраженная, при λ=320 им (фиг.4).

Предположительно, сценарий формирования нерколяционной пространственной сечки в водном растворе N-ацетил-L-цистеина и нитрата серебра включает 6 стадий:

1 стадия - взаимодействие N-ацетил-L-цистеина с ионом серебра с образованием меркаптида серебра,

2 стадия - соединение молекул меркантида серебра в олигомерные цепочки, построенные из чередующихся атомов серебра и серы, -Ag-S(R)-Ag-S(R)-Ag-S(R)-, где R обозначает остаток молекулы N-ацетил-L-цистеина, связанный с атомом серы,

3 стадия - ассоциация олигомерных цепочек во фрактальный кластер,

4 стадия - ассоциация фрактальных кластеров в цепочки,

5 стадия - формирование из цепочек кластеров фрагментов трехмерной сетки,

6 стадия - образование из фрагментов трехмерной сетки перколяционной структуры.

Имеются существенные отличия в методе получения геля и его свойствах в заявляемом изобретении от условий получения геля, описанного в аналоге, именно:

1) в заявляемом изобретении гель получают с применением N-ацетил-L-цистеина, в то время как в аналоге с применением L-цистеина,

2) в заявляемом изобретении гель получают в одну стадию при непосредственном взаимодействии компонентов, а в аналоге - в двухстадийном процессе, требующем предварительного синтеза цистеин-серебряного раствора,

3) в заявляемом изобретении для формирования геля не требуется добавления в раствор сульфатов щелочных или щелочноземельных металлов,

4) в заявляемом изобретении наиболее прочный гель получают при эквимолярном соотношении концентраций замещенной аминокислоты и ионов серебра, а в аналоге - при отношении молярной концентрации серебра к концентрации L-цистеина равном 1,25,

5) гели на основе N-ацетил-L-цистеин и нитрата серебра не обладают тиксотропными свойствами, а гели на основе L-цистеина и нитрата серебра, представленные в аналоге, тиксотропны,

6) согласно данным ПЭМ в образцах геля на основе N-ацетил-L-цистеина формируются более крупные кластеры, чем в случае систем на основе L-цистеина,

7) электронный спектр гелей в заявляемом изобретении сильно отличается от спектра гелей на основе цистеин-серебряного раствора, представленных в аналоге. Именно, в гелях на основе N-ацетил-L-цистеина отсутствует полоса поглощения на длине волны 390 нм, характерная для гелей на основе L-цистеина,

8) в заявляемом изобретении наиболее прочные гели формируются в области рН, близкой к изоэлектрической точке N-ацетил-L-цистеина, и имеют, таким образом, сеточные структуры, несущие скомпенсированные положительные и отрицательные заряды, в то время как сеточные структуры гелей на основе L-цистеина, представленные в аналоге, несут положительный заряд.

Пример получения низкоконцентрированного геля на основе N-ацетил-L-цистеина и нитрат серебра:

1) приготавливают водный раствор N-ацетил-L-цистеина с концентрацией 10-3 мМ,

2) приготавливают водный раствор нитрата серебра с концентрацией 10-3 мМ,

3) к 14 мл дистиллированной воды приливают 3 мл раствора N-ацетил-L-цистеина, затем прибавляют 3 мл раствора нитрата серебра. Смесь перемешивают встряхиванием в течение 5 секунд, выдерживают при комнатной температуре (20°С) в защищенном от света месте в течение 18 часов.

Установлено, что гель на основе N-ацетил-L-цистеина и нитрата серебра подавляет размножение стафиллококов, поэтому перспективно его применение в медицинской практике по следующим направлениям.

В хирургии - подавление деятельности патогенной микрофлоры при лечении язв, заживлении ран, лечении пролежней и для регенерации тканей.

В ожоговой практике - как средство комплексного лечения в процессе реабилитации.

В фармакологии - для составления гелевых композиций с биологически активными компонентами.

