Способ получения антикоррозионного пигмента

Изобретение может быть использовано в производстве консервационных смазок. Для получения антикоррозионного пигмента проводят термообработку при 900°С в течение 1 часа смеси суспензий шламов электрохимической очистки сточных вод гальванического производства и содержащего гидроксид кальция отхода ванн нейтрализации машиностроительных производств. Измельчение термообработанного продукта ведут в электромагнитных измельчителях с использованием энергии переменного электромагнитного поля и рабочих элементов - сфер из гексаферрита бария, движущихся под воздействием этого поля. Измельчение проводят до размера частиц 3-4 мкм. Изобретение позволяет повысить коррозионную стойкость пигмента, снизить укрывистость. 2 табл., 2 пр.

 

Изобретение относится к получению антикоррозионных неорганических пигментов, которые могут быть использованы для приготовления консервационных смазок. Известно получение железооксидных неорганических пигментов из промышленных отходов при прокалке железосодержащих осадков электрохимической очистки сточных вод гальванического производства [А.с. СССР N 1370124, кл. С09С 1/24, 1988]. Недостатком данного способа получения пигментов является окисление соединений трехвалентного хрома до хроматов, что значительно сужает возможные области применения таких пигментов. Кроме того, электрокоагуляционная очистка гальваношламов внедрена лишь на небольшом числе промышленных производств (8-12% от общего количества гальванических производств), тогда как на большинстве заводов используется реагентная очистка гальваностоков осаждением гидроксидом кальция.

Наиболее близким к предлагаемому способу получения антикоррозионного пигмента является способ получения пигмента из составляющих пигмент кислородсодержащих соединений металлов, включающий термообработку данной смеси и измельчение термообработанного продукта [Патент РФ N 2055086, кл. С09С 1/28, С04В 33/14, 1996]. Недостатком данного способа является невысокая антикоррозионная стойкость, высокая укрывистость и низкая стабильность получаемых пигментов, представляющих смесь оксидов металлов.

Задачей изобретения является получение дешевых высокостойких антикоррозионных пигментов ферритной структуры, получаемых из гальваношламов, и расширение области их применения.

Данная задача решается созданием антикоррозионного пигмента, обладающего высокими антикоррозионными свойствами, низкой степенью укрывистости и высокой стабильностью.

Поставленная задача решается тем, что предлагается способ получения антикоррозионного пигмента из составляющих кислородсодержащих соединений металлов, включающий термообработку указанной смеси и измельчение термообработанного продукта. В качестве указанной смеси используют смесь суспензий шламов электрохимической очистки сточных вод гальванического производства и содержащего гидроксид кальция отхода ванн нейтрализации машиностроительных производств, термообработку проводят при 900°C в течение часа, а процесс измельчения пигмента ведут в электромагнитных измельчителях с использованием энергии переменного электромагнитного поля и рабочих элементов - сфер из гексаферрита бария, движущихся под воздействием этого поля, при этом измельчение проводят до размера частиц 3-4 мкм.

Процесс получения антикоррозионного пигмента по предлагаемой технологии заключается в следующем: суспензию гальваношлама (Табл. 1) и суспензию пигментного компонента-ингибитора (КИ) тщательно перемешивают в таком количестве, чтобы соблюдалось соотношение 1:1 по ионам железа и кальция.

Полученную суспензию фильтруют, а осадок сушат в сушильном шкафу. Смесь механически перетирают и помещают в керамические тигли. Далее тигли с шихтой помещают в предварительно нагретую муфельную печь, где прокаливают при 900°C в течение часа. После прокаливания тигли переносят в эксикатор для охлаждения. Измельчение полученного пигмента проводят в электромагнитных аппаратах-измельчителях (ЭМИ) до размера частиц 3-4 мкм. Полученный после измельчения в ЭМИ антикоррозионный пигмент обладает высокой дисперсностью, что в свою очередь в дальнейшем позволит улучшить качественные показатели данного материала, а именно снизить укрывистость, увеличить стабильность, термостойкость, обеспечивающие широкий диапазон областей применения получаемого антикоррозионного пигмента.

