Подставка для горелки камеры сгорания газовой турбины и газовая турбина

Изобретение относится к энергетике. Камера сгорания газовой турбины, у которой предусмотрены вставка для горелки, которая имеет стенку с холодной и горячей сторонами и край, ограничивающий стенку вставки для горелки. Край имеет, по меньшей мере, частично охватывающее, выступающее над холодной стороной крайнее ребро, при этом крайнее ребро имеет отверстия по всему краю. В стенке вставки для горелки выполнено отверстие для вставления в него горелки. Также представлена газовая турбина, содержащая камеру сгорания согласно изобретению. Изобретение позволяет создать эффективную камеру сгорания. 2 н. и 4 з.п. ф-лы, 7 ил.

 

Настоящее изобретение относится к камере сгорания газовой турбины с вставкой для горелки, содержащей отверстие для установки горелки. Также изобретение относится к газовой турбине.

Камеры сгорания газовой турбины имеют один конец на стороне горелки и другой конец на стороне турбины. Находящийся на стороне турбины конец является открытым и обеспечивает поступление образующихся в камере сгорания горячих газообразных продуктов сгорания в турбину. На расположенном на стороне горелки конце часто применяется вставка для горелки, состоящая из жаропрочной горячей стороны и охлаждаемой холодной стороны. Горелка вставляется в отверстие в вставке. При работе газовой турбины холодный воздух, который поступает, как правило, от компрессора, течет по холодной стороне от отверстия в вставке для горелки к ее наружному краю, откуда холодный воздух поступает в камеру сгорания. В US 2005/0016178 А1 описан пример вставки для горелки для трубчатой камеры сгорания.

В кольцевых камерах сгорания, т.е. в камерах сгорания, расположенных кольцеобразно вокруг рабочего колеса турбины, применяется, как правило, множество вставок для горелок, расположенных друг возле друга по периметру кольцевой камеры сгорания. Тогда протекающий по холодной стороне горелки холодный воздух поступает в камеру сгорания между радиально наружной и радиально внутренней стенками камеры сгорания. Кроме того, холодный воздух может поступать в камеру сгорания и через зазоры между смежно расположенными по периметру вставками для горелок. Подобная кольцевая камера сгорании описана, например, в ЕР 1557607 А1. В качестве альтернативы возможно также подавать холодный воздух к отверстию горелки вместо подачи от нее и тогда он направляется через кольцевой зазор между краем отверстия горелки и вставленной горелкой в камеру сгорания, как это раскрыто в ЕР 1767855 А1.

Вставка для горелки для кольцевой камеры сгорания схематически изображена на фиг.1. На этой фигуре можно видеть вставку для горелки для кольцевой камеры сгорания с видом в разрезе и в перспективе на холодную сторону 103. В центре холодной стороны 103 вставки 100 для горелки находится отверстие 105, в которое может вставляться горелка. Вставка для горелки крепится кольцевой перемычкой 107 на выступающем над холодной стороной участке 109 вставки 100 для горелки на несущей конструкции корпуса газовой турбины.

При работе камеры сгорания газовой турбины в ней могут происходить колебания давления, способные возбуждать высокочастотные колебания вставки для горелки. Они воздействуют на вставку для горелки, сокращая ее срок службы. Для придания жесткости вставке для горелки и для направления холодного воздуха холодная сторона 103 вставки 100 для горелки снабжена ребрами 111. Кроме того, предусмотрены опорные винты 113, изображенные на фиг.1 лишь схематически. Винты 113 и ребра 111 образуют опорные участки, посредством которых холодная сторона опирается о несущую конструкцию корпуса газовой турбины. При наличии таких вставок для горелок может произойти образование неравномерного зазора по периметру вставки для горелки, что может привести на участках с увеличенным зазором к избыточной подаче холодного воздуха. Кроме того, в связи с тем, что кроме ребер 111 предусмотрены также опорные винты 113, образуется статическая переопределенность, так как вставка 100 для горелки должна одновременно располагаться помимо ребер 111 также и на опорных винтах.

По сравнению с уровнем техники задачей настоящего изобретения является создание оптимальной вставки для горелки камеры сгорания газовой турбины. Другой задачей является создание эффективной камеры сгорания газовой турбины и эффективной газовой турбины.

Указанная задача решается с помощью камеры сгорания газовой турбины, содержащей, по меньшей мере, одну вставку для горелки, согласно пункту 1 и с помощью газовой турбины согласно пункту 7 формулы изобретения. В зависимых пунктах формулы изобретения приведены оптимальные варианты выполнения изобретения.