Таблица 1
БАЛЛ ХАРАКТЕР ДЕФОРМАЦИИ
5 Гель при переворачивании пробирки почти не деформируется
4 Гель сильно деформируется, образуя куполообразный мениск, но не стекает
3 Гель деформируется и медленно стекает
2 Гель легко срывается и быстро стекает
1 Гель очень слабый, легко течет
0 Нет геля

Литература

1. Болдырев А.И. Демонстрационные опыты по физической и коллоидной химии. - М.: Высшая школа, 1976.

2. Menger P.M., Caran K.L. // J. Am. Chem. Sos. - 2000, 722, P.11679-11691.

3. Овчинников М.М., Хижняк С.Д., Пахомов П.М. Патент №2423384 от 10.07.11.

4. Овчинников М.М., Хижняк С.Д., Пахомов П.М. Патент №2432937 от 10.11.11.

5. Батлер Дж.Н. Ионные равновесия. - Л.: Химия, 1973.

6. Инцеди Я. Применение комплексов в аналитической химии. М.: Мир, 1979.

7. Смирнов Б.М. Физика фрактальных кластеров. - М.: Наука, 1991.

8. Смирнов Б.М. // УФН. - 1992. Т.162. №8. С.43.

Способ получения низкоконцентрированных гелей на основе N-ацетил-L-цистеина и нитрата серебра, характеризующийся тем, что смешивают водный раствор N-ацетил-L-цистеина с водным раствором нитрата серебра, так чтобы концентрации компонентов в исходной смеси были равны и находились в диапазоне 1÷1,8 мМ, далее смесь перемешивают энергичным встряхиванием и оставляют в защищенном от света месте при комнатной температуре на 18 часов.



 

Похожие патенты:

Способ получения слоистого наноматериала, включающий формирование слоев различного состава, отличается тем, что в пределах толщины граничащих друг с другом областей слоев, равной трем монослоям, формируют иную конфигурацию и/или плотность химических связей атомов, чем в соответствующих по толщине и граничащих друг с другом областях объемных фаз материала слоев.

Изобретение относится к средствам маркировки изделий. Технический результат заключается в повышении степени защиты маркировки.

Изобретение относится к медицине, конкретно к области нетканых материалов, предназначенных для изготовления одноразовых изделий медицинского и санитарно-гигиенического назначения, фильтровальных материалов.
Изобретение относится к медицине. Описан двухфазный материал заменителя костной ткани на основе фосфата кальция / гидроксиапатита (САР/НАР), включающий ядро из спеченного CAP и как минимум один равномерный и закрытый эпитаксически нарастающий слой нанокристаллического НАР, нанесенный сверху на ядро из спеченного CAP, причем эпитаксически нарастающие нанокристаллы имеют такой же размер и морфологию, что и у минерала костей человека, то есть длину от 30 до 46 нм и ширину от 14 до 22 нм.

Изобретение относится к наноструктурированным материалам с сегнетоэлектрической активностью. Технический результат заключается в получении сегнетоэлектрического материала с высокими и регулируемыми диэлектрическими и пироэлектрическими характеристиками.
Группа изобретений относится к катализаторам циклизации нормальных парафиновых углеводородов. Катализатор содержит носитель, который готовят с использованием высококремнеземного цеолита KL и бемита, а каталитически активное вещество представляет собой как иммобилизованные на поверхности катализатора кристаллиты платины, так и локализованные внутри канала цеолита частицы платины, характеризующиеся размером 0,6-1,2 нм.

Изобретение относится к области оценки свойств дисперсных материалов и может быть использовано для разработки энергетических нанотехнологий в разных отраслях промышленности и областях знаний, а также для разработки и управления самоорганизующихся систем, открывает возможности для изучения новых принципов построения технических устройств.

