Способ и устройство для безаварийного спуска геофизического оборудования

Группа изобретений относится к нефтедобывающей промышленностии и может быть использована при проведении гидродинамических исследований скважин, в том числе для безопасной доставки глубинных приборов на требуемую глубину скважины. Способ включает спуск в эксплуатационную колонну глубинного прибора на геофизическом кабеле, спуск колонны насосно-компрессорных труб (НКТ) с отклонением оси погружного насоса и НКТ от оси эксплуатационной колонны. На каждую трубу устанавливают децентратор, снабженный верхними и нижними ребрами в количестве не менее четырех, повторяющими внутренний профиль эксплуатационной колонны и образующими зазор для прохождения глубинного прибора. Децентратор зафиксирован от осевого перемещения и выполнен с внутренним диаметром корпуса, позволяющим пропускать через себя трубу НКТ. Глубинный прибор спускают по направленной плоскости, образованной отклонением НКТ от оси эксплуатационной колонны и зазором. Обеспечивается безаварийный спуск и извлечение глубинного прибора на поверхность. 2 н. и 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к нефтедобывающей промышленностии и может быть использовано при проведении гидродинамических исследований скважин, в том числе для безопасной доставки глубинных приборов и дополнительного оборудования на требуемую глубину скважины.

Известен способ исследования скважины, оборудованной колонной насосно-компрессорных труб и скважинным штанговым насосом. Способ включает остановку работы станка-качалки и штангового насоса, спуск в скважину по межтрубному пространству прибора на геофизическом кабеле, запуск станка-качалки и штангового насоса, проведение исследований скважины после выхода на режим работы станка-качалки и штангового насоса, извлечение прибора из скважины (Патент РФ №2052089, БИ №1, 10.01.1996 г.).

Данное устройство не обеспечивает эксцентричного расположения колонны НКТ при прохождении наклонного участка скважины, не решает проблему закручивания кабеля вокруг НКТ при спуске глубинных приборов в затрубное пространство скважины, выпуклая сторона кривизны которой в каждом интервале зависит от зенитных углов и изменения азимутного направления.

Известно устройство для безопасного спуска глубинного прибора в скважину, содержащее скважинный штанговый насос, колонну насосно-компрессорных труб с закрепленным поясками геофизическим кабелем, глубинный прибор, установленный ниже штангового насоса и колонны НКТ (патент №2250991, БИ №9, 27.04.2005 г.).

Недостатком данного способа является то, что геофизический прибор и кабель, на котором он закреплен, спускаются в скважину совместно со спуском НКТ. В виду того, что кабель закреплен на НКТ, то невозможно его извлечение без подъема НКТ.

Технической задачей изобретения является разработка способа и устройства ориентированной подачи в скважину геофизического глубинного прибора и дополнительного оборудования, например, шлангокабель, гибкая труба, колонна НКТ, обеспечивающих дохождение глубинного прибора до нужного интервала в стволе скважины и безаварийное извлечение на поверхность.

Поставленная задача решается тем, что согласно предлагаемому способу безаварийного спуска геофизического обрудования производят отклонение оси насосно-компрессорных труб относительно оси эксплуатационной колоны, создают в эксплуатационной колонне направленное свободное пространство-полость, для чего на каждую насосно-компрессорную трубу устанавливают децентратор, производят спуск в образовавшийся канал глубинный прибор на геофизическом кабеле до требуемой для измерения параметров продуктивных пластов глубины.

Устройство для осуществления данного способа включает эксплуатационную колонну, колонну насосно-компрессорных труб с размещенным на ее нижнем конце погружным насосом, под который спущен глубинный прибор на геофизическом кабеле, на каждой трубе колонны насосно-компрессорных труб установлены децентраторы, зафиксированные от осевого перемещения. Кольцеобразный корпус децентраторов выполнен с внутренним диаметром, позволяющим пропускать через себя трубу НКТ, отверстие для пропуска НКТ выполнено смещенным от центра наружной поверхности децентратора. Корпус снабжен верхними и нижними ребрами в количестве не менее четырех, проходящими под углом к его оси и смыкающимися наружной поверхностью с образованием зазора для прохождения глубинного прибора на геофизическом кабеле.

