Установка электромембранного получения умягченного солевого раствора и концентрированного щелочного раствора из щелочных высокоминерализированных промышленных стоков

Изобретение относится к области промышленной рекуперации жидких щелочных высокоминерализованных отходов. Установка включает блок предварительной очистки промышленных стоков 1, блок рециркуляции щелочного раствора, блок многокамерных электромембранных аппаратов, состоящий из блока 2 первой ступени электромембранной обработки для отделения диализата от очищенного щелочного стока, а также получения умягченного солевого раствора, и блока 3 второй ступени электромембранной обработки для получения дилюата и концентрированного щелочного раствора. Блок рециркуляции щелочного раствора содержит первый бак 4, заполняемый щелочным раствором, и второй бак 5, заполняемый очищенным щелочным стоком и соединенный с блоком предварительной очистки. Установка содержит линию 6 подачи дилюата второй ступени электромембранной обработки в блок первой ступени электромембранной обработки и линию подачи щелочного раствора из первого бака в камеру концентрирования блока второй ступени электромембранной обработки. Технический результат - повышение производительности получения умягченного солевого раствора и концентрированного щелочного раствора, снижение удельного потребления электроэнергии, упрощение технологической схемы. 1 ил.

 

Изобретение относится к области промышленной рекуперации жидких щелочных высокоминерализованных отходов, в частности к регенерации щелочи из жидких высокоминерализованных промышленных отходов (стоков), и может быть использовано на предприятиях, имеющих щелочесодержащие стоки.

Известны устройства для утилизации жидких радиоактивных отходов, путем предочистки с последующим обессоливанием и концентрированием, основанные на электродиализных аппаратах с ионообменными мембранами (В.И. Демкин, Д.В. Адамович, B.C. Амелин, В.И. Пантелеев «Мембранная технология переработки солевых жидких радиоактивных растворов», журнал «Мембраны», серия «Критические технологии», №15, 2002 г., патенты РФ №2160473, МПК G21F 9/04, 19.08.1999 г., №2275337, МПК C02F 9/08, C02F 9/04, 27.04.2006 г.).

Известные устройства не позволяют осуществлять разделение отходов с последующим их повторным использованием.

Наиболее близким техническим решением является установка для переработки промышленных сточных вод и получения концентрированного щелочного раствора и умягченного солевого раствора по патенту РФ №121500, МПК C02F 9/08, B01D 61/44, 27.10.2012 г.

Известная установка для переработки промышленных сточных вод и получения концентрированного щелочного раствора и умягченного солевого раствора включает расположенные в технологической последовательности блок накопления и предварительной очистки перерабатываемых сточных вод, блок рециркуляции рабочих растворов, блок многокамерных электромембранных аппаратов, при этом блок многокамерных электромембранных аппаратов состоит из блока первой ступени электромембранной обработки для отделения щелочного раствора от очищенного щелочного стока, а также получения умягченного солевого раствора, и блока второй ступени электромембранной обработки для получения концентрированного щелочного раствора, блок рециркуляции рабочих растворов содержит четыре бака, обвязанных трубопроводами из химически стойкого материала, причем первый бак установлен с возможностью заполнения промывочным раствором, второй бак установлен с возможностью заполнения обессоленной водой, третий бак установлен с возможностью накопления щелочного раствора с блока первой ступени электромембранной обработки, четвертый бак установлен с возможностью заполнения очищенным щелочесодержащим стоком и соединен с блоком накопления и предварительной очистки перерабатываемых сточных вод, причем входы блока первой ступени электромембранной обработки соединены соответственно с выходами первого, второго и четвертого баков блока рециркуляции рабочих растворов, выходы блока первой ступени электромембранной обработки соединены соответственно с входами первого и третьего баков блока рециркуляции рабочих растворов, а входы блока второй ступени электромембранной обработки соединены соответственно с выходами первого, третьего и четвертого баков блока рециркуляции рабочих растворов, выход блока второй ступени электромембранной обработки соединен с входом первого бака блока рециркуляции рабочих растворов.

Недостатком известной установки является низкая производительность получения умягченного солевого раствора и концентрированного щелочного раствора, высокое удельное потребление электроэнергии (13 кВтч на 1 тонну обрабатываемого раствора), обусловленные параллельно-последовательной схемой работы первой и второй ступени электромембранной обработки из-за соединения четвертого бака со второй ступенью, а также сложность технологической схемы установки из-за наличия третьего бака и линий его соединения с другими блоками установки.

Задачей настоящего изобретения является повышение производительности получения умягченного солевого раствора и концентрированного щелочного раствора, снижение удельного потребления электроэнергии, а также упрощение технологической схемы.

Техническим результатом настоящего изобретения является обеспечение возможности одновременной работы аппаратов обеих ступеней, параллельной схемы питания аппаратов двух ступеней постоянным электрическим током, непрерывного отвода диализата с первой ступени аппарата и подачи в линию дилюата второй ступени, и далее возврат на аппарат первой ступени.

