Ионный двигатель

Изобретение относится к энергетике. Ионный двигатель, содержащий корпус, закрепленные жестко на наружной поверхности корпуса газоразрядную камеру и ионно-оптическую систему и катод-нейтрализатор, установленный на корпусе, при этом корпус ионного двигателя имеет торообразную форму, причем катод-нейтрализатор установлен по центральной оси корпуса, электроды ионно-оптической системы и газоразрядная камера выполнены кольцеобразной формы, при этом их внутренние поверхности по периметру жестко закреплены на внутренней поверхности корпуса ионного двигателя. Изобретение позволяет значительно повысить вибропрочность электродов, обеспечить стабильность межэлектродных зазоров, а также обеспечивает увеличение КПД. 1 ил.

 

Изобретение относится к области электроракетных двигателей (ЭРД).

Среди различных типов электроракетных двигателей (ЭРД) в ионных двигателях (ИД) может быть достигнут максимальный удельный импульс тяги.

Принцип действия ИД основан на извлечении из ионизованной плазмы ионов и дальнейшем их электростатическом ускорении. В таком двигателе полностью разделены процессы ионизации и ускорения. По способу перевода рабочего тела (РТ) в ионизованное состояние ИД разделяют на 3 группы: на основе разряда постоянного тока, ВЧ-разряда или СВЧ-разряда.

ИД средней мощности широко используются за рубежом. К настоящему времени разработан широкий спектр таких двигателей. В США разрабатываются, производятся и эксплуатируются ИД с разрядом постоянного тока [1].

Особенностью германских двигателей является то, что ионизация РТ происходит в ВЧ-разряде.

В японских двигателях ионизация ксенона происходит в СВЧ-разряде.

Одним из основных узлов ИД является ионно-оптическая система (ИОС).

Известен ИД [1 - с.240], содержащий газоразрядную камеру (ГРК), имеющую форму цилиндра с конической задней стенкой. К стенкам ГРК через изоляторы крепятся аноды. Магнитное поле создается с помощью электромагнитов, расположенных снаружи ГРК. Конфигурация магнитного поля задается тремя полюсными наконечниками. Внутри катодного полюсного наконечника расположен полый катод. Эмиттер - из гексаборида лантана. Рабочее тело (ксенон) подается в ГРК через коллектор, расположенный в районе ИОС, которая состоит из плазменного, ускоряющего и замедляющего электродов. Замедляющий электрод выполнен в виде кольца, охватывающего весь ионный пучок. Плазменный и ускоряющий электроды толщиной 0,5 и 1,0 мм имеют форму сегмента сферы с большим радиусом и обладают начальным прогибом, направленным наружу ГРК. Снаружи ИОС расположен катод-нейтрализатор.

Недостатком ИД с разрядом постоянного тока является то, что под высоким потенциалом находятся: анод, стенка ГРК, катод с подключенными к нему источниками электропитания, экранная сетка ИОС и кабели. Обеспечить надежную электрическую изоляцию указанных цепей от корпуса и в системе питания и управления (СПУ) технически сложно. Кроме того, двигатель с разрядом постоянного тока конструктивно сложнее двух других типов. Для его работы необходим катод ГРК, ток которого должен в 7-10 раз превосходить ток катода-нейтрализатора. Для двигателя мощностью (30-70) кВт с ионным током (10-20) А потребуется катод на разрядный ток (70-150) А. Создание такого сильноточного катода представляет собой достаточно сложную инженерную задачу. Катоды и нейтрализаторы, в особенности сильноточные, имеют ограниченный ресурс. Так, наработка катодов-нейтрализаторов ОКБ «Факел» (для СПД-100 на 4,5 А) не превышает 9000 ч [1 - с.33]. Поэтому потребуется резервирование как катодов, так и катодов-нейтрализаторов, но поместить несколько катодов в ГРК практически невозможно, так как катод должен располагаться вдоль продольной оси двигателя.

Самым мощным ионным двигателем к настоящему времени является лабораторная модель двигателя NEXIS мощностью до 25 кВт. Для повышения его мощности в 2-3 раза (необходимой для маршевых задач дальнего космоса) требуется пропорционально увеличить площадь ИОС. В результате, на мощность 50 кВт, диаметр модели должен быть около 0,8 м, на 75 кВт - 1 м. Мембрана такого диаметра, закрепленная по периферии, обладает малой вибропрочностью.

