Инжектор заряженных пылевых частиц

Изобретение относится к области ускорительной техники и может быть использовано в качестве инжектора пылевых частиц для последующей ускорительной системы. Инжектор заряженных пылевых частиц, содержащий корпус, зарядный электрод, зарядную камеру, внешний составной электрод зарядной камеры, иглу (или набор игл), бункерную камеру. Для предотвращения спекания микропорошка в бункерной камере бункерная камера выполнена в форме "песочных часов" во внешнем составном электроде зарядной камеры, у внешней поверхности бункерной камеры установлен шаговый двигатель, обеспечивающий вращение бункерной камеры, на оси инжектора установлены два цилиндра Фарадея, которые соединены с блоком управления шагового двигателя. 1 ил.

 

Изобретение относится к области ускорительной техники и может быть использовано в качестве инжектора пылевых частиц для последующей ускорительной системы.

Известен инжектор заряженных пылевых частиц, состоящий из бункерной камеры, образованной возбуждающим электродом и внутренней стороной зарядного электрода, зарядной камеры, образованной внешней стороной зарядного электрода и корпусом, иглы (Акишин А.И., Новиков Л.С. Методика и оборудование имитационных испытаний материалов космических аппаратов. - М.: Изд-во Моск. ун-та, 1990, 90 с.).

Наиболее близким аналогом является инжектор заряженных пылевых частиц, состоящий из зарядного электрода, зарядной камеры, иглы (или набора игл), бункерного электрода, бункерной камеры и микроизлучателя (Н.Д. Семкин, А.В. Пияков, К.Е. Воронов, С.М. Шепелев, Н.Л. Богоявленский. Инжектор заряженных пылевых частиц // Приборы и техника эксперимента, №3, 2006. Стр.154-159).

Однако он обладает недостатком: уменьшение потока частиц на выходе инжектора при длительной работе из-за спекания микропорошка в бункерной камере под действием электростатических разрядов.

Поставлена задача разработать инжектор заряженных пылевых частиц с отсутствием спекания микропорошка в бункерной камере.

Поставленная задача достигается тем, что в инжекторе заряженных пылевых частиц, содержащем зарядный электрод, зарядную камеру, внешний составной электрод зарядной камеры, иглу (или набор игл), согласно изобретению во внешнем составном электроде зарядной камеры выполнена бункерная камера, имеющая форму "песочных часов", у внешней поверхности бункерной камеры установлен шаговый двигатель, обеспечивающий вращение бункерной камеры, на оси инжектора установлены два цилиндра Фарадея, соединенные с устройством управления шаговым двигателем.

Сущность изобретения поясняется чертежом.

Устройство содержит корпус 1, в котором расположена зарядная камера 2, образуемая зарядным электродом 3 и внешним составным электродом зарядной камеры 4, иглу (или набор игл) 5, установленную на зарядном электроде 3 соосно выходному отверстию инжектора, микропорошок 6, бункерная камера 7 выполнена во внешнем составном электроде зарядной камеры 4 в форме "песочных часов", два цилиндра Фарадея 8, установленных по оси инжектора, соединены с блоком управления шаговым двигателем 9, механический привод шагового двигателя 10 соединен с бункерной камерой 7, а электрический вход шагового двигателя 10 соединен с блоком управления шагового двигателя 9.

Устройство работает следующим образом: микропорошок 6 находится в бункерной камере 7, из которой под действием силы тяжести он высыпается в нижнюю часть бункерной камеры 7 мимо иглы (или набора игл) 5, при касании иглы (или набора игл) 5 микрочастицы микропорошка 6 получают заряд и под действием электрического поля, создаваемого положительным потенциалом на зарядном электроде 3 относительно составного внешнего электрода зарядной камеры 4, вылетают из инжектора, пролетая цилиндры Фарадея 8, частицы наводят на них потенциал, по которому блок управления шаговым двигателем 9 собирает информацию о работе инжектора. Когда микропорошок 6 заканчивается в верхней части бункерной камеры 7, блок управления шаговым двигателем 9 формирует сигнал для шагового двигателя 10 и бункерная камера 7 переворачивается на 180 градусов.