Вставка для горелки согласно изобретению для камеры сгорания газовой турбины содержит стенку с холодной и горячей сторонами. В стенке вставки для горелки выполнено отверстие для установки горелки. Вставка для горелки содержит ограничивающий ее стенку наружный край с, по меньшей мере, частично охватывающим и выступающим над холодной стороной крайним ребром. При этом край может быть выполнен в значительной степени круговым, например, в случае применения трубчатой камеры сгорания или, например, в случае применения кольцевой камеры сгорания иметь форму края кольцевого выреза. Также в зависимости от формы камеры сгорания в принципе возможны и другие контуры.

Наличие вставки для горелки согласно изобретению увеличивает частоту собственных колебаний по сравнению с вставкой для горелки согласно уровню техники, как она описана со ссылкой на фиг.1. Поэтому вибрационная нагрузка на вставку для горелки в рабочем режиме камеры сгорания меньше по сравнению с нагрузкой на вставку для горелки из уровня техники. Кроме того, в рабочем режиме камеры сгорания газовой турбины крайнее ребро полностью располагается на несущей конструкции корпуса газовой турбины, в результате чего вдоль всего края присутствует равномерный зазор, предпочтительно нулевой. Для того чтобы при наличии нулевого зазора не прерывался поток холодного воздуха согласно варианту развития изобретения крайнее ребро содержит отверстия для прохода хладагента. Для образования отверстий крайнее ребро может содержать зубцы, между которыми образованы отверстия, и/или в нем могут быть выполнены сквозные дыры, например сверления. Благодаря тому, что в крайнем ребре могут быть образованы отверстия посредством зубцов или дыр, то становится возможной точная регулировка количества проходящего через крайнее ребро холодного воздуха путем соответствующего подбора размера зубцов или свободного диаметра дыр. В случае применения зубцов последние могут быть изготовлены путем нарушения сплошности крайнего ребра. Однако оптимально, чтобы крайнее ребро сохраняло сплошность, но зато выступало над холодной стороной на участках зубцов больше, чем на своих остальных участках. Наряду с описанными отверстиями возможны также отверстия иной формы, например щели.

Предпочтительно крайнее ребро проходит по всему краю вставки для горелки. В этом случае степень жесткости края вставки для горелки будет особенно высокой.

Согласно особому варианту выполнения вставки для горелки согласно изобретению вокруг отверстия горелки расположен кольцевой, выступающий над холодной стороной и снабженный кольцевым ребром участок стенки. В остальном стенка вставки для горелки выполнена плоской, т.е. отсутствуют какие-либо дополнительные конструкции, как, например, используемые в уровне техники ребра. В случае применения вставки для горелки согласно изобретению подобные ребра являются избыточными, так как было установлено, что равномерное распределение холодного воздуха происходит и без наличия таких ребер. Также и придание жесткости с помощью ребер не требуется для вставки для горелки согласно изобретению.

В целом благодаря вставке для горелки согласно изобретению обеспечивается экономия холодного воздуха, так как отсутствует неравномерность зазоров, способная вызывать избыточность подаваемого холодного воздуха. В результате снижения подачи холодного воздуха в камеру сгорания уменьшаются вредные выбросы газовой турбиной и повышается температура на ее входе, что в свою очередь позволяет увеличить эффективность газовой турбины. При наличии отверстий в крайнем ребре, например, в виде зубцов или сквозных отверстий, можно, кроме того, целенаправленно регулировать соответствующим подбором сечения отверстий количество подаваемого в камеру сгорания холодного воздуха. Кроме того, возможно регулирование нулевого зазора между торцевой поверхностью крайнего ребра или зубцов и несущей конструкцией или стенкой вставки для горелки. Наконец вариант выполнения вставки для горелки по изобретению обеспечивает снижение стоимости, так как отпадает необходимость в использовании болтов жесткости и поэтому по сравнению с описанной во вступительной части вставкой для горелки требуется меньше конструктивных элементов.