Способ формирования наноразмерных структур предназначен для получения полосок тонких пленок наноразмерной ширины с целью их исследования и формирования элементов наноэлектромеханических систем (НЭМС). Сущность изобретения заключается в том, что в способе формирования наноразмерных структур, включающем получение заготовок тонких пленок и выделение из них полосок тонких пленок, по меньшей мере, одну заготовку тонкой пленки закрепляют внутри заполненного объема, который устанавливают в держатель микротома таким образом, чтобы плоскость заготовки тонкой пленки оказалась непараллельна плоскости реза, после этого ножом осуществляют рез заполненного объема с, по меньшей мере, одной заготовкой тонкой пленки и получение плоского фрагмента с полоской тонкой пленки. Существуют варианты, в которых заполненный объем устанавливают в держателе микротома таким образом, чтобы плоскость заготовки тонкой пленки оказалась перпендикулярна плоскости реза и перпендикулярна направлению реза; или заполненный объем устанавливают в держателе микротома таким образом, чтобы плоскость заготовки тонкой пленки оказалась перпендикулярна плоскости реза и параллельна направлению реза. Существуют также варианты, в которых после осуществления реза проводят исследование зондом сканирующего зондового микроскопа поверхности заполненного объема с, по меньшей мере, одной заготовкой тонкой пленки; или производят модификацию заготовки тонкой пленки, расположенной внутри заполненного объема. Существуют также варианты, в которых модификация заготовки тонкой пленки заключается в механическом воздействии на нее зондом; или в электрическом воздействии на нее зондом; или в электрохимическом воздействии на нее зондом; или в воздействии на нее электронным пучком; или в воздействии на нее ионным пучком; или в воздействии на нее рентгеновским пучком; или в воздействии на нее пучком альфа-частиц; или в воздействии на нее пучком протонов; или в воздействии на нее пучком нейтронов. Существует также вариант, в котором внутри заполненного объема закрепляют набор заготовок тонких пленок; при этом заготовки тонких пленок расположены параллельно друг другу. Существует также вариант, в котором в качестве тонких пленок используется графен. Все перечисленные варианты способа расширяют его функциональные возможности.

Изобретение используется для определения усиления локального электростатического поля и работы выхода в нано- или микроструктурных эмиттерах. Сущность изобретения заключается в том, что измеряют темновую зависимость туннельного эмиссионного тока при увеличении напряжения на аноде и определяют значение напряжения V∞, облучают измеряемую поверхность эмиттера лазерным пучком ультрафиолетового или видимого диапазона с фиксированным значением оптической мощности и длины волны λ1, измеряют значение туннельного фотоэмиссионного тока при увеличении напряжения на аноде и фиксируют значение напряжения V∞ λ1, определяют значение работы выхода А и значение усиления локального электростатического поля β в пространственной области облучения эмиттера из данного соотношения или дополнительно облучают измеряемую поверхность эмиттера лазерным пучком на другой длине волны λ2 ультрафиолетового или видимого диапазона с максимальной разницей относительно первой длины волны, определяют значение напряжения V∞λ2 и определяют значение усиления локального электростатического поля в пространственной области облучения эмиттера и значение работы выхода А из данного соотношения.
Изобретение относится к светотехнике, а именно изготовлению светоизлучающих полупроводниковых приборов на подложке из аморфного минерального стекла. Стекловидная композиция на основе минерального стекла, содержащего окислы элементов II, и/или III, и/или IV группы периодической системы, отличается тем, что поверхность стекла покрыта выращенным слоем электропроводящего и светоизлучающего полупроводникового соединения типа A2B5, и/или A2B6, и/или А3В5, и/или А4В6.
Изобретение относится к химико-фармацевтической промышленности и представляет собой заменитель костного трансплантата, содержащий остеогенный агент и цеолит, содержащий частицы, содержащие ионообменные катионы металлов, присутствующие в количестве, эффективном для стимуляции остеогенеза у нуждающегося в этом пациента, в котором вышеуказанные катионы металлов выбраны из группы, состоящей из ионов цинка, ионов серебра, ионов меди и их комбинаций.

Группа изобретений относится к медицине, а именно к гинекологии, и может быть использована при лечении таких заболеваний и состояний, как дисфункциональное маточное кровотечение, меноррагия, дисменорея, эндометриоз, фиброма матки, климактерические расстройства, остеопороз и урогенитальная атрофия.
Изобретение относится к области медицины, а именно к лекарственным композициям с антибактериальными свойствами, и может быть использовано в оториноларингологии для лечения наружных отитов.
Изобретение относится к фармацевтике, а именно к составу для перорального трансмукозального введения, который содержит гиполипидемическое активное средство, выбранное из статинов, фибратов или эзетимиба; водно-спиртовой раствор, состоящий из воды и этанола с крепостью спирта от 30° до 70°, в котором указанное активное вещество присутствует в стабильном и полностью растворенном состоянии, причем pH состава находится в интервале от 5,0 до 8,0.