Таким образом устраняется эффект спекания частиц в бункерной камере.

Инжектор заряженных пылевых частиц, содержащий корпус, зарядный электрод, зарядную камеру, внешний составной электрод зарядной камеры, иглу (или набор игл), бункерную камеру, отличающийся тем, что во внешнем составном электроде зарядной камеры выполнена бункерная камера, имеющая форму "песочных часов", у внешней поверхности бункерной камеры установлен шаговый двигатель, обеспечивающий вращение бункерной камеры, на оси инжектора установлены два цилиндра Фарадея, которые соединены с блоком управления шагового двигателя.



 

Похожие патенты:

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Каскадный импульсный ускоритель твердых частиц содержит инжектор, индукционные датчики, усилители, цилиндрические электроды, резисторы делителя, колонны разделительных сопротивлений, высоковольтные конденсаторы, неуправляемые разрядники, управляемые разрядники, систему управления, датчик тока, источник высокого напряжения, шину данных, мишень, согласующее устройство, электронно-вычислительную машину.

Заявленное изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии дейтронов с тритиевыми мишенями.
Изобретение относится к высоковольтной ускорительной технике и, в частности, к ленточным транспортерам зарядов электростатических ускорителей. В качестве многослойной тканевой основы транспортировочной ленты используют полиэфирно-хлопковую ткань, слои которой соединяют между собой клеем с высокой адгезией, а плакировочные слои ткани выполняют из резиновой смеси на основе бутадиен-нитрильного каучука, включающего мел и каолин.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. .

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для использования при разработке нейтронных и рентгеновских генераторов.

Изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии дейтронов с тритиевыми мишенями.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. .

Изобретение относится к области ускорительной техники и может быть использовано для решения научных и прикладных задач. .

Изобретение относится к способам регистрации аномальной дисперсии неоднородного протяженного плазменного столба и может быть использовано в спектроскопии в неоднородных газовых и плазменных средах, в лазерной спектроскопии и в спектральном анализе газообразных веществ. Технический результат - возможность наблюдения аномальной дисперсии в различных газах, причем вблизи узких спектральных линий поглощения в плазменно-пучковых разрядах. Способ определения аномальной дисперсии заключается в том, что на основе поперечного наносекундного плазменно-пучкового разряда с щелевым катодом создают двухслойную неоднородную плазменную среду с двухслойным распределением оптического показателя преломления, через которую наклонно пропускают широкополосное лазерное излучение со спектром вблизи спектральных линий поглощения плазмы, и после разложения с помощью спектрографа спектра лазера, прошедшего плазменный слой, на выходе спектрографа определяют аномальную дисперсию вблизи спектральных линий поглощения плазмы. 3 ил.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Ускоритель высокоскоростных твердых частиц содержит инжектор, индукционные датчики, усилители, линейный ускоритель, источник фиксированного высокого напряжения, цилиндрические электроды, селектор скоростей, селектор удельных зарядов, камеру высокого давления, блок формирования девиации частоты, высокочастотный конвертор, повышающий импульсный трансформатор и мишень. Технический результат - повышение скоростей частиц и надежности работы ускорителя. 1 ил.

Изобретение относится к устройствам импульсных излучателей с получением разовых или многоразовых импульсов нейтронного и рентгеновского излучения. В заявленном блоке излучателя нейтронов нейтронная трубка (8) с металлическим корпусом (9) герметично закреплена на торце корпуса блока схемы питания, имеет с ним тепловой и электрический контакты с возможностью смены нейтронной трубки. При этом нейтронная трубка размещена с зазором между высоковольтным изолятором (16) нейтронной трубки и изолятором блока схемы питания (17), заполненным газообразным диэлектриком (18). Между корпусом нейтронной трубки и мишенью расположено керамическое кольцо с электрическим сопротивлением, равным сопротивлению смещения. Блок схемы питания и нейтронная трубка электрически соединены между собой плавающими контактами. Техническим результатом является увеличение ресурса, повышение интенсивности излучения за счет удаления изоляционных материалов из области вокруг ускоряющего электрода, повышение стабильности. 2 з.п. ф-лы, 3 ил.

