Способ (варианты) и устройство диагностики подшипника качения

Изобретения относятся к измерительной технике, в частности к диагностике подшипников качения. Способ включает измерение интервалов времени, соответствующих перемещению, по меньшей мере, одного тела качения, по меньшей мере, на одно заданное расстояние, и интервалов времени, соответствующих полному повороту вращающегося кольца подшипника или его повороту, по меньшей мере, на один заданный угол. При этом формируют ряд из интервалов времени, являющихся разностью между интервалом времени, соответствующим перемещению тела качения, и интервалом времени, соответствующим повороту вращающегося кольца, и сравнивают значения характеристики этого ряда интервалов времени с заданными диапазонами значений. Устройство включает датчик перемещения тел качения или элементов сепаратора, блок измерения интервалов времени между импульсами, поступающими от датчика, датчик опорного сигнала, соответствующего полному обороту вращающегося внутреннего кольца подшипника и открывающего таймер общего счета, входящий в состав блока измерений интервалов времени между импульсами, и блок формирования и анализа рядов интервалов времени. Технический результат заключается в повышении точности измерений, чувствительности к дефектам подшипника и возможности более раннего обнаружения дефектов подшипника. 3 н. и 6 з.п. ф-лы, 1 ил.

 

Область техники

Настоящее изобретение относится к машиностроению, а более точно к диагностике подшипников качения.

Предшествующий уровень техники

Вибродиагностика является сегодня основным видом диагностики подшипников качения, имеет богатую историю и предлагает промышленности множество различных по точности и используемым средствам измерения и обработки сигнала методов, см., например, патент РФ RU 2104510 от 10.02.1998 и патент США US 7184930 от 27.02.2007. Тем не менее, точности измерения в вибродиагностике оказываются недостаточными, что не позволяет проводить более раннюю диагностику подшипников.

Вместе с тем, известен, см. патент РФ №2438900 от 10.01.2012, способ диагностики подшипника качения, включающий использование для измерений датчика тел качения. Этот известный способ является ближайшим аналогом заявленного способа.

Недостатком этого известного способа является то, что измеряют кинематические параметры тел качения подшипника: частоту, период, т.е. параметры, характеризующие движение тела качения в течение некоторого периода, существенно превышающего (как правило, в 10 раз и более раз) время одного оборота подвижного кольца подшипника. При этом теряется информация о различиях в движении тел качения при каждом обороте подвижного кольца подшипника.

Следует отметить, что указанный в патенте РФ №2438900 кинематический параметр «положение тела качения», дословно: «кинематические параметры прохождения тел качения подшипника буксы мимо датчика представляют собой их положение», является неясным, поскольку положение тела качения в момент его прохождения мимо датчика совпадает с местоположением датчика и известно заранее. Кроме того, положение тел качения не характеризует состояние подшипника.

Недостатком этого известного способа является и то, что не предусмотрено использование данных о движении сепаратора для анализа состояния подшипника.

Известно также, см. патент РФ №2438900 от 10.01.2012, устройство диагностики подшипника качения, включающее датчик поворота вращающегося кольца подшипника и датчик перемещения тел качения или элементов сепаратора. Это известное устройство является ближайшим аналогом заявленного устройства.

Недостатком этого известного устройства является низкая точность измерений.

Раскрытие изобретения

Техническим результатом, достигаемым в заявленных вариантах способа и устройства диагностики подшипника качения, является повышение чувствительности к дефектам подшипника, например к появившимся и увеличивающимся в течение времени эксплуатации подшипника микротрещинам на поверхности колец, и возможность более раннего обнаружения дефектов подшипника. Повышение чувствительности к дефектам достигается благодаря использованию для диагностики рядов интервалов времени, измеренных с большой точностью.

Точность измерения в заявленных вариантах способа и устройстве диагностики подшипника качения, в частности, обеспечивает использование для диагностики таких характеристик рядов измеренных интервалов времени, как, например, спектр и разброс (вариации) измеренных значений интервалов времени, соответствующих перемещению тел качения или сепаратора на заданное расстояние, а также повороту кольца подшипника на заданный угол.