Камера сгорания согласно изобретению, предназначенная для газовой турбины, содержит, по меньшей мере, одну горелку, по меньшей мере, одну стенку камеры сгорания, охватывающую внутреннее пространство камеры сгорания, и, по меньшей мере, одну расположенную на стороне горелки ограждающую стенку камеры сгорания. Камера сгорания содержит установленную на несущей конструкции корпуса газовой горелки вставку для горелки, которая имеет стенку с холодной и горячей сторонами, при этом в этой стенке вставки для горелки выполнено отверстие для установки горелки. Вставка для горелки имеет край, ограничивающий стенку вставки для горелки, который имеет, по меньшей мере, частично охватывающее, выступающее над холодной стороной крайнее ребро и отверстия для прохода холодного воздуха. Причем крайнее ребро имеет зубцы, между которыми образованы отверстия, стенка вставки с холодной и горячей сторонами образует, по меньшей мере, ограждающую стенку камеры сгорания, причем горячая сторона стенки вставки для горелки обращена в сторону внутреннего пространства камеры сгорания. При этом крайнее ребро полностью располагается на несущей конструкции корпуса газовой турбины. В камере сгорания согласно изобретению ее стенка - в случае применения трубчатой камеры сгорания - может быть выполнена цилиндрической. В случае же применения кольцевой камеры сгорания присутствуют две ее стенки, а именно одна радиально наружная и одна радиально внутренняя стенки.

Следовательно, обеспечиваемые вставкой для горелки согласно изобретению преимущества достигаются в камере сгорания согласно изобретению, предназначенной для газовой турбины.

В камере сгорания согласно изобретению, предназначенной для газовой турбины, может быть предусмотрен зазор между ограждающей стенкой, образованной, по меньшей мере, одной вставкой для горелки, и, по меньшей мере, одной стенкой камеры сгорания, при этом зазор обеспечивает поступление холодного воздуха от холодной стороны вставки для горелки в камеру сгорания.

В случае применения кольцевой камеры сгорания газовой турбины с кольцевым внутренним пространством, образованным между внутренней и наружной стенками камеры сгорания, расположенная на стороне горелки ограждающая стенка камеры сгорания может быть образована, в частности, серией вставок для горелок, расположенных друг возле друга по периметру камеры сгорания. Между смежными вставками для горелок могут быть предусмотрены зазоры, обеспечивающие поступление холодного воздуха между вставками для горелок в кольцевую камеру сгорания.

Газовая турбина согласно изобретению оснащена, по меньшей мере, одной камерой сгорания, выполненной в виде камеры сгорания согласно изобретению. Кроме того, газовая турбина согласно изобретению содержит резервуар с хладагентом, например сообщенный с выходом компрессора пленум (резервуар) камеры сгорания, при этом холодная сторона стенки вставки для горелки аэрогидродинамически связана с резервуаром для хладагента. Такая газовая турбина позволяет реализовать преимущества камеры сгорания с вставкой для горелки согласно изобретению.

Другие признаки, свойства и преимущества настоящего изобретения приведены в описании примера выполнения со ссылкой на приложенные фигуры. При этом изображено:

фиг.1 - вставка для горелки согласно уровню техники;

фиг.2 - газовая турбина в продольном частичном разрезе;

фиг.3 - вид с частичным разрезом в перспективе на кольцевую камеру сгорания;

фиг.4 - вставка для горелки согласно изобретению;

фиг.5 - край вставки для горелки на фиг.4;

фиг.6 - детальный вид на край вставки для горелки;

фиг.7 - детальный вид на край измененной вставки для горелки.

На фиг.2 показана газовая турбина 1 в продольном разрезе. Она содержит участок 3 компрессора, участок 5 камеры сгорания и участок 7 турбины. Вал 9 проходит через все эти участки газовой турбины 1. На участке 3 компрессора вал 9 оснащен венцами рабочих лопаток 11 компрессора, а на участке 7 турбины - венцами рабочих лопаток 13 турбины. Между венцами рабочих лопаток располагаются на участке 3 компрессора венцы направляющих лопаток 15 компрессора, а на участке 7 турбины - венцы направляющих лопаток 17 турбины. Направляющие лопатки располагаются от корпуса 19 газотурбинной установки 1 по существу в радиальном направлении к валу 9.

При работе газовой турбины 1 воздух 23 засасывается через воздухозаборник 21 на участке 3 компрессора и сжимается рабочими лопатками 11 компрессора. Сжатый воздух подается в расположенную на участке 5 камеру сгорания 25, которая в данном примере выполнения является кольцевой и в которую также подается газообразное или жидкое топливо через, по меньшей мере, одну горелку 27. Образовавшаяся при этом воздушно-топливная смесь воспламеняется и сжигается в камере 25 сгорания. По траектории 29 течения горячие газообразные продукты сгорания устремляются на участок 7 турбины, где они расширяются, охлаждаются и при этом передают импульс на рабочие лопатки 13 турбины. При этом направляющие лопатки 17 турбины служат в качестве сопел для оптимизации передачи импульсов на рабочие лопатки 13. Вращение вала 9, вызванное передачей импульса, используется для приведения в действие потребителя, например электрического генератора. Газообразные продукты сгорания, давление которых уменьшилось и которые охладились, отводятся, наконец, через выпускное отверстие 31 из газовой турбины 1.

