Износостойкая сталь и изделие, выполненное из нее

Изобретение относится к области металлургии, а именно к сталям, применяемым для изготовления износостойких деталей. Сталь содержит углерод, кремний, марганец, хром, никель, медь, молибден, ванадий, кальций, алюминий, ниобий, титан, редкоземельные металлы (РЗМ), железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,25-0,60, кремний 0,10-1,50, марганец 0,20-1,30, хром 0,30-1,90, никель 0,70-2,0, медь не более 0,45, молибден 0,10-0,90, ванадий 0,001-0,40, кальций 0,0001-0,01, алюминий 0,005-0,1, ниобий 0,001-0,20, титан 0,001-0,20, РЗМ 0,0001-0,005, железо и неизбежные примеси остальное. Сталь дополнительно может содержать 0,0001-0,005% бора и имеет преимущественно бейнитно-мартенситную структуру. Обеспечиваются высокая прочность, пластичность и стойкость к высоким ударным нагрузкам, в том числе при температурах до 400°С. 2 н. и 2 з.п. ф-лы, 2 табл.

 

Изобретение относится к области металлургии, а именно к сталям, применяемым для изготовления износостойких деталей.

Изделия, работающие в условиях высоких абразивно-ударных нагрузок, например молотки в шредерных установках, помимо высокой износостойкости должны обладать еще высокой прочностью, пластичностью и стойкостью к ударным нагрузкам. Указанные свойства изделий должны сохраняться и при высоких температурах (до 400°С).

Известна сталь, содержащая углерод, марганец, кремний, хром, молибден, никель, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит медь и алюминий при следующем соотношении компонентов в мас.%: углерод - 0,40-0,47; марганец - 0,50-0,80; кремний - 0,20-0,50; хром - 0,80-1,20; молибден - 0,20-0,30; никель - не более 0,50; сера - не более 0,025; фосфор - не более 0,025; медь - не более 0,40; алюминий - 0,02-0,04; железо - остальное [Патент RU 2160321, МПК С22С 38/44, 2000].

Недостатком данной стали является то, что она недостаточно износостойкая, прочная и пластичная при высоких температурах (до 400°С).

Известна сталь износостойкая, содержащая компоненты в следующем соотношении, мас.%: углерод 0,30-0,35, кремний 0,30-0,50, марганец 0,80-1,20, хром 0,95-1,40, молибден 0,20-0,30, никель 0,80-1,10, медь не более 0,30, ванадий 0,10-0,15, кальций 0,005-0,01, церий 0,005-0,01, алюминий 0,03-0,06, железо - остальное [Патент RU 2303077, МПК С22С 38/46, 2007].

Недостатком данной стали является то, что она недостаточно износостойкая, прочная и пластичная при высоких температурах (до 400°С).

Наиболее близкой по технической сущности к предлагаемому изобретению является износостойкая сталь, содержащая компоненты в следующем соотношении, мас.%: углерод 0,35-0,8, кремний 0,0-2,0, марганец 0,0-2,5, хром 0,0-5,0, никель 0,0-5,0, медь 0,0-1,5, молибден 0,0-0,5, ванадий + ниобий/2 ≤0,5, кальций ≤0,1, алюминий 0,0-2,0, титан 0,0-2,0, железо и неизбежные примеси, в том числе азот - остальное [Патент RU 2327802, МПК С22С 38/54, 2008].

Недостатком данной стали также является то, что она недостаточно износостойкая, прочная и пластичная при высоких температурах (до 400°С).

Технический результат изобретения - расширение потребительских свойств и технологического использования износостойкой стали и изделий, выполненных из нее, обладающих высокой прочностью, пластичностью, стойкостью к высоким ударным нагрузкам и сохраняющим свои свойства при температурах до 400°С.