Указанный технический результат достигается в способе диагностики подшипника качения, включающем измерение датчиком перемещения тел качения интервалов времени, соответствующих перемещению, по меньшей мере, одного тела качения, по меньшей мере, на одно заданное расстояние, формирование ряда интервалов времени и сравнение значения характеристики сформированного ряда интервалов времени с заданным диапазоном ее значений. В качестве характеристики сформированного ряда интервалов времени можно использовать, например, разброс (вариации) значений интервалов времени. В качестве характеристик могут также быть использованы: расчетные кинематические параметры, взаимосвязанные с геометрическими параметрами подшипника; спектры сформированных рядов интервалов времени; расчетные параметры ряда интервалов времени; расчетные параметры нескольких временных рядов, формируемых из интервалов времени, соответствующих одновременному движению колец, тел качения и сепаратора. Заданный диапазон значений характеристики ряда интервалов времени может определяться на основании математического моделирования и/или характеристик, определенных для этого же подшипника ранее.

Дополнительно могут измерять интервалы времени, соответствующие полному повороту вращающегося кольца подшипника или его повороту, по меньшей мере, на один за данный угол, и формировать ряд из интервалов времени, являющихся разностью между интервалом времени, соответствующим перемещению тела качения, и интервалом времени, соответствующим повороту вращающегося кольца.

Могут измеряться интервалы времени, соответствующие перемещениям двух тел качения на заданные расстояния, формироваться ряды интервалов времени и сравниваться значения характеристик сформированных рядов измеренных интервалов времени с заданными диапазонами значений.

Указанный технический результат достигается в способе диагностики подшипника качения, включающем измерение с использованием датчика перемещения элементов сепаратора интервалов времени, соответствующих повороту сепаратора на заданный угол, формирование ряда интервалов времени, например между прохождениями элемента перед датчиком, и сравнение значения характеристики сформированного ряда интервалов времени с заданным диапазоном ее значений. В качестве характеристики сформированного ряда измеренных интервалов времени используют разброс (вариации) значений измеренных интервалов времени. В качестве характеристик могут также быть использованы: расчетные кинематические параметры, взаимосвязанные с геометрическими параметрами подшипника; спектры сформированных рядов интервалов времени; расчетные параметры ряда интервалов времени; расчетные параметры нескольких временных рядов, формируемых из интервалов времени, соответствующих одновременному движению колец, тел качения и сепаратора. Заданный диапазон значений характеристики ряда интервалов времени может определяться на основании математического моделирования и/или характеристик, определенных для этого же подшипника ранее.

Дополнительно можно измерять интервалы времени, соответствующие полному повороту вращающегося кольца подшипника, и формировать ряд из интервалов времени, являющихся разностью между интервалами времени, соответствующими повороту сепаратора, и интервалами времени, соответствующими повороту вращающегося кольца.

Указанный технический результат достигается в устройстве диагностики подшипника качения, включающем датчик перемещения тел качения или элементов сепаратора, блок измерения интервалов времени между импульсами, поступающими от датчика при прохождении перед ними, соответственно, тел качения или элементов сепаратора, и блок формирования и анализа рядов интервалов времени.

Устройство может дополнительно включать датчик поворота вращающегося кольца подшипника и блок измерения интервалов времени между импульсами, поступающими от этого датчика. Блок формирования и анализа рядов измеренных интервалов времени может быть выполнен с возможностью определения разброса значений интервалов времени и его отклонения от заданного диапазона значений.

Краткое описание чертежей

На фиг.1 изображена схема устройства диагностики подшипника качения.

Варианты осуществления изобретения

На фиг.1 показан подшипник качения, состоящий из наружного кольца 1, сепаратора 2, тел качения 3, внутреннего кольца 4, и устройство его диагностики. Устройство диагностики подшипника качения включает датчики 5 и 6, формирующие электрические импульсы при прохождении перед ними, соответственно, тел качения и элементов сепаратора (например, заклепок сепаратора). В качестве датчиков 5 и 6 могут использоваться, например, оптические (лазерные), индуктивные, индукционные датчики или датчики Холла.