На фиг. 1 изображена схема предлагаемого устройства, фиг.2 - децентратор, вид спереди.

Устройство для безаварийного спуска геофизического оборудования содержит эксплуатационную колонну 1, в которой установлена колонна насосно-компрессорных труб 2 с размещенным на ее нижнем конце погружным насосом 3. Глубинныйй прибор 4 закреплен на геофизическом кабеле 5 и спущен под погружной насос 3. Децентраторы 6, предназначенные для предотвращения закручивания геофизического кабеля 5 установлены на НКТ 2 с возможностью поворота относительно оси и зафиксированы от осевого перемещения. Корпус децентратора 6 выполнен кольцеобразной формы, с внутренним диаметром, позволяющим пропускать через себя трубу НКТ 2. Отверстие для пропуска НКТ 2 выполнено смещенным от центра наружной поверхности децентратора 6.

На наружной поверхности корпуса децентратора 6 выполнены верхние и нижние ребра 7, 8 в количестве не менее четырех, проходящие под углом к оси корпуса децентратора. Ребра 7, 8 выполнены симметричными относительно оси и плоскости, перпендикулярной оси, делящей децентратор 6 по высоте пополам. Верхние ребра 7 и нижние ребра 8 смыкаются наружной поверхностью, повторяя внутренний профиль эксплуатационной колонны 1 и образуя зазор 9 для прохождения глубинного прибора 4 с кабелем 5.

Для спуска оборудования в экспуатационную колону 1 соединяют первую трубу НКТ 2 с погружным насосом 3 и устанавливают на нее децентратор 6 с ребрами 7, 8, что обеспечивает отклонение оси насоса 3 и НКТ 2 от оси эксплуатационной колонны 1. При спуске компоновки в эксплуатационную колонну 1 производят присоединение следующих секций НКТ 2 с децентраторами 6 до полного сбора компоновки. При этом верхние ребра 7 и нижние ребра 8 децентратора 6 повторяют внутренний профиль эксплуатационной колонны 1 и образуют зазор 9 для прохождения глубинного прибора 4 на геофизическом кабеле 5. Глубинный прибор 4 на геофизическом кабеле 5, а также другое оборудование (на чертеже не показано), спускаются в зону исследования пласта по направленной полости 10, образованной отклонением колонны НКТ 2 от оси эксплуатационной колонны 1 и наличием зазора 9 в децентраторе 2. Направленная полость 10 ограничена наружной поверхностью колонны НКТ 2, внутренней поверхностью эксплуатационной колонны 1 и внутренней поверхностью зазора 9.

Применение данного способа и устройства позволяет проводить исследования скважин глубинными приборами на кабеле через исследовательскую пробку и гарантирует стопроцентное дохождение приборов до нужной глубины и безаварийное их извлечение, так как колонна насосно-компрессорных труб всегда прижимается к выпуклой стороне кривизны ствола эксплуатационной колонны, причем децентратор также прижимается к стенке эксплуатационной колонны своей закрытой стороной.

1. Способ безаварийного спуска геофизического оборудования, включающий спуск в эксплуатационную колонну колонны насосно-компрессорных труб и погружного насоса, спуск в эксплуатационную колонну глубинного прибора на геофизическом кабеле, проведение исследований и извлечение прибора, характеризующийся тем, что спуск колонны насосно-компрессорных труб производят, отклоняя ось погружного насоса и колонны насосно-компрессорных труб от оси эксплуатационной колонны, для чего на каждую трубу устанавливают децентратор, снабженный верхними и нижними ребрами в количестве не менеее четырех, повторяющими внутренний профиль эксплуатационной колонны и образующими зазор для прохождения глубинного прибора на геофизическом кабеле, причем децентратор зафиксирован от осевого перемещения и выполнен с внутренним диаметром корпуса, позволяющим пропускать через себя трубу НКТ, далее спускают по направленной полости, образованной отклонением колонны насосно-компрессорных труб от оси эксплуатационной колонны и зазором глубинный прибор на геофизическом кабеле до требуемой для измерения параметров продуктивных пластов глубины.