Технический результат достигается тем, что в установку электромембранного получения умягченного солевого раствора и концентрированного щелочного раствора из щелочных высокоминерализированных промышленных стоков, включающую расположенные в технологической последовательности блок предварительной очистки промышленных стоков, блок рециркуляции щелочного раствора, блок многокамерных электромембранных аппаратов, при этом блок многокамерных электромембранных аппаратов состоит из блока первой ступени электромембранной обработки для отделения диализата от очищенного щелочного стока, а также получения умягченного солевого раствора, и блока второй ступени электромембранной обработки для получения дилюата и концентрированного щелочного раствора, блок рециркуляции щелочного раствора содержит два бака, обвязанных трубопроводами из химически стойкого материала, причем первый бак установлен с возможностью заполнения щелочным раствором, второй бак установлен с возможностью заполнения очищенным щелочным стоком и соединен с блоком предварительной очистки промышленных стоков, причем входы блока первой ступени электромембранной обработки соединены соответственно с выходами первого, второго баков блока рециркуляции щелочного раствора, выход блока первой ступени электромембранной обработки соединен с входом первого бака блока рециркуляции щелочного раствора, а вход блока второй ступени электромембранной обработки соединен с выходом первого бака блока рециркуляции щелочного раствора, выход блока второй ступени электромембранной обработки соединен с входом первого бака блока рециркуляции щелочного раствора, согласно предлагаемому изобретению дополнительно введены линия подачи дилюата второй ступени электромембранной обработки в блок первой ступени электромембранной обработки, линия подачи по последовательной схеме диализата первой ступени электромембранной обработки в блок второй ступени электромембранной обработки, а также линия подачи щелочного раствора из первого бака в камеру концентрирования блока второй ступени электромембранной обработки.

Сущность изобретения поясняется чертежом, на котором изображена технологическая блок-схема предлагаемой установки электромембранного получения умягченного солевого раствора и концентрированного щелочного раствора из щелочных высокоминерализированных промышленных стоков.

На чертеже цифрами обозначены:

1 - блок предварительной очистки промышленных стоков,

2 - блок первой ступени электромембранной обработки для отделения диализата от очищенного щелочного стока, а также получения умягченного солевого раствора,

3 - блок второй ступени электромембранной обработки для получения дилюата и концентрированного щелочного раствора,

4 - первый бак блока рециркуляции рабочих растворов,

5 - второй бак блока рециркуляции рабочих растворов,

6 - линия подачи дилюата второй ступени электромембранной обработки в блок первой ступени электромембранной обработки,

7 - линия подачи по последовательной схеме диализата первой ступени электромембранной обработки в блок второй ступени электромембранной обработки,

8 - линия подачи щелочного раствора из первого бака в камеру концентрирования блока второй ступени электромембранной обработки;

9 - линия циркуляции щелочного (промывочного) раствора первой ступени электромембранной обработки,

10 - линия циркуляции щелочного (промывочного) раствора второй ступени электромембранной обработки.

Установка электромембранного получения умягченного солевого раствора и концентрированного щелочного раствора из щелочных высокоминерализированных промышленных стоков включает расположенные в технологической последовательности и связанные трубопроводами из химически стойкого материала блок 1 предварительной очистки промышленных стоков, блок рециркуляции щелочного раствора, блок многокамерных электромембранных аппаратов.

Блок 1 предварительной очистки промышленных стоков предназначен для удаления из промышленных сточных вод мелкодисперсных частиц и взвесей (осветление), снижения содержания в воде железа, марганца (безреагентное обезжелезивание), удаления из воды хлора и хлорсодержащих примесей и органических соединений (сорбция).

Блок многокамерных электромембранных аппаратов состоит из блока 2 первой ступени электромембранной обработки для отделения диализата от очищенного щелочного стока, а также получения умягченного солевого раствора, и блока 3 второй ступени электромембранной обработки для получения дилюата и концентрированного щелочного раствора.

Блок рециркуляции щелочного раствора содержит два бака, обвязанных трубопроводами из химически стойкого материала.

Первый бак 4 установлен с возможностью заполнения щелочным (промывочным) раствором.

Второй бак 5 установлен с возможностью заполнения очищенным щелочным стоком и соединен с блоком 1 предварительной очистки промышленных стоков.

Блок рециркуляции имеет линию 9 циркуляции щелочного (промывочного) раствора первой ступени электромембранной обработки и линию 10 циркуляции щелочного (промывочного) раствора второй ступени электромембранной обработки.

Входы блока 2 первой ступени электромембранной обработки соединены соответственно с выходами первого 4 и второго 5 баков блока рециркуляции щелочного раствора, а выходы блока 2 первой ступени электромембранной обработки соединены соответственно с входом блока 3 второй ступени электромембранной обработки и входом первого бака 4 блока рециркуляции щелочного раствора.