Указанный технический результат достигается тем, что износостойкая сталь, содержащая углерод, кремний, марганец, хром, никель, медь, молибден, ванадий, кальций, алюминий, ниобий, титан, железо и неизбежные примеси, согласно изобретению дополнительно содержит редкоземельные металлы (РЗМ) при следующем соотношении компонентов, мас.%: углерод 0,25-0,60, кремний 0,10-1,50, марганец 0,20-1,30, хром 0,30-1,90, никель 0,70-2,0, медь не более 0,45, молибден 0,10-0,90, ванадий 0,001-0,40, кальций 0,0001-0,01, алюминий 0,005-0,1, ниобий 0,001-0,20, титан 0,001-0,20, РЗМ 0,0001-0,005, железо и неизбежные примеси остальное. Сталь дополнительно может содержать 0,0001-0,005% бора и имеет преимущественно бейнитно-мартенситную структуру.

Технический результат достигается также тем, что изделие изготавливают из стали указанного состава.

Сущность изобретения заключается в следующем.

При содержании углерода менее 0,25% сталь имеет недостаточную твердость и не обладает достаточной износостойкостью. При содержании углерода более 0,60% снижается пластичность стали и ее стойкость к ударным нагрузкам.

При содержании кремния менее 0,10% сталь является недостаточно раскисленной, что приводит к ее охрупчиванию. При содержании кремния более 1,50% снижается прокаливаемость, пластичность и стойкость стали к ударным нагрузкам.

При содержании марганца менее 0,20% сталь является недостаточно раскисленной, что приводит к ее охрупчиванию. При содержании марганца более 1,30% снижается пластичность стали и ее стойкость к ударным нагрузкам.

При содержании хрома менее 0,30% сталь имеет недостаточную твердость и не обладает достаточной износостойкостью. При содержании хрома более 1,90% снижается пластичность стали и ее стойкость к ударным нагрузкам.

При содержании никеля менее 0,70% снижается прочность стали и ее стойкость к ударным нагрузкам. Содержание никеля более 2,0% приводит к чрезмерному удорожанию стали.

Медь в количестве не более 0,45% обеспечивает повышение коррозионной стойкости стали во влажной атмосфере. При содержании меди свыше 0,45% снижается пластичность стали и ее стойкость к ударным нагрузкам.

При содержании молибдена менее 0,10% сталь не обладает достаточной прокаливаемостью, имеет недостаточную твердость и пониженную износостойкость. При содержании молибдена более 0,90% снижается пластичность стали и ее стойкость к ударным нагрузкам. При содержании ванадия менее 0,001% сталь имеет не достаточную твердость, не обладает достаточной износостойкостью, а также становится чувствительной к перегреву (ухудшаются механические свойства при нагреве в результате рекристаллизации). При содержании ванадия более 0,40% снижается пластичность стали и ее стойкость к ударным нагрузкам.

Кальций очищает межзеренные границы от нежелательных примесей, благодаря чему достигается одновременное повышение ударной вязкости при отрицательных температурах и коррозионной стойкости стали. При снижении содержания кальция менее 0,0001% его положительное влияние проявляется незначительно. Увеличение содержания кальция сверх 0,010% ведет к увеличению количества неметаллических включений, что отрицательно сказывается на механических свойствах стали.

При содержании алюминия менее 0,005% сталь является недостаточно раскисленной, что приводит к ее охрупчиванию. При содержании алюминия более 0,10% увеличивается количество неметаллических включений в стали, что ведет к снижению ее пластичности и стойкости к ударным нагрузкам.

При содержании ниобия менее 0,001% сталь имеет недостаточную твердость, не обладает достаточной износостойкостью, а также становится чувствительной к перегреву. При содержании ниобия более 0,20% повышается склонность стали к охрупчиванию.

При содержании титана менее 0,001% сталь является недостаточно раскисленной, снижается ее прочность, а также повышается ее чувствительность к перегреву. Повышение содержания титана более 0,20% приводит к снижению вязкостных свойств стали.

Редкоземельные металлы (РЗМ) обладают эффективной раскислительной и десульфурирующей способностью, улучшают качество стали. При содержании РЗМ менее 0,0001% их влияние незначительно. Увеличение содержания РЗМ более 0,005% не приводит к дальнейшему улучшению механических свойств стали.