Устройство диагностики подшипника качения также включает датчик 7 поворота вращающегося внутреннего кольца 4, установленного на валу 8, и датчик 9 опорного сигнала, соответствующего полному обороту вращающегося внутреннего кольца и открывающего таймер общего счета. Датчик 7 регистрирует прохождение информационных меток, например пазов или штрихов, нанесенных непосредственно на вал 8, или на информационный элемент 10 с метками, размещаемый на вал и жестко связанный с ним. Информационный элемент 10 имеет больший диаметр, чем вал 8, и необходим, когда нанесение меток на вал технически трудно, или невозможно, или необходимо повысить точность обнаружения расположения дефекта на элементах подшипника. Использование дополнительного информационного элемента в виде диска с метками позволяет увеличить точность позиционирования дефекта на внутреннем кольце подшипника в 10 раз. В качестве такого информационного элемента могут использоваться накладные диски с отверстиями или зубчатые колеса с числом зубьев, соответствующим числу меток, и т.п. В качестве датчиков 7 и 9 может использоваться, например, токовихревой датчик, формирующий последовательность электрических импульсов от информационных меток, сформированных на поверхности вала, имеющих, например, пазы или выступы. Может использоваться оптический датчик, считывающий нанесенный метки.

Импульсы от датчиков 5, 6, 7 и 9 поступают в блок 11 измерения интервалов времени между импульсами, где преобразуются в измерительные импульсы, выполняется измерение интервалов времени, их кодирование и передача в блок формирования и анализа рядов интервалов времени 12.

Датчик 9 опорного канала включает располагаемый в блоке 11 измерения интервалов времени между импульсами таймер общего счета, запускающий последовательность счетных импульсов с дискретностью до долей микросекунд и менее, используемую при измерении всех интервалов времени.

Количество формируемых временных рядов, поступающих в блок формирования и анализа рядов интервалов времени 12, соответствует количеству измерительных каналов, образуемых датчиками вместе с блоком 11 измерения интервалов времени между импульсами.

Для стандартного радиально упорного подшипника число таких каналов может быть - 5 по числу измерительных датчиков:

- датчик(и) 5 регистрации прохождения тел качения,

- датчик(и) 6 регистрации прохождения элементов сепаратора,

- датчик(и) 7 регистрации поворота подвижного внутреннего кольца

- датчик (и) 9 опорного сигнала,

- датчик поворота внешнего кольца, если оно находится не в опоре, а также вращается.

Заявленные способы и устройство диагностики подшипника качения основаны на прецизионном измерении характерных интервалов времени вращающихся элементов подшипника качения, преобразовании получаемых датчиками аналоговых сигналов в измерительные импульсы, измерении интервалов времени, ограниченных фронтами измерительных импульсов, кодировании их в цифровую форму, формировании рядов интервалов времени для математической обработки и дальнейшем сравнении с нормированными параметрами оценки технического состояния функционирующего подшипника.

Существующие методы измерения времени: последовательного счета; сравнения временных интервалов; и нулевой или нониусный, позволяют достаточно уверенно «рассматривать» таким образом, процессы длительностью до 10-13 с. Наиболее предпочтительным является метод последовательного счета [Мирский Г. Я. Электронные измерения: 4-е изд., перераб. и доп.- М.: Радио и связь, 1986], в котором осуществляется сравнение измеряемого интервала времени Δtx с дискретным интервалом, воспроизводящим единицу времени. Для этого интервал Δtx заполняется импульсами с известным образцовым периодом следования, причем Tобр<<Δtx. Таким образом, интервал преобразуется в периодическую последовательность импульсов, число m которых подсчитывается. Импульсы, заполняющие интервал Δtx, принято называть счетными и обозначать период их следования Tсч.

Таким образом, Δtx=m·Tсч.

Для реализации метода последовательного счета блок 8 включает генератор счетных импульсов, счетчик и схему, включающую счетчик на время Δtx. В период действия стробирующего импульса, длительность которого равна измеряемому интервалу Δtx, счетчик считает импульсы генератора. Число, зафиксированное счетчиком и наблюдаемое с помощью цифрового отображающего устройства, соответствует измеряемому интервалу Δtx.