Кольцевая камера сгорания 25 изображенной на фиг.2 газовой турбины показана на фиг.3 с частичным разрезом и в перспективе. Можно различить наружную 33 и внутреннюю 35 стенки камеры сгорания. Как наружная 33, так и внутренняя 35 стенки камеры сгорания облицованы устойчивой к горячим газам футеровкой, состоящей из элементов 37 теплозащитного экрана. В данном примере выполнения в качестве элементов теплозащитного экрана могут использоваться керамические элементы. На конце камеры сгорания, обращенном к участку 7 турбины, предусмотрено отверстие 39 для выхода горячих газов, через которое образующиеся внутри камеры сгорания 25 горячие газообразные продукты сгорания могут поступать в турбину. На конце камеры сгорания 25, расположенном напротив отверстия 39 для выхода горячих газов, находится ограждающая стенка 5 камеры сгорания, образованная вставками 41 для горелок. В каждой вставке 41 расположена горелка 27. Вставки 41 для горелок не связаны при этом непосредственно с наружной 33 и внутренней 35 стенками камеры сгорания и расположены на несущей конструкции (не показана), которая в свою очередь закреплена на корпусе газовой турбины. Между отдельными вставками 41 для горелок, с одной стороны, а также наружной 33 и внутренней 35 стенками, с другой стороны, предусмотрен зазор, обеспечивающий поступление холодного воздуха по соответствующей стенке во внутрь камеры сгорания. Кроме того, вставки 41 для горелок расположены так, что между ними, т.е. между смежными по периметру кромками вставок 41 для горелок, остаются зазоры, обеспечивающие поступление холодного воздуха внутрь камеры сгорания.

Вставка для горелки показана на фиг.4 с частичным разрезом и в перспективе. Она содержит стенку 42 с холодной стороной 43 и горячей стороной 44, которая должна быть обращена в сторону внутреннего пространства камеры сгорания (горячая сторона на фиг.4 не показана). Холодная сторона 43 аэрогидродинамически связана с выходом компрессора, благодаря чему воздух из компрессора может подаваться для охлаждения по холодной стороне 43 с тем, чтобы можно было поддерживать температуру горячей стороны на приемлемом для материала вставки 41 для горелки уровне. Кроме того, горячая сторона снабжена теплоизолирующим покрытием, выполненным, например, в виде керамического покрытия и предназначенным для снижения расхода холодного воздуха.

По своему центру вставка 41 для горелки содержит отверстие 45, в которое может вставляться своей выходной стороной горелка 27. Отверстие 45 ограничено участком 47 стенки 42 вставки для горелки, выступающим над холодной стороной 43. От этого выступающего участка 47 проходит в радиальном направлении относительно отверстия 45 кольцевое ребро, с помощью которого вставка 41 для горелки может закрепляться на удерживающей конструкции.

В данном примере выполнения весь наружный край 46 вставки 41 для горелки снабжен крайним ребром 51, выступающим над холодной стороной 43, придающим краю 46 повышенную жесткость и обеспечивающим увеличение частоты собственных колебаний стенки 42 вставки для горелки. Детальные виды на край 46 с крайним ребром 51 показаны на фиг.5 и 6.