Бор измельчает микроструктуру стали и повышает ее прокаливаемость. При содержании бора менее 0,0001% его влияние незначительно. Увеличение содержания бора более 0,005% приводит к снижению ударной вязкости стали.

Преимущественно бейнитно-мартенситная структура обеспечивает наилучшее сочетание износостойкости стали и ее стойкости к ударным нагрузкам.

Изобретение поясняется результатами экспериментов.

В таблице 1 приведены химические составы сталей с различным содержанием легирующих элементов и примесей. В таблице 2 представлены контролируемые параметры сталей.

Примеры 1-6 с соблюдением предложенных параметров. Примеры 7-9 с не соблюдением некоторых параметров, пример 10 по прототипу. Как следует из таблицы 2, при соблюдении заявляемых параметров (примеры 1-6), стали обладают высокой прочностью, относительным удлинением, ударной вязкостью, твердостью и при этом, изделия (молотки шредера), выполненные из данных сталей, сохраняют свои свойства при высоких температурах (до 400°С), что подтверждается их большей стойкостью (большим количеством переработанного стального лома).

Таким образом, предложенная износостойкая сталь характеризуется расширенным диапазоном потребительских свойств. При сохранении износостойкости она обладает высокой прочностью, пластичностью, стойкостью к высоким ударным нагрузкам и сохраняет свои свойства при температурах до 400°С.

1. Износостойкая сталь, содержащая углерод, кремний, марганец, хром, никель, медь, молибден, ванадий, кальций, алюминий, ниобий, титан, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит редкоземельные металлы (РЗМ) при следующем соотношении компонентов, мас.%:

углерод 0,25-0,60
кремний 0,10-1,50
марганец 0,20-1,30
хром 0,30-1,90
никель 0,70-2,0
медь не более 0,45
молибден 0,10-0,90
ванадий 0,001-0,40
кальций 0,0001-0,01
алюминий 0,005-0,10
ниобий 0,001-0,20
титан 0,001-0,20
РЗМ 0,0001-0,005
железо и неизбежные примеси остальное

2. Износостойкая сталь по п.1, отличающаяся тем, что она дополнительно содержит 0,0001-0,005 мас.% бора.

3. Износостойкая сталь по п.1, отличающаяся тем, что она имеет преимущественно бейнитно-мартенситную структуру.

4. Изделие, выполненное из износостойкой стали, отличающееся тем, что оно выполнено из стали по любому из пп.1-3.



 

Похожие патенты:
Изобретение относится к металлургии и может быть использовано при получении высокопрочной листовой стали толщиной 8,0-40,0 мм для изготовления платформ грузовых автомобилей, работающих в условиях Крайнего Севера.

Высокопрочный с высоким отношением предела текучести к пределу прочности стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности холоднокатаный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный погружением стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности отожженный оцинкованный погружением стальной лист, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности холоднокатаного стального листа, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности оцинкованного погружением стального листа и способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности отожженного оцинкованного погружением стального листа // 2531216
Изобретение относится к области металлургии, а именно к высокопрочному стальному листу, имеющему отношение предела текучести к пределу прочности 0,6 или более. Лист выполнен из стали следующего состава, в мас.%: 0,03-0,20% С, 1,0% или менее Si, от более 1,5 до 3,0% Mn, 0,10% или меньше Р, 0,05% или менее S, 0,10% или менее Аl, 0,010% или менее N, один или несколько видов элементов, выбранных из Ti, Nb и V, общее содержание которых составляет 0,010-1,000%, 0,001-0,01 Ta, остальное Fe и неизбежные примеси.
Изобретение относится к области металлургии, а именно к сталям, используемым для производства магистральных труб. Сталь содержит, мас.%: углерод от 0,11 до менее 0,15, кремний от 0,40 до менее 0,50, марганец 1,30-1,60, хром не более 0,30, никель 0,06-0,20, медь не более 0,30, алюминий не более 0,05, титан не более 0,03, азот не более 0,008, сера не более 0,040, фосфор 0,015-0,030, железо остальное.
Изобретение относится к области металлургии и может быть использовано для получения высокопрочной теплостойкой проволоки различных типоразмеров и листового материала.