2. Устройство для безаварийного спуска геофизического оборудования, включающее эксплуатационную колонну, колонну насосно-компрессорных труб с размещенным на ее нижнем конце погружным насосом, под который спущен глубинный прибор на геофизическом кабеле, отличающееся тем, что на каждой трубе колонны насосно-компрессорных труб установлены децентраторы, зафиксированные от осевого перемещения, причем кольцеобразный корпус децентраторов выполнен с внутренним диаметром, позволяющим пропускать через себя трубу НКТ, отверстие для пропуска НКТ выполнено смещенным от центра наружной поверхности децентратора, а на наружной поверхности корпуса выполнены верхние и нижние ребра, в количестве не менее четырех, проходящие под углом к оси корпуса децентратора и смыкающиеся наружной поверхностью с образованием зазора для прохождения глубинного прибора на геофизическом кабеле.

3. Устройство по п.2, отличающееся тем, что ребра выполнены симметричными относительно оси и плоскости, перпендикулярной оси, делящей децентратор по высоте пополам и повторяют внутренний профиль эксплуатационной колонны.



 

Похожие патенты:

Группа изобретений относится к буровым долотам и к способам оценки их состояния. Буровое долото включает корпус с по меньшей мере одной калибрующей накладкой; группу акселерометров, включающих радиальный и тангенциальный акселерометры для определения радиального и тангенциального ускорений долота; и модуль анализа данных, включающий процессор, запоминающее устройство и порт связи и выполненный с возможностью: осуществления выборки информации об ускорении от акселерометров за время анализа; внесения информации об ускорении в запоминающее устройство для получения временного хода ускорения; анализа временного хода ускорения для определения расстояния, пройденного по меньшей мере одной калибрующей накладкой; анализа временного хода ускорения для определения по меньшей мере одного периода резания накладки и по меньшей мере одного периода скольжения накладки; и оценки износа калибрующей накладки на основании анализа пройденного расстояния, по меньшей мере одного периода резания накладки и по меньшей мере одного периода скольжения накладки.

Группа изобретений относится к оборудованию для доставки приборов в горизонтальную скважину. Скважинный тягач, в первом варианте, содержит два тянущих блока, включающие цилиндрические корпуса, соединенные сцепной втулкой, и движители.

Изобретение относится к эксплуатации нефтяных и газовых скважин, в частности к геофизическим исследованиям открытых стволов многозабойных горизонтальных скважин.

Изобретение относится к эксплуатации нефтяных и газовых скважин, в частности к геофизическим исследованиям открытых стволов многозабойных горизонтальных скважин.

Изобретение относится к нефтяной промышленности и может быть применено в нефтегазовых скважинах, оборудованных добычным насосом типа электроцентробежный насос для исследования профиля притока в интервале пласта по глубине скважины с помощью многопараметровых измерительных приборов, перемещаемых на геофизическом кабеле.

Изобретение относится к нефтедобывающей промышленности, может применяться в нефтегазовых скважинах, оборудованных добычным насосом типа электроцентробежный насос, для исследования профиля притока в интервале пласта по глубине скважины.

Изобретение относится к нефтяной и газовой промышленности, а именно к устройствам, обеспечивающим проведение геофизических исследований в наклонных и горизонтальных нефтяных и газовых скважинах приборами и инструментами на геофизическом кабеле.

Изобретение относится к способам выполнения операций в стволе скважины с использованием скважинных инструментов с перемещающимися секциями. .

Изобретение относится к области бурения горизонтальных скважин, для которых необходимо осуществлять измерения в скважине или выполнять диаграфические замеры. .