В измерительной технике импульс, задающий продолжительность счета, принято называть временными воротами. Если период следования счетных импульсов генератора обозначить Tсч, а частоту следования - Fсч, то за интервал Δtx через временные ворота пройдет m=Δtx/Tсч=Δtx·Fсч импульсов и, следовательно, измеряемый интервал Δtx=m/Тсч=m/Fсч.

Возможности заявленных способов и устройства демонстрирует следующий пример обнаружения микротрещины шириной и глубиной в 1 мкм на дорожке качения внутреннего кольца под роликом буксового подшипника внешним диаметром 250 мм на скорости 150 км/час, или 41,8 мкм/мкс. На такой скорости ролик подшипника диаметром 42 мм, сидящий на оси колесной пары, пройдет 1 мкм по дорожке (диаметр дорожки качения 180 мм, линейные скорости ролика и полотна относятся как отношения диаметров примерно 1/5) примерно за 0,125 мкс, или 1,25·10-7 с. Практически реализована точность измерения интервалов времени 1·10-8 с, что позволяет определить изменение кинематических параметров движения элементов подшипника, связанных с образованием трещины.

В блоке 12 формирования и анализа рядов интервалов времени формируются ряды измеренных интервалов времени и определяются характеристики сформированных рядов интервалов времени. В качестве характеристик могут быть использованы: разброс (вариация) значений измеренных интервалов времени; расчетные кинематические параметры, взаимосвязанные с геометрическими параметрами подшипника, спектры на основе рядов, сформированных интервалами времени; расчетные параметры рядов интервалов времени, взаимосвязанные параметры временных рядов, формируемых измерениями интервалов времени, соответствующих движению колец, тел качения и сепаратора. Для оценки технического состояния выполняется сравнение полученных характеристик с нормированными параметрами, полученными на основе математической модели, или с характеристиками, полученными из предыдущих измерений таких же интервалов времени.

Исследования показали, что изменения (вариации) интервалов времени зависят от: разброса геометрических параметров элементов подшипника после изготовления и сборки, изменений геометрических параметров элементов подшипника вследствие износа, попадания в подшипник инородных включений и грязи, различных внешних воздействий и ряда многих других причин и факторов.

Заявленный способ предполагает использование математической модели, позволяющей определить взаимосвязь результатов измерений с конструкцией и функционированием диагностируемого подшипника и построенные на ее базе короткие алгоритмы обработки измерительной информации. Математическая модель, представляет собой систему дифференциальных и алгебраических уравнений, описывающих движение элементов функционирующего подшипника (тела качения, вращающееся кольцо, сепаратор) с учетом изменений кинематических параметров движения элементов подшипника и их взаимодействий, геометрических и физических параметров элементов подшипника и смазки, условий эксплуатации (температура, механические воздействия, и т.д.), отражающихся в вариациях измеряемых интервалов времени для определения нормативных параметров и коротких алгоритмов их определения, диагностики дефектов, аварийной защиты (регистрацию заклинивания подшипника и его разрушения) и прогноза.

Примеры математических моделей, одним из выходных расчетных параметров которых являются ряды интервалов времени, соответствующие кинематическим параметрам движения элементов механизмов, приведены в следующей литературе:

Новик Н.В. Математическое моделирование хронометрического контроля работы циклических механизмов: автореф. канд. техн. наук. М., 1999. 16 с.

Темнов B.C. Измерительно-вычислительное сопровождение эксплуатации циклических машин и механизмов фазохронометрическим методом: автореф. Дис. канд. техн. наук. М., 2006. 14 с.

Киселев М.И., Пронякин В.И. Математическое обеспечение селективной сборки часового механизма // Современные технологии сборки. 2005. №7. С.10-15.

Киселев М.И., Новик Н.В., Пронякин В.И. О возможности хронометрического контроля двигателя внутреннего сгорания // Испытания материалов и конструкций: Сборник научных трудов / Под ред. С.И.Смирнова и В.И.Ерофеева. Н. Новгород, 1996. С.255-261.