Изобретение относится к области металлургии, а именно к фольге из нержавеющей стали, используемой в носителе катализатора устройства очистки выхлопного газа автомобиля.
Изобретение относится к области металлургии, а именно к высокопрочным низкоуглеродистым мартенситным свариваемым сталям, закаливающимся на воздухе, используемым для изготовления термически упрочненных сварных конструкций, крупногабаритных изделий, а также строительных конструкций и деталей нефтяного машиностроения.
Сталь // 2502821
Изобретение относится к области металлургии, а именно к составам низкоуглеродистых сталей, используемых для изготовления гильз патронов автоматического стрелкового оружия калибра 7,62 мм, покрытых сплавом латуни (томпаком) или лаком.
Изобретение относится к области металлургии, а именно к низкоуглеродистым сталям для производства проката, используемого для изготовления сварных нефте- и газопроводов, пригодных к эксплуатации в условиях Крайнего Севера.
Изобретение относится к области металлургии, а именно к изготовлению водоохлаждаемых изложниц для производства центробежно-литых труб. Сталь содержит, в мас.%: углерод 0,16-0,25, кремний 0,10-0,60, марганец 0,60-1,20, хром 1,5-2,50, никель 0,60-1,50, молибден 0,18-0,75, ванадий 0,08-0,15, алюминий 0,001-0,008, медь ≤0,30, сера ≤0,006, фосфор ≤0,008, азот 0,005-0,02, цирконий 0,001-0,004, кальций 0,005-0,02, церий 0,005-0,03, железо - остальное.
Изобретение относится к металлургии, а именно к производству трубных заготовок диаметром от 90 до 110 мм, 140 мм и 150 мм. .
Изобретение относится к области металлургии, в частности к производству cверхнизкоуглеродистых холоднокатаных сталей для глубокой вытяжки изделий и последующего однослойного эмалирования и может быть использовано при изготовлении деталей бытовой техники, посуды, санитарно-гигиенических приборов, в химической промышленности, в строительстве и др. Способ производства cверхнизкоуглеродистой холоднокатаной стали для глубокой вытяжки и последующего однослойного эмалирования включает выплавку стали, содержащую, мас.%: С не более 0,007, Si не более 0,03, Mn 0,15-0,30, Ti (4С+3,43N+1,5S+0,02) - 0,17, где С, N и S - содержание углерода, азота и серы, мас.%, S 0,03-0,06, P не более 0,03, N не более 0,007, Al 0,01-0,06, Cr не более 0,04, Ni не более 0,04, Cu не более 0,04, Fe и неизбежные примеси - остальное, разливку, горячую прокатку, смотку, травление, холодную прокатку, отжиг и дрессировку. Нагрев слябов под прокатку осуществляют до температуры 1150-1250°C, прокатку заканчивают при температуре 880-960°C, смотку осуществляют при температуре 700-750°C. Холодную прокатку ведут с суммарным обжатием 70-90%. Отжиг осуществляют при температуре 700-750°C. Технический результат заключается в получении сверхнизкоуглеродистой холоднокатаной стали, пригодной для однослойного эмалирования, с высокой стойкостью к образованию дефекта "рыбья чешуя" и высоким комплексом механических свойств. 1 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, в частности к производству на реверсивном толстолистовом стане листового проката толщиной 15-34 мм для изготовления труб магистральных трубопроводов диаметром до 1420 мм. Способ производства толстолистового проката для изготовления электросварных труб магистральных трубопроводов включает получение стали, содержащей, мас.%: С - 0,03-0,08, Si - 0,12-0,35, Mn - 1,65-2,10, Cr - 0,01-0,30, Ni - 0,01-0,40, Cu - 0,01-0,30, Мо - 0,01-0,30, Al - 0,02-0,05, Nb - 0,03-0,09, V - 0,001-0,10, Ti - 0,010-0,035, S - 0,0005-0,003, P - 0,002-0,015, N - 0,001-0,008, железо и неизбежные примеси - остальное, при этом 0,08<(Mn+Cr+Cu)/20+Si/30+Ni/60+Mo/15+V/10<0,16, -2,7<lg[Nb][C+8N]<-2 и Cr+Ni+Cu+Мо<0,8%. Непрерывно-литую заготовку подвергают аустенитизации при температуре не менее чем на 100°С ниже температуры Ts (TiN) растворения нитридов титана в соответствии с соотношением Ts(TiN)=14400/(5,0-lg[Ti][N]), где Ti и N - содержание титана и азота в стали, мас.%, но не ниже температуры Ts(Nb(C,N)) растворения карбонитридов ниобия в соответствии с соотношением: Ts(Nb(C,N))=(10100-27[Mn]+200[Si])/(4.85-lg[Nb][C+8N]), где Mn, Si, Nb, С, N - содержание марганца, кремния, ниобия, углерода и азота в стали. Выбор времени t выдержки в томильной зоне осуществляют в соответствии с уравнением: t = 10 1314 − T 77 ± 40,      где t - время выдержки, мин, Т - выбранная температура выдержки, °С. При осуществлении предварительной деформации в ее последних четырех проходах относительные обжатия возрастают по закону: εi=(1,05…1,35)εi-1±2, (%), где εi и εi-1 - обжатия в следующем и предыдущем проходе. Температура Тно(°С) начала ускоренного охлаждения равна: Тно=977-54Mn-102Ni-20Mo-866C-2,2Vохл±30, где Vохл - скорость охлаждения проката от завершения прокатки до начала ускоренного охлаждения, °С/с, а температурный интервал Δ(°С) между температурой Ткп завершения прокатки и температурой Тно начала ускоренного охлаждения определяют: Δ=-2,5Н+92±20, где Н - толщина листа в мм. Технический результат заключается в обеспечении требований по прочностным, пластическим и вязким свойствам, характерным для проката прочности К65, Х80, L555. 3 з.п. ф-лы, 3 табл.