За прототип принят ионный двигатель с ВЧ-разрядом, например, RIT-ИД с радиочастотной ионизацией [2]. В общем случае ионный двигатель, например, RIT-22, содержит: 2- или 3-сеточную ИОС (круглого сечения); катод-нейтрализатор, установленный снаружи корпуса ИД; ГРК из диэлектрического материала с малым косинусом потерь; индуктор в виде спирали из медного провода; узел подачи ксенона, с газоэлектрической развязкой; корпус и радиочастотный генератор.

В радиочастотном двигателе единственным элементом, находящимся под высоким потенциалом, является экранная сетка (с подключенным к ней проводом), которая расположена внутри диэлектрической ГРК, выполняющей, помимо всего, защитную функцию. Поэтому особых мер по обеспечению электрической прочности изоляции этой сетки не требуется. Остальные элементы двигателя имеют относительно низкие потенциалы.

В разрабатываемом крупногабаритном ИД RIT-45 мощностью 35 кВт диаметр ИОС будет порядка 500 мм, в крупногабаритном ИД ЭРД-50 мощностью 30 кВт характерный размер ИОС (круглого сечения) составляет 700 мм [1]. При этом электроды ИОС традиционно выполняются в виде тонких (толщиной 0,4…1,0 мм) пластин перфорированных до 35000 отверстий. Причем допуск на точность выполнения отверстий в двух электродах обычно составляет не более 0,02 мм. Вибропрочность таких электродов, представляющих собой заделанную по окружности тонкостенную мембрану большой площади, перфорированную десятками тысяч отверстий, достаточно мала. Кроме того, расчет термической деформации электродов ИОС в крупногабаритном ИД с учетом геометрии, температурных полей и теплофизических свойств материалов показывает, что обеспечение приемлемых тепловых деформаций сеток представляет собой достаточно сложную задачу. В этом смысле предпочтительней делать сетки из однородного материала - углерода, который имеет наименьший коэффициент линейного расширения - минус 0,3·10-6 °C-1. Так как электроды являются практически изотермичными, они будут повторять форму друг друга. При использовании разнородных материалов сеток добиться стабильности межэлектродных зазоров в диапазоне (0,5-1,0) мм крайне сложно.

Недостатком такого крупногабаритного ИД является значительное снижение вибропрочности ИОС, представляющей собой огромную перфорированную мембрану. Кроме того, несимметричная установка катода-нейтрализатора снаружи ИОС, приводит к уменьшению КПД ИД на 5-7% [3].

Задачей предлагаемого изобретения является увеличение вибропрочности и надежности эксплуатации за счет обеспечения стабильности межэлектродных зазоров ИОС, а также повышение КПД крупногабаритного ИД.

Эта задача решается следующим образом.

В крупногабаритном ионном двигателе, содержащем корпус, закрепленные жестко на наружной поверхности корпуса газоразрядную камеру и ионно-оптическую систему и катод-нейтрализатор, установленный на корпусе, при этом корпус ионного двигателя имеет горообразную форму, причем катод-нейтрализатор установлен по центральной оси корпуса, электроды ионно-оптической системы и газоразрядная камера выполнены кольцеобразной формы, при этом их внутренние поверхности по периметру жестко закреплены на внутренней поверхности корпуса ионного двигателя.

На фиг.1 представлен общий вид ИД, который состоит из заключенных в кольцевой корпус 6 кольцевой 3-сеточной ИОС 1, расположенного вдоль центральной оси катода-нейтрализатора 2 и кольцевой ГРК 3, выполненной из диэлектрического материала с малым косинусом потерь. Индуктор 4 выполнен в виде спирали из медного провода и кольцевого узла подачи ксенона 5 с газоэлектрической развязкой. При этом ИОС 1 состоит из кольцевых: экранного электрода 7 с токоподводом 8, ускоряющего электрода 9 с токоподводом 10 и замедляющего электрода 11, электроразделенных изоляторами 12 и заделанных в корпус с наружной и внутренней стороны. Корпус 6 перфорирован отверстиями 13.