1. Способ диагностики подшипника качения, включающий использование для измерений датчика перемещения тел качения, отличающийся тем, что измеряют интервалы времени, соответствующие перемещению, по меньшей мере, одного тела качения, по меньшей мере, на одно заданное расстояние, и интервалы времени, соответствующие полному повороту вращающегося кольца подшипника или его повороту, по меньшей мере, на один заданный угол, и формируют ряд из интервалов времени, являющихся разностью между интервалом времени, соответствующим перемещению тела качения, и интервалом времени, соответствующим повороту вращающегося кольца, и сравнивают значения характеристики этого ряда интервалов времени с заданными диапазонами значений.

2. Способ по п.1, отличающийся тем, что в качестве характеристики сформированного ряда интервалов времени используют разброс (вариации) значений интервалов времени.

3. Способ по п.1, отличающийся тем, что дополнительно формируют ряд интервалов времени, соответствующих полному повороту вращающегося кольца подшипника, и сравнивают значения характеристики этого ряда интервалов времени с заданными диапазонами значений.

4. Способ диагностики подшипника качения, отличающийся тем, что, используя датчик элементов сепаратора, измеряют интервалы времени, соответствующие повороту сепаратора, по меньшей мере, на один заданный угол, формируют ряд интервалов времени между прохождениями элемента сепаратора перед датчиком и сравнивают значение характеристики сформированного ряда интервалов времени с заданным диапазоном ее значений.

5. Способ по п.4, отличающийся тем, что в качестве характеристики сформированного ряда измеренных интервалов времени используют разброс (вариации) значений измеренных интервалов времени.

6. Способ по п.4, отличающийся тем, что дополнительно измеряют интервалы времени, соответствующие полному повороту вращающегося кольца подшипника, и формируют ряд из интервалов времени, являющихся разностью между интервалами времени соответствующими повороту сепаратора, и интервалами времени, соответствующими повороту вращающегося кольца.

7. Устройство диагностики подшипника качения, включающее датчик перемещения тел качения или элементов сепаратора, отличающееся тем, что дополнительно включает блок измерения интервалов времени между импульсами, поступающими от датчика при прохождении перед ними, соответственно, тел качения или элементов сепаратора, датчик опорного сигнала, соответствующего полному обороту вращающегося внутреннего кольца подшипника и открывающего таймер общего счета, входящий в состав блока измерения интервалов времени между импульсами, и блок формирования и анализа рядов интервалов времени.

8. Устройство по п.7, отличающееся тем, что дополнительно включает датчик поворота вращающегося кольца подшипника, соединенный с блоком измерения интервалов времени между импульсами, поступающими от датчика.

9. Устройство по п.7, отличающееся тем, что блок формирования и анализа рядов измеренных интервалов времени выполнен с возможностью определения разброса значений измеренных интервалов времени и его отклонения от заданного диапазона значений.



 

Похожие патенты:

Изобретение относится к области авиационного двигателестроения, а именно к конструкции упругих опор с изменяемой податливостью, применяемых в стендовых динамических испытаниях роторов турбомашин.

Настоящее изобретение относится, в общем, к прогнозирующему техническому обслуживанию роликовых подшипников, в частности к ориентированному на техническое обслуживание мониторингу на основе состояния роликовых подшипников в сервомоторах, работающих на произвольно переменной низкой скорости и с (циклическими) реверсированиями движения, к примеру в сервомоторах, используемых в разливочных машинах или распределительном оборудовании упаковочных линий, выполненных с возможностью формировать запечатанные упаковки, содержащие продукты питания.

Изобретение относится к измерительной технике, в частности для определения состояния подшипника электрической машины. Способ заключается в том, что посредством сенсорного блока (20) определяют измеренное значение (21).

Изобретение относится к измерительной технике, в частности к способу выявления структурного дефекта в механическом узле, содержащем вращающийся элемент. Способ включает этап предварительного анализа для определения характеристической частоты появления дефекта за один оборот вращения указанного элемента, а также следующие повторяющиеся этапы: измерение мгновенной скорости вращения вращающегося элемента; угловую дискретизацию указанного измерения с получением дискретизированного сигнала, характеризующего мгновенную скорость вращения указанного элемента; пространственный гармонический анализ дискретизированного сигнала с получением спектра мгновенной скорости вращения указанного элемента; контроль амплитуды спектра для характеристической частоты, чтобы на основании указанной амплитуды выявить появление соответствующего дефекта.