Крайнее ребро 51 имеет зубцы 53, образованные участками крайнего ребра 51, выступающими над холодной стороной 43 в большей степени, чем остальные участки 54 крайнего ребра 51. Если вставка для горелки закреплена на несущей конструкции и образует часть ограждающей стенки камеры сгорания, то зубцы 53 вместе с наиболее удаленными от холодной стороны 43 торцевыми поверхностями 55 прилегают к опорной поверхности удерживающей конструкции с образованием нулевого зазора. В этом случае между зубцами 53 будут образованы окна 57, через которые холодный воздух, подаваемый, как правило, от компрессора в зону выступающего стенового участка 47, может перетекать в камеру сгорания. Тогда холодный воздух может перемещаться для охлаждения вдоль холодной стороны 43, которая выполнена совершенно плоской вплоть до крайнего ребра 51 и выступающего стенового участка 47. Окна 57 между зубцами 53 представляют собой предназначенные для потока холодного воздуха отверстия с заданным проходным сечением, поскольку торцевые поверхности 55 зубцов 53 прилегают к опорной конструкции с образованием нулевого зазора. Путем соответствующего подбора ширины и высоты участков 54 крайнего ребра между зубцами 53 по отношению к высоте и ширине зубцов 53 можно целенаправленно регулировать количество поступающего в камеру сгорания холодного воздуха. Благодаря повышенной жесткости, обеспечиваемой краю 46 крайним ребром 51, не возникает существенных отклонений по величине зазора между поверхностями 55 зубцов и опорной поверхностью, в результате чего определяемое окнами живое сечение потока холодного воздуха сохраняется по существу постоянным также во время работы газовой турбины. Поэтому избыточная подача холодного воздуха вследствие увеличения размеров зазора может быть существенно сокращена по сравнению с уровнем техники, что в свою очередь ведет к снижению подачи холодного воздуха в камеру сгорания и, следовательно, в конечном итоге к снижению выбросов вредных веществ и повышению температуры на входе в турбину.

Хотя крайнее ребро 51 в приведенном на фиг.4-6 примере выполнения и снабжено зубцами 53 для образования окон 57 для подачи холодного воздуха, однако возможно также оставить крайнее ребро 51 равномерно выступающим над холодной стороной 43. Тогда проход холодного воздуха может быть обеспечен посредством сквозных отверстий 59, выполненных, например, в виде сверлений. Соответствующий пример выполнения вставки для горелки согласно изобретению показан на фиг.7.

Хотя в приведенных примерах выполнения крайнее ребро располагается вдоль всего наружного края 46 вставки 41 для горелки, однако возможны также такие варианты выполнения, в которых участки наружного края 46 вставки 41 для горелки не содержат крайнего ребра 51. Кроме того, возможны варианты выполнения цилиндрических камер сгорания. Согласно одному из таких вариантов выполнения наружный край вставки для горелки был бы выполнен, по существу, круговым и крайнее ребро располагалось бы вдоль, по меньшей мере, части периметра, предпочтительно по всему периметру.

Благодаря изобретению увеличивается частота собственных колебаний вставки для горелки и одновременно обеспечивается целенаправленное регулирование потока холодного воздуха, поступающего в камеру сгорания, в результате чего холодный воздух может протекать только через предварительно заданные зазоры. Тем самым благодаря изобретению достигаются дополнительные преимущества, как, например, более продолжительный срок службы вставки для горелки и - вследствие экономии расхода холодного воздуха благодаря вставке для горелки - снижение выбросов вредных веществ при той же мощности газовой турбины, снабженной вставками для горелок согласно изобретению, если при этом сэкономленный холодный воздух подается в горелку. В качестве альтернативы при равных выбросах вредных веществ возрастает мощность газовой турбины.

1. Камера (25) сгорания газовой турбины, содержащая, по меньшей мере, одну горелку (27), по меньшей мере, одну охватывающую внутреннее пространство камеры сгорания стенку (33, 35) и расположенную на стороне горелки ограждающую стенку камеры сгорания, причем предусмотрена, по меньшей мере, одна установленная на несущей конструкции корпуса газовой турбины вставка (41) для горелки, которая имеет стенку (42) с холодной (43) и горячей (44) сторонами, при этом в стенке (42) вставки (41) для горелки выполнено отверстие (45) для установки горелки (27), и край (46), ограничивающий стенку (42) вставки (41) для горелки, имеющий, по меньшей мере, частично охватывающее, выступающее над холодной стороной (43) крайнее ребро (51) и отверстия (57) для прохода холодного воздуха, причем крайнее ребро (51) имеет зубцы (53), между которыми образованы отверстия (57), при этом стенка (42) вставки (41) для горелки образует, по меньшей мере, частично ограждающую стенку камеры сгорания, а горячая сторона (44) стенки (42) обращена в сторону внутреннего пространства камеры сгорания, отличающаяся тем, что крайнее ребро (51) полностью располагается на несущей конструкции корпуса газовой турбины, а зубцы (53) образованы участками крайнего ребра (51), выступающими над холодной стороной (43) больше, чем остальные участки (54) крайнего ребра (51), при этом крайнее ребро (51), проходящее по всему краю (46), имеет отверстия (57) по всему краю (46).