Изобретение относится к нефтедобывающей промышленности, а именно к устройствам для крепления электрического кабеля и его защиты от механических повреждений при спускоподъемных операциях на гидрозащитах. Технический результат заявляемого устройства заключается в универсализации протектолайзера путем создания посадочных мест, предназначенных для взаимодействия с опорными поверхностями элементов гидрозащит различных изготовителей. Протектолайзер состоит из корпуса 1 и хомута 2, соединенных разъемно с образованием внутренних посадочных поверхностей. Корпус 1 и хомут 2 имеют торцы, расположенные в плоскости разъема, и боковые поверхности. Корпус 1 протектолайзера снабжен узлом крепления электрического кабеля. Крепление электрического кабеля производится скобой 13 при помощи невыпадающих болтов 14. С первого торца 5 корпуса 1 внутренняя поверхность первого выступа 10 и внутренняя поверхность 16 второго выступа 11 выполнены цилиндрическими. Со второго торца корпуса 1 на первом выступе 10 внутренняя поверхность выполнена цилиндрической с выемкой для опоры на крепежные элементы гидрозащиты. На втором выступе 11 внутренняя поверхность выполнена цилиндрической с выемкой для опоры на крепежные элементы гидрозащиты. Внутренняя поверхность корпуса 1 в центральной части выполнена цилиндрической, и с обеих боковых поверхностей корпус 1 выполнен частично конусообразным 22. Внутренняя поверхность 23 хомута 2 выполнена в форме половины шестигранника, и с одной боковой поверхности 7 хомут 2 выполнен частично конусообразным. С противоположного торца на хомуте 2 установлена бобышка 25. 1.з.п. ф-лы, 7 ил.

Инструмент содержит анкерную хвостовую часть, направляющую гильзу, направленный переходник и кривой переводник. Анкерная хвостовая часть вращательно закреплена, по меньшей мере, на одном трубчатом элементе. Направляющая гильза содержит деталь с внутренней нарезкой и угловой ориентацией. Направленный переходник вращательно закреплен и аксиально подвижен по отношению к направляющей гильзе. Кривой переводник для буровой скважины универсальной ориентации (UBHO) расположен в верхнем конце инструмента снижения ударной нагрузки. Комплект скважинной электронной аппаратуры спарен с кривым переводником UBHO. Инструмент снижает ударную нагрузку на комплект электронной скважинной аппаратуры. 3 н. и 20 з.п. ф-лы, 15 ил.

Настоящее изобретение относится к средствам для выполнения электромагнитных измерений удельного сопротивления в подземном пласте. Техническим результатом является обеспечение регистрации данных о свойствах пласта до того, как буровое долото и приборы КВБ пройдут заданную глубину. Предложено устройство электромагнитного измерения удельного сопротивления подземного пласта, содержащее: буровое долото, имеющее режущую часть, содержащую по меньшей мере один выступающий торец; передатчик, соединенный с указанным по меньшей мере одним выступающим торцом; и приемник, соединенный с указанным по меньшей мере одним выступающим торцом. Причем указанный передатчик и указанный приемник по меньшей мере частично накладываются друг на друга, причем указанный передатчик и указанный приемник содержат отдельные витки провода, намотанные на один и тот же ферритовый сердечник. Кроме того, предложен второй вариант выполнения устройства электромагнитного измерения удельного сопротивления подземного пласта, в котором указанный приемник может быть расположен на предварительно заданном расстоянии от указанного передатчика. Причем указанное расстояние по меньшей мере частично зависит от частоты электромагнитной волны. Предложен также способ электромагнитного измерения удельного сопротивления подземной формации, осуществляемый с использованием указанных устройств. 3 н. и 13 з.п. ф-лы, 8 ил.