Изобретение относится к модулю подшипника, который представляет собой стационарный сменный конструктивный блок для установки в подшипниках вала, особенно электрической машины.

Изобретение может быть использовано при диагностировании двигателей внутреннего сгорания. Способ заключается в измерении расход масла через подшипник и определении степени износа коренных подшипников.

Изобретение относится к области машиностроения и касается обеспечения контроля температуры подшипников скольжения с самоустанавливающимися колодками или цельной втулкой различного динамического оборудования, например центробежных компрессоров.

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для диагностирования машин в условиях производства или/и эксплуатации при отсутствии машин-эталонов с известными погрешностями, т.е.

Изобретения относятся к измерительной технике, в частности к области контроля состояния газотурбинных двигателей, и могут быть использованы для контроля вибрационных явлений, появляющихся в газотурбинном двигателе летательного аппарата во время работы.

Устройство относится к электроизмерительной технике, в частности к измерению износа подшипниковых узлов погружных электродвигателей, и может быть использовано в народном хозяйстве для бесперебойного водоснабжения.
Изобретение относится к способу комплексной диагностики технического состояния межроторных подшипников двухвальных авиационных и наземных газотурбинных двигателей методами вибродиагностики и может быть использовано в авиадвигателестроении. Вибродатчик устанавливают на вибровод, который фиксируют в окне осмотра передней части рабочих лопаток турбины высокого давления изолированно от корпуса двигателя. Вибровод устанавливают в упор к полке лопатки турбины высокого давления вблизи диагностируемого подшипника, величину прижима регулируют демпферной пружиной. Для оценки величины амплитуды вибрации, возбуждаемой межроторным подшипником, производят раскрутку ротора низкого давления с помощью ручного привода до частоты вращения 60-100 об/мин. Определяют значение пик-фактора и делают вывод о техническом состоянии межроторного подшипника. Технический результат изобретения - повышение достоверности результата при проведении оценки технического состояния межроторного подшипника.

Изобретение относится к области диагностики повреждения деталей машин в процессе их непрерывной эксплуатации и может быть использовано для определения технического состояния машинных агрегатов и обеспечения их безопасной, ресурсосберегающей эксплуатации. В способе диагностики измеряют уровень вибрации в информативных точках корпуса машины в информативной полосе частот, строят тренды изменения вибрации во времени, сравнивают полученные значения с критическими границами и по результатам сравнения судят о состоянии деталей машины. Наблюдают изменение тренда вибрации на протяжении всего жизненного цикла машины; селектируют скачкообразные изменения вибрации во времени; строят тренды амплитуд выбросов вибрации, их отношений и приращений; запоминают стадии повреждения деталей машины. Изобретение направлено на предотвращение аварий машин в условиях непрерывной эксплуатации путем повышения достоверности обнаружения деградации деталей машин за счет регистрации на ранних стадиях развития дефектов амплитуд выбросов вибрации, по наличию которых делается заключение о наличии в машине процесса усталостного разрушения ее деталей. 1 з.п. ф-лы, 7 ил.

Изобретение относится к области электротехники и может быть использовано в электрических машинах. Технический результат - повышение точности оценки токов подшипников в отношении потенциального повреждения соответствующего подшипника. В системе и способе заблаговременного распознавания повреждения в подшипнике обеспечивается анализ причины, вызывающей повреждение тока подшипника. Для заблаговременного распознавания возникновения повреждений в подшипнике, вызванных протеканием тока подшипника, осуществляются следующие этапы: формирование оценки на основе по меньшей мере одного долговременного измерения по меньшей мере одного измеряемого параметра, характерного для возникновения токов подшипника во время работы подшипника в зависимости от амплитуды тока подшипника, и формирование отображения результатов измерений на основе оценки и оценивание отображения на основе распознавания образов. Предложено также устройство для осуществления способа. 2 н. и 20 з.п. ф-лы, 3 ил.