Для запуска двигателя подают расход ксенона в катод-нейтрализатор 2 и кольцевой узел подачи ксенона 5 ГРК 3. После стартового разогрева катода-нейтрализатора 2 инициируют в нем разряд и включают ВЧ-генератор, питающий индуктор 4. Электроны через ИОС 1 проникают в полость ГРК 3, где инициируют высокочастотный разряд. Затем подают напряжение на электроды 7, 9, 11 ИОС 1 и двигатель переходит в номинальный режим работы. Особенностью двигателя такой схемы является то, что только экранный электрод 7 ИОС 1 находится под высоким потенциалом, так как разряд в ГРК 3 является безэлектродным.

Рассмотрим две мембраны из одного и того же материала, одинаковой толщины, отличающиеся только диаметром.

Круговая частота собственных колебаний мембраны рассчитывается по формуле

λ 2 = 35 P m R 4 ,

где λ - круговая частота;

Р - цилиндрическая жесткость мембраны;

m - масса единицы площади мембраны;

R - радиус мембраны.

Цилиндрическая жесткость мембраны описывается следующим образом:

P = E h 3 12 ( l μ 2 ) ,

где Е - модуль Юнга;

h - толщина мембраны;

µ - коэффициент Пуассона.

В результате получаем: λ ~ 1 R 2 . То есть собственная частота колебаний мембраны обратно пропорциональна ее площади. Сетки ИОС ионного двигателя в упрощенном виде можно представить в виде мембран. В ионном двигателе, в котором площадь оптики в два раза больше, чем у другого ИД, собственная частота сеток в два раза ниже. При одинаковом уровне перегрузок вдвое возрастет амплитуда перемещений, что увеличивает риск повреждения (поломок) сеток.

Таким образом, при необходимости значительного увеличения мощности двигателя (площади его ИОС) предпочтительно использовать предложенный ИД. В нем электроды ИОС закреплены по наружной и по внутренней поверхностям корпуса. Такая конструкция ИД позволит значительно повысить вибропрочность электродов и обеспечить стабильность межэлектродных зазоров в диапазоне (0,5-1,0) мм при их термическом расширении во время работы ИД.

Кроме того, центральное расположение катода-нейтрализатора обеспечит увеличение КПД на несколько (5-7) процентов, особенно при значительном увеличении диаметра ИОС.

Литература

1. Холловские и ионные плазменные двигатели для космических аппаратов / О.А. Горшков, В.А. Муравлев, А.А. Шагайда; под ред. акад. РАН А.С. Коротева. - М.: Машиностроение. - 2008.

2. H.W. Loeb, D. Feili, G.A. Popov, V.A. Obukhov, V.V. Balashov, A.I. Mogulkin, V.M. Murashko, A.N. Nesterenko, and S.A. Khartov: "Design of High-Power High-Specific Impulse RF-Ion Thruster", 32 nd IEPC, Wiesbaden, Sept. 11-15, 2011.

3. Исследование и разработка катодов нового поколения для стационарных плазменных двигателей. Архипов Б.А. Автореферат диссертации на соискание ученой степени доктора технических наук. Калининград, 1998 г. С.21.

Ионный двигатель, содержащий корпус, закрепленные жестко на наружной поверхности корпуса газоразрядную камеру и ионно-оптическую систему и катод-нейтрализатор, установленный на корпусе, отличающийся тем, что корпус ионного двигателя имеет торообразную форму, при этом катод-нейтрализатор установлен по центральной оси корпуса, электроды ионно-оптической системы и газоразрядная камера выполнены кольцеобразной формы, причем их внутренние поверхности по периметру жестко закреплены на внутренней поверхности корпуса ионного двигателя.



 

Похожие патенты:

Изобретение относится к плазменной технике и к плазменным технологиям и может использоваться, в частности, в качестве электроракетного двигателя. Катод (1) и два электрически изолированных анода (2, 3) образуют ускорительный канал эрозионного импульсного плазменного ускорителя (ЭИПУ).

Ускоритель плазмы предназначен для получения тяги при перемещении космических объектов и в технологии для получения композитных порошков, напыления и обработки материалов.

Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для ввода окислителя топлива в виде водяного пара или кислорода, при смешении которых в камере возникает горение, хемоионизационные реакции окисления, дающие тепловой эффект, высокие температуры и образование нагретой плазмы, содержащей жидкие оксиды металлов или металлоидов, устройство охлаждения плазмы до температуры ниже температуры плавления полученных оксидов и образования в нагретой плазме твердых пылевых отрицательно заряженных оксидов металлов или металлоидов, электростатическое или электромагнитное разгонное устройство, которое разгоняет электростатическим или электромагнитным полем истекающую из устройства охлаждения нагретую плазму и создает высокоскоростной поток нагретой пылевой плазмы с высокоскростными отрицательно заряженными оксидами металлов или металлоидов, который истекает в окружающую среду и создает реактивную тягу двигателя.

Группа изобретений относится к ионному двигателю (ИД) для космического аппарата и способу его эксплуатации. ИД (1) включает в себя ионизационную камеру (2) с высокочастотным генератором (4) ионизирующего электромагнитного поля.

Изобретение относится к плазменному маневровому реактивному двигателю на основе эффекта Холла, используемому для перемещения спутников с помощью электричества. Плазменный реактивный двигатель на основе эффекта Холла содержит основной кольцевой канал ионизации и ускорения.

Изобретение относится к области электрореактивных двигателей, а именно, к широкому классу плазменных ускорителей (холловских, ионных, магнитоплазмодинамических и др.), использующих в своем составе катоды.

Группа изобретений относится к области электрореактивных двигателей, а именно к классу плазменных ускорителей (холловских, ионных), использующих в своем составе катоды.

Изобретение относится к реактивным средствам перемещения преимущественно в свободном космическом пространстве. Предлагаемое средство перемещения содержит корпус (1), полезную нагрузку (2), систему управления и не менее одной кольцевой системы сверхпроводящих фокусирующе-отклоняющих магнитов (3).
Изобретение относится к пучковым технологиям и может быть использовано для компенсации (нейтрализации) пространственного заряда пучка положительных ионов электроракетных двигателей, в частности, для применения в двигательных установках микро- и наноспутников.

Изобретение относится к космической технике, к классу электрореактивных двигателей и предназначено для управления движением космических аппаратов малой (до 5 Н) тягой.

Изобретение относится к космической технике и может быть использовано для коррекции космического аппарата (КА) с помощью электрореактивных плазменных двигателей (ЭРПД). Выбирают ЭРПД для включения, определяют необходимое время работы ЭРПД, выбирают используемые и неиспользуемые электроды двигателей, подключают выбранные электроды к источникам питания с помощью контакторов, включают и выключают источники питания для запуска и работы ЭРПД в течение необходимого времени, формируют высокоомную резистивную сеть стока электрического заряда с электродов ЭРПД на корпус КА, формируют два режима коммутации электрических цепей двигателя, подключают к электродам неработающих ЭРПД основные и резервные источники питания с емкостными фильтрами, оставляют электрические цепи выбранного ЭРПД подключенными к используемым источникам питания, отключают электрические цепи остальных двигателей от используемых источников питания и оставляют подключенными к неиспользуемым источникам питания, включают и отключают в соответствии с определенным алгоритмом используемые источники питания. Изобретение позволяет повысить надежность системы коррекции КА. 4 ил.

Изобретение относится к области создания электрических реактивных двигателей. Предлагается электрический ракетный двигатель небольшой мощности в качестве корректирующего для космического аппарата многолетнего использования с применением вместо газообразной составляющей твердого топлива в виде металла высокой плотности, преобразованного в плазменный сгусток, под действием электрического разряда. 1 ил.

Предлагаемое изобретение относится к области электроракетных двигателей. В двигателе с замкнутым дрейфом электронов, содержащем электромагнит, магнитопровод с полюсами, анод и катод-нейтрализатор, жестко связанные с магнитопроводом, и расположенную внутри него кольцевую разрядную камеру, закрепленную на фланце, подпружиненном относительно магнитопровода, фланец с закрепленной на нем кольцевой разрядной камерой соединен со стержнем, другой конец которого прикреплен к магнитопроводу, причем стержень выполнен из материала, обладающего скоростью ползучести, равной линейной скорости эрозии стенок разрядной камеры. Использование изобретения позволяет непрерывно восстанавливать геометрию подверженной катодному распылению разрядной камеры, многократно увеличивая ресурс и при этом сохраняя характеристики двигателей во все время эксплуатации. 3 ил.