Изобретение относится к металлургии, а именно к разработке состава легированной аустенитной коррозионно-стойкой стали для атомных энергетических установок. Сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,03-0,08, кремний 0,4-0,6, марганец 1,0-1,8, хром 17,5-19, никель 8,0-9,5, ниобий 0,05-0,07, ванадий 0,05-0,07, титан 0,08-0,12, сера ≤0,015, фосфор ≤0,015, азот от 0,04 до менее 0,07, кальций 0,004-0,015, церий 0,005-0,05, железо - остальное. Для компонентов стали выполняется соотношение: Повышаются кратковременные и длительные механические свойства и стойкость против питтингообразования в агрессивных водных средах. 3 табл.
Изобретение относится к области металлургии, а именно к составу металлического материала, используемого на нефтеперерабатывающих, газоперерабатывающих и химических производствах в качестве материала для крекинговых, реформинговых и нагревательных печей, теплообменников. Материал содержит, в мас.%: C: от 0,03 до 0,075, Si: от 0,6 до 2,0, Mn: от 0,05 до 2,5, P: 0,04 или менее, S: 0,015 или менее, Cr: больше 16,0 и меньше 20,0, Ni: 20,0 или больше, но меньше 30,0, Cu: от 0,5 до 10,0, Al: 0,15 или менее, Ti: 0,15 или менее, N: от 0,005 до 0,20, O: 0,02 или менее, остальное Fe и примеси. Материал может дополнительно содержать по меньшей мере один компонент, выбранный из: Co, Mo, W, Ta, B, V, Zr, Nb, Hf, Mg, Ca, Y, La, Ce и Nd. Материал обладает устойчивостью к науглероживанию, пылящему износу и закоксовыванию, имеет повышенную свариваемость и характеристики ползучести. 2 н. и 3 з.п. ф-лы, 2 табл., 4 пр.