Изобретение относится к устройству для комплексной диагностики технического состояния межроторных подшипников двухвальных газотурбинных двигателей методами вибродиагностики и может быть использовано в авиадвигателестроении. Контроль технического состояния межроторного подшипника выполняют на неработающем двигателе. Предварительно на этапе изготовления определяют собственные частоты устройства и отстраивают их от резонансных частот элементов двигателя и измеряемых рабочих частот вибрации контролируемых подшипников. Перед началом работ демонтируют заглушки окон осмотра передней части рабочих лопаток турбины высокого давления. В резьбовое соединение окна вворачивают полый цилиндрический стакан, в который посредством прижимного винта устанавливают вибровод с размещенным на нем низкочастотным или высокочастотным вибродатчиком и системой обработки вибрационного сигнала. Вибровод устанавливают в упор к полке лопатки турбины высокого давления, величину прижима регулируют прижимным винтом, воздействующим на демпферную пружину. Для оценки величины амплитуды вибрации, возбуждаемой межроторным подшипником, производят раскрутку ротора низкого давления с помощью ручного привода. Вибросигнал от межроторного подшипника через диск и полку рабочей лопатки турбины высокого давления проводится виброводом на вибродатчик. Осуществляют анализ вибросигнала в режиме постобработки и диагностируют наличие повреждения подшипников. Технический результат заключается в повышении достоверности результата измерений при проведении оценки технического состояния межроторного подшипника. 2 ил.

Изобретение относится к испытательной технике и может быть использовано при испытаниях и доводке газовых подшипников высокооборотных турбомашин. Стенд содержит статор, в котором размещен ротор, установленный в двух опорах, выполненных с возможностью размещения в них испытуемых газодинамических подшипников. Каждая из опор снабжена датчиками перемещений, расположенными во взаимно перпендикулярных плоскостях, проходящих через ось вращения ротора, датчиком температуры и узлом подвода воздуха. Узел подвода воздуха подключен к источнику сжатого воздуха и содержит нагреватель для изменения температуры подаваемого воздуха и клапан с электроприводом, связанным с блоком управления. Ротор снабжен диском, массогабаритные параметры которого соответствуют параметрам рабочего колеса компрессора турбомашины. Стенд имеет также датчик частоты вращения и датчик вибрации. Технический результат заключается в расширении функциональных возможностей стенда. 4 з.п. ф-лы, 1 ил.

Заявленное изобретение относится к области измерительной техники, и может быть использовано для контроля износа двигателя. Способ содержит следующие этапы: в течение всего периода измерения Р считывают текущий вибрационный сигнал (Vc) механической вибрации компонентов двигателя; в течение периода P дискретизируют сигнал (Vc); сигнал синхронизируют относительно изменений режима N; сигнал преобразуют в частотный сигнал для получения частотных спектральных полос, упорядоченных по режиму N; вычисляют среднее значение амплитуд спектральных полос, чтобы получить текущую вибрационную сигнатуру (Sc) двигателя; вычисляют степень отклонения (Δ) между сигнатурой (Sc) и нормальной контрольной вибрационной сигнатурой (Ss); и степень отклонения (Δ) сравнивают с указателями дефектов заранее сформированной базы данных, объединяющей теоретические повреждения опорных подшипников двигателя, для определения потенциальных повреждений опорного подшипника. Технический результат заключается в возможности проведения диагностики в реальном времени и повышении точности обнаружения дефектов на различных режимах вращения вала двигателя. 11 з.п. ф-лы, 9 ил.