Изобретение относится к плазменному реактивному двигателю на основе эффекта Холла. Двигатель содержит окружающий основную ось кольцевой выпускной канал, который имеет открытый нижний по потоку конец и ограничен внутренней стенкой и наружной стенкой, катод, магнитный контур для создания магнитного поля в канале, трубопровод для подачи способного к ионизации газа в канал. Анод, расположенный в верхнем по потоку конце канала, служит также распределителем, обеспечивающим течение способного к ионизации газа в зону ионизации канала по концентрической траектории вокруг основной оси. Распределитель совместно с внутренней и наружной стенками ограничивает в направлении снизу вверх по потоку кольцевую выходную полость, которая выходит в зону ионизации канала и кольцевую промежуточную полость. При этом выходные отверстия соединяют промежуточную полость с выходной полостью. Использование изобретения позволяет устранить закручивание вокруг оси двигателя потока ионов на выходе выпускного канала. 16 з. п. ф-лы, 11 ил.

Предлагаемое изобретение относится к области электроракетных двигателей, в частности к системам хранения и подачи в них рабочего тела (иода). В системе хранения и подачи иода, содержащей снабженную нагревателем цилиндрическую емкость с иодом, которая сообщена с электроракетным двигателем трубопроводом с клапаном, на днище внутри цилиндрической емкости со стороны трубопровода установлена пористая шайба, контактирующая с кристаллическим иодом, причем цилиндрическая емкость со стороны, противоположной трубопроводу, содержит фланец и подпружиненный относительно него поршень, контактирующий с другой стороны с кристаллическим иодом, при этом нагреватель снабжен электрической изоляцией, контактирующей снаружи с днищем емкости со стороны трубопровода. Причем в системе подачи иода поршень выполнен составным в виде наружного стакана, контактирующего с цилиндром емкости, и вставленного в него внутреннего стакана, при этом днища стаканов обращены в разные стороны и между его днищами установлена пружина. Изобретение направлено на обеспечение стабильной подачи иода при любом расположении цилиндрической емкости в условиях гравитации и микрогравитации. 1 з.п. ф-лы, 2 ил.

Изобретение находит использование в спутнике. Электроракетная двигательная установка содержит, по меньшей мере, один электродвигатель (10), систему питания двигателя (10), содержащую резервуар (1) высокого давления для ионизируемого газа, буферный резервуар (2) низкого давления, связанный с резервуаром (1) высокого давления с помощью клапана (5, 6), и систему трубопроводов для передачи газа от буферного резервуара (2) низкого давления к аноду (26) и катоду (40) двигателя. Буферный резервуар (2) низкого давления находится в открытом сообщении с двигателем (10). Электроракетная двигательная установка содержит средства для обнаружения того, что сила тока разряда между анодом (26) и катодом (40) ниже пороговой величины, и для отсечения напряжения разряда в результате этого обнаружения. 3 н. и 4 з.п. ф-лы, 8 ил.

Изобретение относится к средствам управления электрическими ракетными двигателями с индукционным возбуждением разряда в газоразрядной камере. Устройство генерации ВЧ энергии содержит микроконтроллер (8), усилитель мощности (3) и источник (6) электропитания усилителя мощности. Микроконтроллер (8) выполнен с аналого-цифровым преобразователем входных управляющих сигналов, цифроаналоговым преобразователем выходных сигналов и тактовым генератором сигнала с перестраиваемой частотой. Выходы усилителя мощности (3) соединены через линию связи с устройством ввода энергии (1), которое выполнено в виде индуктора. Устройство (1) установлено с внешней стороны стенок газоразрядной камеры (2). В линию связи с устройством ввода энергии (1) включены датчики тока (4) и напряжения (5). Выходы датчиков подключены к входам фазового детектора (7) и к сигнальным входам микроконтроллера (8). Выход фазового детектора (7) подключен к сигнальному входу микроконтроллера (8). Электропитание нейтрализатора (11) пространственного заряда ионного потока и входящего в его состав термоэмиссионного катода осуществляется с помощью источников (13) и (14). Положительный полюс источника напряжения (19) и отрицательный полюс источника напряжения (17) раздельно подключены через датчики тока (25) и (26) к общему выводу системы электропитания двигателя. Расход рабочего газа, подаваемого в газоразрядную камеру и в камеру нейтрализатора, регулируется с помощью двух независимо управляемых регуляторов. Электропитание регуляторов расхода газа осуществляется с помощью управляемых источников тока. Технический результат заключается в повышении эффективности двигателя, расширении диапазона регулирования тяги при высоком удельном импульсе и повышении стабильности тяги за счет автоматического поддержания расчетных значений токов и напряжений в цепях питания узлов и блоков двигателя в процессе его длительной эксплуатации. 6 з.п. ф-лы, 2 ил.