2. Камера (25) по п.1, отличающаяся тем, что вокруг отверстия (45) горелки расположен кольцевой стеновой участок (47), выступающий над холодной стороной (43) и содержащий кольцевую перемычку (49), а стенка (42) вставки (41) для горелки выполнена плоской.

3. Камера (25) по п.2, отличающаяся тем, что между ограждающей стенкой камеры сгорания, образованной, по меньшей мере, одной вставкой (41) для горелки, и, по меньшей мере, одной стенкой (33, 35) камеры сгорания, предусмотрен зазор.

4. Камера (25) по п.2 или 3, отличающаяся тем, что она выполнена в виде кольцевой камеры сгорания с внутренним кольцевым пространством, образованным между внутренней (35) и наружной (33) стенками камеры сгорания, а расположенная на стороне горелки ограждающая стенка камеры сгорания образована множеством вставок (41) для горелок, расположенных друг возле друга по периметру кольцевой камеры (25) сгорания.

5. Камера (25) по п.4, отличающаяся тем, что между соседними вставками (41) для горелок предусмотрены зазоры.

6. Газовая турбина (1), по меньшей мере, с одной камерой (25) сгорания, отличающаяся тем, что:
- по меньшей мере, одна камера (25) сгорания газовой турбины представляет собой камеру сгорания газовой турбины по любому из пп.1-5,
- предусмотрено наличие резервуара для хладагента,
- холодная сторона (43) стенки (42) вставки (41) для горелки аэрогидродинамически связана с резервуаром для хладагента.



 

Похожие патенты:

Система (1) элементов теплозащитного экрана, включающая один элемент (3) теплозащитного экрана для расположенного на несущей структуре (30) теплозащитного экрана, и способ ее монтажа.

Резонатор с приспосабливаемой частотой (f) резонатора для поглощения звука, создаваемого газовым потоком газовой турбины (110), при этом резонатор (100) содержит горловинную секцию (102), камеру (101) и деформируемый элемент (103), выполненный с возможностью деформации под действием изменения температуры газовой турбины, при этом деформируемый элемент (103) содержит биметаллический элемент и образует спираль (300).

Устройство с теплозащитным экраном состоит из несущей конструкции и закрепленного на ней теплозащитного экрана с прилегающей к несущей конструкции, огибающей боковой стенкой и с обращенным к несущей конструкции внутренним пространством и кромками паза, образованными основанием паза и боковой стенкой.

Установка содержит газотурбинный двигатель, имеющий компрессор, турбину, камеру сгорания, расположенную за компрессором перед турбиной, систему ввода текучей среды, резонатор с изменяемой геометрией и контроллер, выполненный с возможностью настройки указанного резонатора в соответствии с сигналом обратной связи.

Система сжигания топлива газотурбинного двигателя содержит по меньшей мере один резонатор, расположенный на стенке системы сжигания топлива, ограничивающей канал течения потока горячих и находящихся под давлением газообразных продуктов сгорания.

Изобретение относится к горелке для газотурбинного двигателя. Горелка содержит радиальную центробежную форсунку для создания завихренной топливовоздушной смеси, камеру сгорания, в которой происходит сгорание завихренной топливовоздушной смеси, и предкамеру.

Горелка // 2459146
Изобретение относится к области энергетики. .

Изобретение относится к машинному компоненту с изготовленным из основного материала основным телом, которое снабжено на части своей поверхности бронированием из нанесенного материала с большей по сравнению с основным материалом твердостью.

Способ диагностирования склонности камеры сгорания к гудению в рабочем состоянии, включающий следующие этапы: эксплуатацию камеры сгорания в рабочем состоянии; регистрацию термоакустической величины газового объема камеры сгорания и/или величины колебаний конструкции камеры сгорания в рабочем состоянии и определение параметрической величины по термоакустической величине и/или по величине колебаний; определение спектра параметрической величины в рабочем состоянии в виде ее амплитудной характеристики в зависимости от времени; идентификацию первого и второго резонансов параметрической величины с помощью спектра; определение амплитудного значения первого резонанса и амплитудного значения второго резонанса; расчет параметра стабильности в качестве функции амплитудного значения первого резонанса и амплитудного значения второго резонанса; определение нижнего и/или верхнего значения расстояния, на которое параметр стабильности лежит выше нижнего заданного порогового и/или ниже верхнего заданного порогового значения. Пороговые значения выбраны таким образом, что в случае эксплуатации камеры сгорания в рабочем состоянии с еще допустимо высокой склонностью к гудению параметр стабильности в этом рабочем состоянии имеет одно из пороговых значений. Определяют квантификацию склонности к гудению посредством нижнего и/или верхнего значения расстояния. При этом параметрической величиной является звуковое давление в камере сгорания, измеряемое с помощью, по меньшей мере, одного микрофона. Изобретение направлено на создание способа диагностирования, при котором камера сгорания может эксплуатироваться с достаточно низкой склонностью к гудению. 2 н. и 14 з.п. ф-лы, 4 ил.