Пример 1. В суспензию из шламов электрохимической очистки сточных вод гальванического производства (ГШ) дополнительно вводят суспензию пигментного компонента-ингибитора (КИ) - отхода после ванн нейтрализации машиностроительных производств, содержащего в своем составе в основном гидроксид кальция Са(ОН)2, в соотношении ГШ:КИ - 1:1 (по оксидам железа и кальция) с учетом кальция, содержащегося в ГШ, тщательно перемешивают Полученную суспензию фильтруют, а осадок сушат в сушильном шкафу. Смесь механически перетирают и помещают в керамические тигли. Далее тигли с шихтой помещают в предварительно нагретую муфельную печь, где прокаливают при 900°C в течение часа. После прокаливания тигли переносят в эксикатор для охлаждения. Измельчение полученного пигмента до размера частиц не более 10 мкм проводят механически.

Пример 2. В суспензию из шламов электрохимической очистки сточных вод гальванического производства (ГШ) дополнительно вводят суспензию пигментного компонента-ингибитора (КИ) - отхода после ванн нейтрализации машиностроительных производств, содержащего в своем составе в основном гидроксид кальция Са(ОН)2, в соотношении ГШ:КИ - 1:1 (по оксидам железа и кальция) с учетом кальция, содержащегося в ГШ, тщательно перемешивают Полученную суспензию фильтруют, а осадок сушат в сушильном шкафу. Смесь механически перетирают и помещают в керамические тигли. Далее тигли с шихтой помещают в предварительно нагретую муфельную печь, где прокаливают при 900°C в течение часа. После прокаливания тигли переносят в эксикатор для охлаждения. Измельчение полученного пигмента до размера частиц не более 3-4 мкм проводят в электромагнитных аппаратах-измельчителях (ЭМИ), работающих при частоте переменного тока 50 Гц и содержащих в качестве мелющих тел сферы гексаферрита бария, которые позволяют достигнуть интенсивного перемешивания компонентов с образованием более мелких частиц антикоррозионного пигмента. Результаты исследований представлены в таблице 2

Таким образом, заявляемое техническое решение позволяет разработать способ получения дешевых антикоррозиционных пигментов, получаемых из суспензии гальваношламов (ГШ) и суспензии пигментного компонента-ингибитора (КИ) с использованием электромагнитных измельчителей для достижения большей дисперсности продукта, и расширить область их применения по сравнению с известными решениями.

Способ получения антикоррозионного пигмента из смеси кислородсодержащих соединений металлов, включающий термообработку указанной смеси и измельчение термообработанного продукта, отличающийся тем, что в качестве указанной смеси используют смесь суспензий шламов электрохимической очистки сточных вод гальванического производства и содержащего гидроксид кальция отхода ванн нейтрализации машиностроительных производств, термообработку проводят при 900°С в течение часа, а процесс измельчения пигмента ведут в электромагнитных измельчителях с использованием энергии переменного электромагнитного поля и рабочих элементов - сфер из гексаферрита бария, движущихся под воздействием этого поля, при этом измельчение проводят до размера частиц 3-4 мкм.



 

Похожие патенты:

Изобретение может быть использовано в производстве пигментов. Способ получения самосвязывающихся пигментных частиц включает, по крайней мере, одну стадию измельчения одного или нескольких связующих и одного или нескольких минеральных веществ в водной среде для получения суспензии.

Изобретение относится к новому неорганическому зеленому пигменту для окрашивания различных материалов. Пигмент имеет формулу RE2MoO6, где RE - смешанные редкоземельные (РЗ) металлы в количестве 66,66 мол.%, Мо - молибден в количестве 33,34 мол.%.

Изобретение относится к применению в красках карбоната кальция, полученного сухим измельчением в присутствии способствующего измельчению агента. .

Изобретение относится к пигментным пастам для лакокрасочной промышленности. .
Изобретение относится к способу измельчения по меньшей мере одного минерального материала в присутствии измельчающих бисерных шариков из оксида циркония, содержащего оксид церия, с удельным содержанием оксида церия (между 14 и 20 вес.% относительно общего веса указанных шариков, предпочтительно между 15 и 18% и наиболее предпочтительно примерно 16%) и удельным средним размером зерен после спекания (меньше 1 мкм, предпочтительно меньше 0,5 мкм и наиболее предпочтительно меньше 0,3 мкм).

Изобретение относится к технологии получения цветных неорганических пигментов и их оттенков, представляющих собой минеральные красители типа твердых растворов, химических соединений или механических смесей окислов металлов.