Изобретение относится к реактивному двигателю (1) на основе эффекта Холла. Двигатель содержит разрядный канал (50) с открытым, нижним по потоку концом (52), катод (100), расположенный снаружи разрядного канала (50), инжекционную систему (30) для инжекции атомов газа в разрядный канал (50), которая расположена на верхнем по потоку конце разрядного канала (50) и которая формирует анод, и нагреватель (60) для нагрева катода (100). Реактивный двигатель (1) также содержит измерительные средства (70) для измерения температуры Td нагревателя (60) и цепь регулятора (80) для регулирования температуры Td таким образом, чтобы нагреватель (60) осуществлял нагрев, только пока его температура Td меньше пороговой температуры Ts, начиная от которой возможен запуск реактивного двигателя, и прекращал нагрев сразу после достижения пороговой температуры Ts. Использование изобретение позволяет повысить срок работы катода и срок эксплуатации ракетного двигателя. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к области электроракетных двигателей. В крупногабаритном ионном двигателе, содержащем заключенную в корпус газоразрядную камеру, включающую узел подачи рабочего тела, ионно-оптическую систему, состоящую из плазменного и ускоряющего электродов, закрепленных на наружной стенке корпуса и изолированных от него и друг от друга, и катод-нейтрализатор, закрепленный на корпусе, вдоль центральной оси корпус имеет внутреннюю стенку, образующую сквозное отверстие, в котором установлен катод-нейтрализатор. Электроды ионно-оптической системы выполнены в виде колец, внутренние периметры которых закреплены на внутренней стенке корпуса и изолированы друг от друга и от него. Причем газоразрядная камера содержит, по крайней мере, один кольцевой магнитопровод и кольцевую разрядную камеру, узел подачи рабочего тела которой выполнен в виде установленного внутри нее кольцевого анода - газораспределителя. Разрядная камера размещена внутри охватывающего ее кольцевого магнитопровода, полюса которого охватывают кольца разрядной камеры, причем магнитопровод снабжен магнитом, например соленоидальным электромагнитом. Техническим результатом предлагаемого изобретения является то, что источник ионов, выполненный по предложенной схеме с замкнутым дрейфом электронов, имеет коэффициент использования рабочего тела порядка 1. Это практически позволяет избежать обратного тока ионов на ИОС, что приведет к значительному увеличению ресурса ионного двигателя. 2 з.п. ф-лы, 1 ил.

Способ создания электрореактивной тяги может быть применен в электрореактивных двигателях и источниках электроэнергии для аэрокосмических транспортных средств и аппаратов. Способ заключается в формировании потока продуктов сгорания углеводородного, химического или ядерного топлива, движущегося с заданной скоростью в магнитном поле, вектор индукции которого ортогонален вектору скорости потока продуктов сгорания, затем поток продуктов сгорания разделяют на пучок катионов и пучок электронов, причем энергию пучка электронов преобразовывают в дополнительную электрическую мощность, направляемую на ускорение пучка катионов, который создает реактивную тягу, пропорциональную кинетической энергии ускоренного пучка. Заявленный способ повышает КПД системы электропитания, экономит топливо и другие расходные материалы, увеличивает коэффициент полезной загрузки, радиус действия и срок жизни летательного аппарата. 1 ил.
Наверх