Изобретение относится к области металлургии, а именно к составам ферритных коррозионно-стойких сталей, применяемых в машиностроении для изделий, к которым предъявляются требования обеспечения высокой твердости и коррозионной стойкости при достаточной пластичности. Сталь содержит углерод, хром, никель, титан, молибден, алюминий, церий, иттрий и железо при следующем соотношении компонентов, мас.%: углерод до 0,03, хром 12-18, никель 5-10, молибден 0,8-3,0, титан менее 0,20, алюминий 1,0-2,5, церий до 0,02, иттрий ≤,002, железо - остальное. Повышаются прочностные свойства стали. 1 ил., 1 пр.

Изобретение относится к области металлургии, а именно к составу жаропрочного сплава, используемого для изготовления реакционных труб нефтегазоперерабатывающих установок с рабочими режимами при температуре 700÷1050°C и давлении до 46 атмосфер. Сплав содержит компоненты в следующем соотношении, мас.%: углерод 0,35-0,45, хром 24,0-27,0, никель 18,0-21,0, ниобий 1,1-1,6, кремний 1,8995-2,49, марганец 1,0005-1,51, ванадий 0,0005-0,20, титан 0,0005-0,1, алюминий 0,0005-0,1, иттрий >0-0,001, кислород >0,0005-0,028, водород >0,0005-0,0025, азот >0,0005-0,095, сера ≤0,02, фосфор ≤0,03, свинец ≤0,009, олово ≤0,009, мышьяк ≤0,009, цинк ≤0,009, сурьма ≤0,009, молибден ≤0,2, медь ≤0,1, железо - остальное. Для компонентов сплава выполняются следующие условия, мас.%: (CrЭ/NiЭ)≥0,85, где CrЭ - эквивалент хрома, NiЭ - эквивалент никеля, CrЭ=Cr+2×Al+3×Ti+V+Mo+1,6×Si+0,6×Nb, NiЭ=Ni+32×C+0,6×Mn+22×N+Cu. Обеспечивается снижение разнозернистости структуры сплава, повышается структурная стабильность сплава в процессе старения, а также снижается склонность к образованию горячих трещин при сварке. 1 з.п. ф-лы.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, используемым при изготовлении труб, листов, поковок и др. металлопроката для теплообменного оборудования, работающего в коррозионных средах, а также для сосудов и аппаратов, работающих при высоком давлении в диапазоне температур от минус 196°С до плюс 450°С. Сплав содержит компоненты в следующем соотношении, мас.%: углерод ≤0,05, хром 19,7-24,0, никель 38,2-45,7, кремний ≤0,50, марганец ≤0,95, титан 0,65-1,25, алюминий ≤0,22, иттрий >0-0,001, кислород >0,0005-0,018, водород >0,0005-0,0017, азот >0,0005-0,050, сера ≤0,020, фосфор ≤0,015, свинец ≤0,009, олово ≤0,009, мышьяк ≤0,009, цинк ≤0,009, сурьма ≤0,009, молибден 2,52-3,55, медь 1,45-2,95, железо остальное. При этом выполняются следующие условия, мас.%: (СrЭ/NiЭ)≥0,61, СrЭ=%Сr+2×%Аl+3×%Ti+%Мо+1,6×%Si, NiЭ=%Ni+32×%С+0,6×%Mn+22×%N+%Cu, где СrЭ - эквивалент хрома, NiЭ - эквивалент никеля. Обеспечивается повышение структурной стабильности сплава в процессе старения, а также снижение склонности сплава к образованию горячих трещин при сварке. 1 з.п. ф-лы.