Изобретение относится к ускорительной технике наносекундного диапазона и предназначено для генерации мощных электронных пучков, используемых в СВЧ приборах, радиационных технологиях и научных исследованиях. Сильноточный наносекундный ускоритель электронных пучков содержит размещенные в одном цилиндрическом корпусе (1) и соединенные последовательно двойную формирующую линию (2) с коаксиальными электродами (7, 8), основной искровой разрядник (3) и обостряющий искровой разрядник (4), вакуумный диод (5) и импульсный зарядный генератор (6) с ферромагнитным сердечником (14) и высоковольтным электродом (19), который соединен с дисковым электродом (9) основного искрового разрядника (3) и коаксиальным электродом (7) двойной формирующей линии (2). При этом объемы, занимаемые зарядным генератором (6) и двойной формирующей линией (2), разделены корпусом основного разрядника (3). Емкостный накопитель зарядного генератора (6) выполнен из параллельно соединенных и соосно расположенных цилиндрических конденсаторов (12). Вторичная обмотка импульсного трансформатора выполнена из четырех секторных обмоток (18), радиально расположенных вокруг ферромагнитного сердечника (14). Технический результат - повышение надежности и ресурса ускорителя. 2 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к области ускорительной техники и может быть использовано в качестве инжектора пылевых частиц в стенде для проведения испытаний по воздействию разнонаправленных потоков ускоренных частиц на материалы и элементов конструкции космических аппаратов. Инжектор заряженных пылевых частиц содержит корпус, зарядную камеру, внешний составной электрод зарядной камеры, бункерный электрод, бункерную камеру и пьезоизлучатель. Зарядный электрод имеет эллиптическую форму, на нем установлены два набора углеродистых нитей, направленных в горизонтальном и в вертикальном направлениях, внешний составной электрод содержит два выходных отверстия, направленных в горизонтальной и вертикальной плоскости, в выходных отверстиях инжектора установлены металлические сетки. Технический результат - увеличение выхода заряженных пылевых частиц и обеспечение двух направлений движения потока заряженных пылевых частиц - вертикального и горизонтального. 2 ил.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Резонансный ускоритель пылевых частиц содержит инжектор, индукционные датчики, усилители, мишень. Соосно инжектору установлены сквозной изолятор, экранирующий электрод, автогенератор и резонансный трансформатор, состоящий из диэлектрической трубы, первичной и вторичной обмотки и конического каркаса первичной обмотки. Технический результат - повышение скоростей и расширение диапазона ускоряемых частиц, повышение надежности и упрощение конструкции. 1 ил.