Элемент теплозащитного экрана камеры сгорания газотурбинного двигателя (14) с боковой стенкой (16), имеющей углубление (4) с ориентированным в направлении несущей конструкции (17) пропускным отверстием (30). В это углубление (4) может устанавливаться крепежный винт (18), который при этом проходит через пропускное отверстие (30) так, что закрепляется элемент теплозащитного экрана вертикально на резьбовом соединении (19), предусмотренном в несущей конструкции. Пропускное отверстие (30) имеет в боковой стенке (16) предохранительное устройство (41, 44), образующееся посредством боковой стенки (16). Посредством предохранительного устройства (41, 44) при монтаже предотвращается выпадение крепежного винта (18) сбоку из пропускного отверстия (30). Достигается упрощение монтажа теплозащитного экрана. 3 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Корпус камеры сгорания, образованный внешним кожухом камеры сгорания с внутренней полостью и внутренним кожухом камеры сгорания с внутренней полостью, причем внешний кожух камеры сгорания и внутренний кожух камеры сгорания содержат каждый по одному открытому к торцевой стороне, сплошному, проходящему по окружности пазу, обращенному в сторону внутренней полости кожуха, причем в пазах предусмотрена установка сменной прокладки из двух частей, причем указанная прокладка соединена с внешним кожухом камеры сгорания и внутренним кожухом камеры сгорания с возможностью разъединения. Также представлена газовая турбина, содержащая корпус согласно настоящему изобретению. Изобретение позволяет упростить демонтаж прокладки, а также исключить износ мест стыка между кольцами из уголкового материала и внешним или внутренним кожухами камеры сгорания. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к керамической плитке для футеровки камеры сгорания, в частности газовых турбин. Керамическая плитка для футеровки камер сгорания, в частности газовых турбин, содержит слой основания, изготовленный из керамического материала, например глинозема или глинозема-муллита, и покрытие, наносимое, по меньшей мере, на одну сторону слоя основания; покрытие представляет собой многослойное керамическое покрытие, содержащее, по меньшей мере, один внешний слой, изготовленный из глинозема или керамического материала, содержащего глинозем, и, по меньшей мере, один промежуточный слой, расположенный между внешним слоем и слоем основания и изготовленный из керамического материала, содержащегося муллит и предпочтительно муллит или глинозем-муллит. Изобретение обеспечивает повышение устойчивости плитки к высоким температурам, коррозии и механическим нагрузкам. 2 н. и 9 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике. Элемент (14) теплозащитного экрана, в частности, для облицовки стенки камеры сгорания, включающий в себя первую стенку (17) с горячей стороной (18), на которую может подаваться горячая среда, с противолежащей горячей стороне (18) холодной стороной (19) и с круговой кромкой (24), которая проходит по первой боковой стороне (20), второй боковой стороне (21) и третьей боковой стороне (22) первой стенки (17) за пределы холодной стороны (19), в основном, до первой высоты (25), причем круговая кромка (24) на четвертой боковой стороне (23) проходит до второй высоты (26), которая меньше первой высоты (25) и, что, в основном, на второй высоте (26) вторая стенка (27) противолежит холодной стороне (19) и проходит по ширине четвертой боковой стороны (23) от четвертой боковой стороны (23) через часть длины смежных с четвертой боковой стороной (23) боковых сторон (20, 22), причем вторая стенка (27) на своем обращенном от четвертой боковой стороны (23) конце (28) имеет кромку (29), которая проходит до первой высоты (25). Также представлены камера сгорания и газовая турбина. Изобретение позволяет осуществлять подачу воздуха обвода в поток горячего воздуха без серьезной модификации конструктивных элементов, подающих горячий газ. 3 н. и 9 з.п. ф-лы, 3 ил.

Изобретение относится к способу уплотнения анодных красок посредством пескоструйной обработки. Направляют две струи абразивного материала в сторону детали, покрытой упомянутой краской. Струи ориентируют со схождением в точке фокусирования, находящейся перед деталью. В результате увеличивается скорость обработки. 4 з.п. ф-лы, 4 ил.