Изобретение относится к фармацевтической промышленности и представляет собой жидкую фармацевтическую композицию для улучшения по меньшей мере одного медицинского состояния, требующего введения адренергического соединения индивидууму, содержащая адренергическое соединение, в которой адренергическим соединением является эпинефрин или его физиологически приемлемая соль, и по меньшей мере один антиоксидант, выбранный из группы, состоящей из соединений бисульфита, метабисульфита и сульфита, в которой мольное отношение адренергического соединения по меньшей мере к одному антиоксиданту, измеренному как эквивалент сульфита, находится в диапазоне 0,70-1,30 и в которой значение pH вышеуказанной жидкой композиции находится в диапазоне 2,0-5,0.

Изобретение относится к стабильной жидкой фармацевтической композиции, включающей 3-(2,2,2-триметилгидразиний)пропионат-2-этил-6-метил-3-гидроксипиридина дисукцинат в количестве 0,1-50 мас.%, вспомогательные вещества в количестве 0,01-50 мас.% и воду.

Изобретение относится к фармацевтической промышленности и представляет собой жидкую фармацевтическую композицию для ослабления по крайней мере одного симптома заболевания, в случае которого требуется адренергическое соединение, представляющее собой адреналин или его физиологически приемлемую соль, и по крайней мере один антиоксидант, выбираемый из группы, состоящей из бисульфита, метабисульфита и сульфитного соединения, причем молярное соотношение адренергического соединения и по крайней мере одного антиоксиданта, определенного как эквиваленты сульфит-ионов, находится в диапазоне 1,31-2,20, а pH указанной жидкой композиции находится в диапазоне 2,0-5,0.

Группа изобретений относится к медицине, а именно к косметологии, и может быть использована для лечения старения кожи. Для чего используют средство, содержащее основной фактор роста фибробластов (bFGF) как единственный активный ингредиент, которое вводится внутрикожно или подкожно в место рубца, или в окружающую его часть, например келоида, гипертрофического рубца и рубцовой контрактуры; кроме того, средство также предназначено для лечения одного или более видов старения кожи, выбранных из следующего перечня: морщины на коже, обвисшая кожа, грубая кожа, истончение кожи и снижение упругоэластичности кожи из-за разрыва дермальных тканей или снижения функций фибробластовых клеток.
Изобретение относится к антирефлюксному питанию. Предложено применение загустителя для получения питательной композиции для профилактики гастроэзофагеального рефлюкса и/или для профилактики и/или лечения желудочно-кишечной рефлюксной болезни.
Изобретение относится к медицине. Описано биодеградируемое гемостатическое лекарственное средство для остановки кровотечений, согласно которому на 1 г диальдегидцеллюлозы со степенью окисления 12% соиммобилизуют: ε-аминокапроновой кислоты 50 мг, лизоцима 5 мг в 6,5 л дистиллированной воды в течение 3 часов при комнатной температуре.

Изобретение относится к стабильным фармацевтическим композициям для парентерального введения, содержащим агонисты допамина и агенты периферического действия, применяемым для лечения нарушений метаболизма. Фармацевтические композиции по изобретению содержат, по меньшей мере, один агонист допамина и фармацевтический наполнитель, включающий фармацевтически приемлемый усилитель проникновения, фармацевтически приемлемый усилитель растворимости и фармацевтически приемлемый усилитель биоадгезии. Лекарственные формы по изобретению имеют фармакокинетический профиль, который характеризуется Тmax до приблизительно 90 минут после введения лекарственной формы и концентрацией лекарственного средства в плазме, по меньшей мере, 50% Сmax в течение периода времени от 90 до 360 минут после достижения Сmax. Указанный специфический фармакокинетический профиль парентеральных лекарственных форм с агонистом допамина обеспечивает улучшенный терапевтический эффект по сравнению с пероральными лекарственными формами агонистов допамина. 2 н. и 63 з.п. ф-лы, 8 ил., 29 пр.
Наверх