Изобретение относится к водной коллоидной суспензии газовой сажи, которая может быть использована в чернилах, таких как чернила для струйной печати, лаках, печатных красках, латексах, в изделиях из текстиля и кожи, в клеях, силиконах, пластмассах, бетоне и в строительных материалах.

Настоящее изобретение относится к технической области получения обработанных продуктов минеральных наполнителей, содержащих карбонат кальция, применению их в материалах пластиков, в материалах пленки, а также для ароматизирующих изделий.

Изобретение относится к способу получения поверхностно-обработанного продукта минерального наполнителя, который может найти применение для пластиков, в частности для дышащих пленок или пленок экструзионных покрытий на основе полипропилена или полиэтилена.

Изобретение относится к технологической области водных суспензионных материалов, содержащих карбонат кальция, и добавок для них. Применение 2-((1-метилпропил)амино)этанола в качестве добавки к водной суспензии, содержащей от 25 до 62 объемных % по меньшей мере одного материала, содержащего карбонат кальция, для увеличения значения рН суспензии.
Изобретение может быть использовано в химической, лакокрасочной, пищевой, фармацевтической промышленности, в производстве бумаги. Способ классификации минерального вещества включает классификацию в газообразной среде по меньшей мере одного минерального вещества, включающего доломит, или тальк, или диоксид титана, или оксид алюминия, или каолин, или карбонат кальция, или их смеси в присутствии по меньшей мере одной добавки, способствующей классификации.
Изобретение может быть использовано в производстве красок и бумаги. В качестве добавки к водной суспензии, по меньшей мере, одного материала, содержащего карбонат кальция, применяют 2-аминоэтанол в количестве от 500 до 15000 мг, предпочтительно, от 1000 до 5000 мг, и, более предпочтительно, 1300-2000 мг, на 1 л водной фазы указанной суспензии.

Настоящее изобретение относится к области обработки термопластичных полимеров, в частности к способу приготовления уплотненного материала, пригодного для применения в термопластичных полимерах без стадии компаундирования, а также к уплотненному материалу, полученному этим способом, и к его применению в термопластичных полимерах.

Изобретение может быть использовано в производстве бумаги, лаков и красок. Способ получения водной суспензии дисперсного карбоната кальция включает обеспечение водной суспензии дисперсного карбоната кальция, содержащей по меньшей мере один диспергирующий агент, и обеспечение, по меньшей мере, одного карбоната щелочного металла и/или кислого карбоната щелочного металла, где ион щелочного металла выбран из калия и/или натрия.
Изобретение может быть использовано в производстве бумаги, красок и пластмасс. Способ получения карбоната кальция с подвергнутой реакционной обработке поверхностью в водной среде включает a) предоставление по меньшей мере одного типа измельченного природного карбоната кальция (GNCC); b) предоставление по меньшей мере одной растворимой в воде кислоты; c) предоставление газообразного CO2; d) контактирование указанного GNCC с указанной кислотой и CO2.
Изобретение может быть использовано в химической промышленности. Способ получения осажденного продукта карбоната кальция включает стадии (a) формирования водной суспензии осажденных зерен карбоната кальция путем карбонизации суспензии Ca(OH)2 в присутствии 0,005-0,03 моль Sr в форме Sr(OH)2 на моль Ca(OH)2 и (b) формирования водной суспензии осажденного продукта карбоната кальция путем карбонизации кашицы Ca(OH)2 в присутствии 0,5-5% от сухой массы осажденных зерен карбоната кальция.

Изобретение может быть использовано в лакокрасочной промышленности, в производстве бумаги. По меньшей мере один полиэтиленимин может быть добавлен к водной суспензии, имеющей pH между 8,5 и 11 и содержащей по меньшей мере один материал, включающий карбонат кальция, в количестве от 25 до 62% об.
Изобретение может быть использовано в химической, лакокрасочной, пищевой, фармацевтической промышленности, в производстве бумаги. Способ классификации минерального вещества включает классификацию в газообразной среде по меньшей мере одного минерального вещества, включающего доломит, или тальк, или диоксид титана, или оксид алюминия, или каолин, или карбонат кальция, или их смеси в присутствии по меньшей мере одной добавки, способствующей классификации.
Наверх