Изобретение относится к нефтегазодобыче, а именно к устройствам для установки глубинных приборов на насосно-компрессорных трубах (НКТ), например, для получения информации о параметрах жидкости в кольцевом пространстве скважины спускаемыми автономными измерительными приборами или для отбора проб жидкости в кольцевом пространстве скважины спускаемым автономным пробоотборником. Устройство содержит надетый и закрепленный на трубе контейнер для размещения внутри него автономных глубинных приборов. Контейнер выполнен в виде пенала на наружной поверхности отрезка НКТ с муфтой, причем типоразмер отрезка НКТ следующий в сторону увеличения диаметра относительно типоразмера основной колонны НКТ. На наружной поверхности муфты основной колонны НКТ выполнена резьба, сопрягаемая с внутренней резьбой муфты отрезка НКТ. Повышается надежность устройства, сохраняется равнопрочность и коррозионная стойкость тела трубы НКТ, упрощается изготовление. 2 ил., 1 табл.

Изобретение относится к области промысловой геофизики, а именно к устройствам для измерений геофизических и технологических параметров в процессе бурения и передачи их на поверхность. Устройство содержит корпус с центральным промывочным отверстием, электрически изолированный от корпуса центральный электрод, расположенный между изоляторами, размещенные в выемках корпуса, в его герметичной части, отделенной уплотнительными элементами, электрические платы. Изоляция центрального электрода от корпуса выполнена в виде отдельных колец из электроизоляционного материала, расположенных в проточках на поверхности корпуса со стороны его герметичной части, в непосредственной близости к посадочным местам уплотнительных колец и в местах выемок с электрическими платами в корпусе. Сопрягаемые детали корпуса и центрального электрода установлены с зазором, увеличенным на высоту выступа электроизоляционных колец над поверхностью корпуса. Для обеспечения регламентируемого номинального размера зазора для сопрягаемых деталей при установке уплотнительных элементов электроизоляционные кольца выступают над поверхностью корпуса на величину, необходимую для достижения указанного номинального зазора. Электроизоляционные кольца на корпусе могут быть установлены в несколько рядов. Размер отдельных электроизоляционных колец в местах выемок с электрическими платами в корпусе выбирают в соответствии с размерами мест для расположения указанных выемок. Увеличивается срок эксплуатации, повышается надежность. 1 з.п. ф-лы, 5 ил.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к инструментам, управляемым на подземном месте работы. При осуществлении способа обеспечивают возможность обнаружения по меньшей мере одного сигнала закрепляющему устройству, связанному с инструментом, применяют закрепляющее устройство для автоматической работы инструмента после задержки времени, спускают инструмент на заданное место работы в подземном пласте, вручную останавливают закрепление инструмента закрепляющим устройством с помощью по меньшей мере одного сигнала до истечения времени задержки, вручную повторно обеспечивают автоматическую работу закрепляющего устройства для закрепления в нужном положении инструмента после остановки в ответ на указанный по меньшей мере один сигнал. Расширяются функциональные возможности по дистанционному манипулированию инструментами. 2 н. и 29 з.п. ф-лы, 12 ил.

Изобретение предназначено для размещения скважинного датчика давления и температуры, входящего в состав подземного скважинного оборудования. Конструкция объединяет в себе корпус, блок подвода погружного кабеля и переходник. Внутри корпуса выполнено установочное устройство, в котором размещена металлическая трубка с датчиком. С одной стороны корпус соединен с переходником, имеющим наружную резьбу для соединения с корпусом и внутреннюю резьбу для соединения с устройством. Устройство содержит уплотнительный узел, состоящий из уплотнений для герметизации устройства с переходником и из последовательно расположенных уплотнительных колец, охватывающих трубку. Устройство содержит защитный узел от ударных воздействий в виде протяжного винтового канала, образованного резьбой устройства и штуцером. С другой стороны корпус соединен с блоком кабеля, содержащим устройство для внешнего крепления кабеля и внутренний канал для подвода кабеля. Кабель снабжен уплотнительным узлом, включающим последовательно установленные уплотнительные кольца, охватывающие его. На блоке расположен механизм фиксирования корпуса на переходнике. Переходник выполнен с отверстиями под крепежные элементы и снабжен каналом для связи датчика с пространством внутри колонны насосно-компрессорных труб. Технический результат заключается в повышении надежности подземного оборудования и увеличении защищенности датчика. 4 ил.