Изобретение относится к металлургии, а именно к низколегированным сталям, используемым для изготовления сварных нефте- и газопроводов, металлоконструкций, пригодных к эксплуатации в условиях Крайнего Севера, для строительства морских сооружений и конструкций, работающих в агрессивных средах. Выплавляют сталь, содержащую, мас.%: углерод 0,05-0,13, кремний 0,10-0,40, марганец 0,30-0,70, ванадий 0,04-0,12, ниобий ≤0,01, алюминий 0,02-0,06, титан ≤0,01, молибден ≤0,25, азот ≤0,008, хром 0,30-1,0, никель ≤0,30, медь ≤0,30, серу ≤0,004, фосфор ≤0,018, кальций 0,001-0,006, железо и примеси - остальное. Полученную сталь подвергают внепечной обработке, вакуумированию, непрерывной разливке в слябы и горячей прокатке. Горячую прокатку полос осуществляют в черновой группе клетей до толщины раската не менее 4,3 крат от номинальной толщины готовой полосы при температуре конца прокатки, определяемой по выражению Ткп черн.=Ar3(расч)+С×2350, [°C], и чистовой группе клетей при температуре конца прокатки, определяемой по выражению Тк.п.=(960-806×С)±15, [°C], где С - массовая доля углерода в мас.%. Охлаждают полосу на отводящем рольганге со скоростью не менее 10°C/сек и сматывают при температуре в диапазоне 530÷600°C с получением в полосе полосчатости не более 2 балла и структуры с баллом зерна не более 9 балла без включений на основе частиц карбонитридов ниобия и титана. Повышается коррозионная стойкость, хладостойкость и выход годного горячекатаного полосового проката. 2 з.п. ф-лы, 3 табл., 1 пр.

Изобретение относится к области металлургии и может быть использовано для производства титансодержащих коррозионно-стойких марок стали методом электрошлакового переплава. В способе осуществляют электрошлаковый переплав расходуемого электрода в кристаллизаторе с соотношением содержания титана к алюминию в электроде в пределах 6,0-9,0, при этом содержание титана в электроде превышает требуемое содержание титана в готовой стали на величину его угара при переплаве, который определяют по зависимости: ΔTi=37Tiг+35·Tiг D2/(63+35D2), где ΔTi - средний угар титана, полученный при проведении плавок в кристаллизаторы различного профилеразмера с одинаковым коэффициентом заполнения, %; Tiг - содержание титана в готовом металле, %; D - диаметр кристаллизатора, м. Изобретение позволяет получить качественный металл с гарантированным содержанием титана и с равномерным его распределением по объёму выплавляемого слитка. 5 табл.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, используем для изготовления реакционных труб змеевиков установок производства этилена и др. нефтегазоперерабатывающих установок с рабочими режимами при температуре 950÷1100°C и давлении до 10 атмосфер. Сплав содержит компоненты в следующем соотношении, мас.%: углерод 0,40-0,50; хром 24,0-28.0; никель 34,0-36,0; ниобий 1,30-1,70; церий 0,08-0,12; кремний 1,8995-2,39; марганец 0,0505-0,51; ванадий 0,0005-0,20; титан 0,0005-0,10; алюминий 0,0005-0,10; иттрий >0-0,001; кислород >0,0005-0,028; водород >0,0005-0,0025; азот >0,0005-0,095; сера ≤0,03; фосфор ≤0,03; свинец ≤0,009; олово ≤0,009; мышьяк ≤0,009; цинк ≤0,009; сурьма ≤0,009; молибден ≤0,2; медь ≤0,1, железо - остальное. Для компонентов сплава выполняются следующие условия, мас.%: (CrЭ/NiЭ)≥0,619; (S+Р)≤0,025, где CrЭ - эквивалент хрома; NiЭ - эквивалент никеля; CrЭ=Cr+2×Al+3×Ti+V+Mo+l,6×Si+0,6×Nb; NiЭ=Ni+32×C+0,6×Mn+22×N+Cu. Обеспечивается увеличение структурной стабильности сплава в процессе старения, а также снижение склонности сплава к образованию горячих трещин при сварке. 2 з.п. ф-лы.
Наверх