Ленточная уплотнительная конструкция для уплотнения первой передней панели блока горелок со второй передней панелью прилегающего блока горелок газовой турбины содержит уплотнительную пластину с каналами, а также контейнеры, присоединенные к задней стороне уплотнительной пластины. Передняя сторона уплотнительной пластины обращена к камере сгорания, а ее задняя сторона обращена от камеры сгорания. Контейнеры имеют заранее определенный объем и присоединены к задней стороне уплотнительной пластины. Каждый контейнер находится в сообщении по текучей среде с каналом для создания акустического демпфера. Другое изобретение группы относится к камере сгорания газовой турбины, содержащей указанную выше ленточную уплотнительную конструкцию. При изготовлении указанной выше ленточной уплотнительной конструкции присоединяют контейнеры, имеющие заранее определенные объемы, к задней стороне уплотнительной пластины таким образом, чтобы они находились в сообщении по текучей среде с каналами, выполненными в уплотнительной пластине, для создания акустического демпфера. Группа изобретений позволяет упростить изготовление и установку ленточной уплотнительной конструкции, имеющей возможность демпфирования желаемых частот акустических колебаний камеры сгорания газовой турбины. 3 н. и 10 з.п. ф-лы, 7 ил.

Изобретение относится к системе сгорания и способу прогнозирования концентрации загрязняющих веществ системы сгорания для газотурбинного двигателя. Задачей изобретения является обеспечение более надежной прогнозирующей системы контроля выбросов. Система (100) сгорания содержит камеру (101) сгорания, в которую впрыскиваются и воспламеняются запальное топливо (102) и основное топливо (103), причем выхлопной газ (104), производимый сгоревшим запальным топливом (102) и сгоревшим основным топливом (103), выпускается из камеры (101) сгорания. Блок (112) управления соединен с блоком (105) управления топливом для регулировки соотношения запального топлива (102), с датчиком (107) температуры для приема сигнала температуры, с блоком (109) определения топлива для приема определенного сигнала топлива и с датчиком (110) массового расхода для приема определенного сигнала массового расхода. Блок (112) управления выполнен с возможностью определения прогнозируемой концентрации загрязняющих веществ выхлопного газа (104) на основании сигнала температуры, сигнала топлива, сигнала массового расхода и соотношения разделения топлива. Способ прогнозирования концентрации загрязняющих веществ системы сгорания для газотурбинного двигателя содержит несколько этапов. Блоком (105) управления топливом делят топливо (106) на запальное топливо (102) и основное топливо (103). Топливо впрыскивается и воспламеняется внутри камеры сгорания. Генерируют сигнал температуры датчиком (107) температуры, указывающий температуру выхлопного газа внутри камеры (101) сгорания или дальше по потоку после камеры сгорания. Генерируют сигнал массового расхода датчиком (110) массового расхода, указывающий массовый расход (111) воздуха, входящего в камеру сгорания. Блоком (109) определения топлива определяют сигнал топлива, указывающий состав топлива (106). Блоком управления на основании сигнала температуры, сигнала топлива, сигнала массового расхода и соотношения разделения топлива определяют прогнозируемую концентрацию загрязняющих веществ выхлопного газа (104). 3 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к турбинному двигателю и, в частности, к системе для повышения эксплуатационной пригодности топливной форсунки. Топливная форсунка содержит центральный корпус, выполненный с возможностью приема первой части воздуха и доставки этого воздуха в зону горения. Кроме того, топливная форсунка содержит завихритель, выполненный с возможностью приема второй части воздуха и доставки этого воздуха в зону горения. Завихритель содержит наружную окружную стенку, внутреннюю окружную стенку и завихряющую лопатку. Завихряющая лопатка содержит радиальный профиль завихрения, расположенный на ее нижней по потоку кромке. Радиальный профиль завихрения содержит один участок, проходящий от наружной окружной стенки до первой точки перехода, и второй участок, проходящий от точки перехода до внутренней окружной стенки. По меньшей мере один участок, первый или второй, является, по существу, прямым, и по меньшей мере один участок, первый или второй, является дугообразным. Также представлены способ направления воздуха через топливную форсунку, а также завихритель топливной форсунки. Изобретение позволяет повысить эксплуатационную пригодность топливной форсунки. 3 н. и 20 з.п. ф-лы, 11 ил.
Наверх