Изобретение относится к ускорительной технике и может быть использовано для создания пучков заряженных частиц наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему 1 в виде набора ферромагнитных сердечников, охваченных витками намагничивания 2, которые объединены в два общих вывода, центральный электрод 3, расположенный по оси индукционной системы 1, один конец электрода 3 заземлен на корпус ускорителя, а второй связан с защитным экраном 5, одинарную формирующую линию 6, заземленный и потенциальный электроды которой соединены с выходом магнитного импульсного генератора 7, состоящего из последовательных контуров сжатия, каждый из которых образован конденсатором и дросселем насыщения, один из общих выводов витков намагничивания индукционной системы 1 подсоединен к потенциальному электроду формирующей линии 6, а между вторым общим выводом витков намагничивания индукционной системы 1 и заземленным электродом одинарной формирующей линии 6 включена обмотка магнитного коммутатора 8, между защитным экраном 5 и выходным фланцем 9 ускорителя расположен цилиндрический вакуумный изолятор 10, на изоляторе 10 размещена однослойная обмотка размагничивания 11, подсоединенная одним выводом к клемме 12 импульсного источника размагничивания. На изоляторе 10 размещена дополнительная обмотка 13, индуктивно связанная с обмоткой размагничивания 11, один вывод дополнительной обмотки 13 соединен с защитным экраном 5, другой подсоединен к обмотке размагничивания 11 и точка соединения обмоток 11, 13 подключена электрическим проводником 14 к центральному электроду 3, на котором у защитного экрана 5 размещены ферромагнитные сердечники 15 дополнительного дросселя насыщения. Контур, образованный дополнительной обмоткой 13, проводником 14, частью центрального электрода 16 и защитным экраном 5, охватывает сечение сердечников 15 дополнительного дросселя насыщения и является его короткозамкнутой обмоткой. Технический результат - повышение эффективности ускорителя за счет уменьшении длительности фронта импульса тока пучка ускорителя. 1 ил.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Устройство для исследования физических явлений при высокоскоростном ударе состоит из ускорительного тракта, содержащего инжектор, индукционные датчики, линейный ускоритель, мишень, согласно изобретению в ускорительный тракт введены соосно расположенные квадруполь, установленный за индукционными датчиками, и блок разряда частиц, сетки заземления, расположенные на входе и выходе блока разряда частиц после линейного ускорителя, приемник ионов, установленный перед мишенью, дополнительно введен второй ускорительный тракт, расположенный под углом от 1° до 10° к первому ускорительному тракту, состоящий из инжектора, индукционных датчиков, линейного ускорителя, мишени, квадруполя, блока разряда частиц, сетки заземления, приемника ионов, а также дополнительно в устройство введен измерительный блок, соединенный с блоком датчиков, приемниками ионов обоих усилительных трактов и блоком сбора информации, а также веден блок управляющих сигналов, соединенный с индукционными датчиками, квадруполями, линейными ускорителями, блоками разряда частиц обоих усилительных трактов и блоком сбора информации. Технический результат - расширение функциональных возможностей за счет возможности исследовать физические эффекты при встречном столкновении высокоскоростных частиц. 1 ил.

Изобретение относится к технике ускорителей и может быть использовано при создании сильноточных импульсных ускорителей электронов, в частности вакуумных диодных узлов сильноточных ускорителя электронов с двойным катодом и механизмом оперативного изменения рабочего тока. Технический результат - повышение надежности. Устройство содержит вакуумный корпус с анодной диафрагмой и катододержателем, в котором перед анодной диафрагмой закреплен катод, выполненный в виде рабочего и балластного катодов, установленных на подвижном поршне, а также гидравлическую передачу, содержащую установленный вне вакуумного корпуса задающий механизм, диэлектрическую трубку, установленную в вакуумном корпусе и соединенную входным концом с задающим механизмом с возможностью подачи в нее рабочей жидкости гидравлической передачи, и гибкий шланг. Подвижный поршень снабжен исполнительным механизмом гидравлической передачи, выходной конец диэлектрической трубки закреплен в корпусе катододержателя, гибкий шланг установлен между выходным концом диэлектрической трубки, покрытой слоем электропроводящего материала, и исполнительным механизмом гидравлической передачи с возможностью передачи в него рабочей жидкости, в качестве которой используют электропроводящую жидкость. В месте соединения диэлектрической трубки и шланга обеспечивается гальванический контакт электропроводящей жидкости с высоковольтным корпусом катододержателя, а в месте соединения диэлектрической трубки с заземленным вакуумным корпусом обеспечивается гальванический контакт электропроводящей жидкости с вакуумным корпусом. 1 ил.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Ускоритель высокоскоростных твердых частиц содержит инжектор, индукционные датчики, усилители, линейный ускоритель, источник фиксированного высокого напряжения, цилиндрические электроды, селектор скоростей, селектор удельных зарядов, блок подачи напряжения на электроды, цилиндрические электроды, генератор изменяемых во времени частоты и длительности импульсов в пачке, блок сопряжения, электронно-вычислительную машину, усилитель пачки импульсов переменной длительности, каскадный генератор, мишень, согласно изобретению в ускоритель введен блок контроля и селектор координат, при этом блок контроля соединен к селектору координат, который подсоединен к генератору изменяемых во времени частоты и длительности импульсов в пачке. Технический результат - возможность корректировать вектор скорости частицы в процессе ее полета. 2 ил.
Наверх