Группа изобретений относится к нефтяной промышленности и может быть применена для доставки скважинных приборов. Способ доставки скважинных приборов к забоям бурящихся скважин сложного профиля и проведения геофизических исследований характеризуется тем, что каротажные приборы подсоединяют к приборному мосту, в верхнюю часть которого ввинчивают нижнюю трубу бурильной колонны и, посредством их наращивания, приборы опускают на заданную глубину. Устанавливают устьевой и подвесной ролики, помещают внутрь верхней бурильной трубы кабельный контактный наконечник, смонтированный на одно- или трехжильном геофизическом кабеле, который предварительно пропускают через сальник устройства ввода кабеля. После чего устройство ввинчивают в замковую часть трубы и геофизический кабель с кабельным контактным наконечником, под контролем измерительных систем каротажной станции, опускают на глубину нахождения приборного моста для выполнения технологических операций по стыковке и фиксации электрических контактов устройств кабельного контактного наконечника и контактного блока. В зависимости от скважинных условий, стыковку и фиксацию для установления электрической связи с каротажными приборами осуществляют как под действием веса контактного наконечника, так и его прокачкой промывочной жидкостью. Геофизический кабель крепят в узле прижима кабеля, монтируют оттяжной ролик, и посредством выполнения синхронных спускоподъемов кабеля и бурильных труб с каротажными приборами, при контроле осевых усилий на них, производят геофизические исследования. Способ реализуется с помощью комплекса для доставки скважинных приборов к забоям бурящихся скважин сложного профиля и проведения геофизических исследований, выполненного в виде сборки, включающей приборный мост с переводником, кабельный контактный наконечник и устройство ввода геофизического кабеля. Технический результат заключается в повышении надежности доставки скважинных приборов. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к области бурения скважин и предназначено для фиксации забойного блока телеметрической системы (ЗТС) в ориентирующем переводнике, используемого для ориентации направленного бурения. Устройство включает ориентирующий переводник, содержащий в своем внутреннем канале ориентирующую втулку, в которую установлено посадочное перо корпуса забойного блока ЗТС. На ориентирующей втулке жестко закреплена ориентирующая шпонка, выполненная с возможностью входа в паз посадочного пера, благодаря которому посадочное перо занимает нужную ориентацию относительно забойного двигателя. Наряду с этим на поверхности посадочного пера выполнен паз, в котором установлен пружинный фиксатор. Ориентирующий переводник содержит в своем внутреннем канале дополнительную фигурную втулку, установленную ниже ориентирующей втулки. Указанная втулка сориентирована во внутреннем канале переводника посредством фиксирующей шпонки в пазу ориентирующего переводника. Пружинный фиксатор выполнен фигурной формы в соответствии с упорной поверхностью пера и закреплен винтами. Дополнительная фигурная втулка выполнена с заходным конусом и фиксирующим выступом для фиксации пружинного фиксатора. Повышается надежность фиксации забойного блока ЗТС в ориентирующем переводнике. 4 з.п. ф-лы, 2 ил.

Группа изобретений относится к скважинным электромагнитным телеметрическим системам и способам нанесения изолирующих покрытий на элементы узлов электромагнитных телеметрических антенн. Технический результат - повышение надежности покрытия в неблагоприятных условиях бурения. Сердечник для электромагнитных телеметрических систем содержит продолговатый корпус, имеющий первый и второй концы, электрическую изоляцию, нанесенную на, по меньшей мере, участок продолговатого корпуса и содержащую связующее покрытие, нанесенное на внешнюю цилиндрическую поверхность продолговатого корпуса, и слой электрической изоляции, нанесенный поверх связующего покрытия, и первый слой герметика, нанесенный на слой электрической изоляции. Связующее покрытие содержит материал, выбранный из группы, состоящей из сплава никель-хром, молибдена, алюминиевой бронзы и сплавов на основе цинка. Способ нанесения изолирующего покрытия на сердечник заключается в нанесении на внешнюю цилиндрическую поверхность сердечника электрической изоляции. 2 н. и 18 з.п. ф-лы, 3 ил.
Наверх