Изобретение относится к устройствам для измерения осевого биения наружных колец подшипников качения, преимущественно радиальных и радиально-упорных, применяемых на различных производствах. Устройство содержит основание с перпендикулярно установленной на нем стойкой, в которой выполнены верхний и нижний пазы. Нижний паз выполнен с возможностью монтажа и перемещения в нем стержня, на котором перпендикулярно установлен дополнительный стержень с измерительным индикатором и наконечником, упираемым в середину базового торца наружного кольца подшипника качения. В верхний паз с натягом установлена поверочная плита, выполненная в виде диска, на лицевой поверхности которого ступенчато выполнены радиальные пояски для установки и центрирования подшипников качения различного диаметра, а в центре диска выполнено резьбовое отверстие для болта, фиксирующего подшипник качения на диске через прижимную планку, на одной из поверхностей которой ступенчато выполнены радиальные пояски, по своим размерам соответствующие радиальным пояскам, выполненным на диске. Технический результат - расширение арсенала технических средств, позволяющих измерять осевое биение наружных колец подшипников качения различных размерных групп. 1 ил.

Изобретение относится к устройствам для измерения радиального зазора в подшипниках качения, преимущественно радиальных и радиально-упорных, применяемых на различных производствах. Устройство содержит основание с перпендикулярно установленной на нем стойкой, в которой выполнены пазы. Нижний паз выполнен с возможностью монтажа и перемещения в нем стержня, на котором установлен измерительный индикатор. В верхний паз с натягом установлен поверочный диск, на лицевой поверхности которого ступенчато выполнены радиальные пояски. В центре поверочного диска выполнено резьбовое отверстие для болта, фиксирующего подшипник качения на поверочном диске через прижимную планку, на одной из поверхностей которой ступенчато выполнены радиальные пояски, по своим размерам соответствующие радиальным пояскам, выполненным на поверочном диске. Также устройство содержит ремень с грузом, укладываемый на наружное кольцо подшипника качения. Ветви ремня оперты на ролики, установленные по краям стойки между нижней частью нижнего паза и основанием. Технический результат - расширение арсенала технических средств, позволяющих измерять радиальный зазор в подшипниках качения различных размерных групп. 2 ил.

Изобретения относятся к измерительной технике, в частности к устройствам для оценки повреждения подшипника качения электрической машины. При реализации заявленного способа электрическая машина, содержащая контролируемый подшипник качения, электрически подключена к инвертору с промежуточным контуром напряжения, а указанный подшипник качения имеет, соответственно, смазочный зазор между внутренним кольцом подшипника и телом качения и внешним кольцом подшипника и телом качения. При этом для оценки повреждений осуществляется регистрация энергии электрического события разряда в смазочном зазоре подшипника качения, регистрация частоты событий разряда и оценка событий разряда посредством корреляции частоты и энергии. Устройство содержит электрическую машину, содержащую контролируемый подшипник качения, которая электрически подключена к инвертору с промежуточным контуром напряжения, а указанный подшипник качения имеет, соответственно, смазочный зазор между внутренним кольцом подшипника и телом качения, и внешним кольцом подшипника и телом качения. Также оно содержит средства для регистрации энергии электрического события разряда в смазочном зазоре подшипника качения, средства для поиска совпадающего события выше одного гигагерца, средства для регистрации частоты событий разряда и устройство оценки зарегистрированных данных частоты и энергетического содержания. Технический результат заключается в повышении точности оценки ресурса подшипников. 4 н. и 11 з.п. ф-лы, 5 ил.

Изобретение относится к области измерительной техники и может быть использовано преимущественно в различных отраслях машиностроения. Устройство содержит узел установки и крепления внутреннего кольца контролируемого подшипника на приводном валу электродвигателя, два токосъемника, преобразователь, регистрирующую аппаратуру и источник электрического напряжения, один полюс которого через первый токосъемник связан с приводным валом, второй полюс связан с преобразователем, к которому подключен второй токосъемник, выполненный с возможностью подключения к наружному кольцу контролируемого подшипника. Также оно содержит связанный с электродвигателем преобразователь частоты напряжения питания электродвигателя, источник электрического напряжения снабжен регулятором тока. Устройство также содержит основание с установленными на нем подшипниковым узлом, электродвигателем, узлом компенсации осевой нагрузки от веса электродвигателя, узлами осевой и радиальной нагрузки на контролируемый подшипник. Технический результат заключается в повышении информативности устройства при оценке работоспособности и долговечности подшипников качения. 2 з.п. ф-лы, 4 ил.
Наверх