Входы блока 3 второй ступени электромембранной обработки соединены соответственно с выходами первого 4 бака блока рециркуляции щелочного раствора и блоком 2 первой ступени электромембранной обработки по последовательной схеме, а выход блока 3 второй ступени электромембранной обработки соединен с входом первого бака 4 блока рециркуляции щелочного раствора.

Таким образом, технологическая схема предлагаемой установки электромембранного получения умягченного солевого раствора и концентрированного щелочного раствора из щелочных высокоминерализированных промышленных стоков состоит из отдельных компактно размещенных технологических блоков:

- блока предварительной очистки промышленных стоков, - блока рециркуляции щелочного раствора, - блока многокамерных электромембранных аппаратов. Все детали, узлы и части, контактирующие с растворами, предлагаемой установки изготавливаются из химически стойких материалов. Блок 1 предварительной очистки промышленных стоков включает бак-накопитель объемом 4500 л, который предназначен для сбора и накопления промышленных стоков, а также водоочистительную систему (на чертеже условно не показана) для предварительной очистки промышленных стоков.

Блок рециркуляции щелочного раствора включает два пластиковых бака 4, 5, каждый рабочей емкостью 750 литров, обвязанных трубопроводами из химически стойкого ПВХ. Баки 4, 5 оснащены соответствующей трубопроводной арматурой, которая на чертеже условно не показана.

Баки 4, 5 изготовлены из полиэтилена и предназначены для стационарного хранения щелочного раствора, укомплектованы съемной крышкой с дыхательным клапаном.

Диаметр съемной крышки позволяет производить обслуживание емкостей внутри.

Баки 4, 5 не предназначены для работы под давлением. Рабочее давление внутри указанных баков - гидростатическое (давление столба жидкости).

В верхней части баков 4, 5 монтируются штуцеры подвода и отвода щелочного раствора. В нижней части имеется слив с заглушкой.

Для контроля за уровнем баки 4, 5 оснащены уровнемерами.

Первый бак 4 изначально заполнен щелочным раствором, представляющим собой 1%-ный раствор щелочи в воде.

Раствор из данного бака используется для непрерывной промывки приэлектродных камер многокамерных электромембранных аппаратов блоков 2 и 3 электромембранной обработки и для приема концентрированного раствора щелочи.

Второй бак 5 заполнен предварительно очищенным щелочным стоком из блока 1 предварительной очистки промышленных стоков.

Электромембранная обработка предварительно очищенных промышленных стоков включает стадию отделения диализата от очищенного щелочного стока, а также получения умягченного солевого раствора в блоке 2, и стадию получения дилюата и концентрированного щелочного раствора в блоке 3.

На многокамерном электромембранном аппарате блока 2 первой ступени получают также щелочной (промывочный) раствор. Умягченный раствор представляет собой разбавленный раствор исходных солей и оставшейся щелочи.

На установку электромембранного получения умягченного солевого раствора и концентрированного щелочного раствора для восполнения потери объема воды может подаваться обессоленная вода (на чертеже линия подачи обессоленной воды условно не показана).

Отличием предлагаемой установки электромембранного получения умягченного солевого раствора и концентрированного щелочного раствора из щелочных высокоминерализированных промышленных стоков является то, что в нее дополнительно введены линия 6 подачи дилюата второй ступени электромембранной обработки в блок 2 первой ступени электромембранной обработки, линия 7 подачи по последовательной схеме диализата первой ступени электромембранной обработки в блок 3 второй ступени электромембранной обработки, а также линия 8 подачи щелочного раствора из первого бака 4 в камеру концентрирования блока 3 второй ступени электромембранной обработки.

Установка электромембранного получения умягченного солевого раствора и концентрированного щелочного раствора из щелочных высокоминерализированных промышленных стоков работает следующим образом.

Щелочной высокоминерализированный промышленный сток непрерывно поступает на блок 1 предварительной очистки, где происходит удаление из стока взвешенных веществ. Далее очищенный щелочной сток поступает во второй бак 5 циркуляции рабочих растворов. Из данного бака 5 очищенный щелочной сток поступает на блок 2 первой ступени электромембранной обработки.

В блоке 2 происходит разделение очищенного щелочного стока на умягченный солевой раствор и на слабощелочной раствор. Умягченный солевой раствор подается потребителю. Слабощелочной раствор из блока 2 первой ступени поступает по линии 7 в блок 3 второй ступени электромембранной обработки.

Щелочной раствор с многокамерного электромембранного аппарата блока 2 первой ступени электромембранной обработки поступает на концентрирование в многокамерный электромембранный аппарат блока 3 второй ступени электромембранной обработки по последовательной схеме.

В блоке 3 второй ступени электромембранной обработки слабощелочной раствор разделяется на концентрированный щелочной раствор и дилюат.Концентрированный щелочной раствор подается потребителю, а дилюат из блока 3 второй ступени электромембранной обработки подается по линии 6 в блок 2 в тракт слабощелочного раствора.

В блоке 2 первой ступени по линии 9 и блоке 3 второй ступени по линии 10 через промывочные (приэлектродные) камеры циркулирует щелочной раствор из первого бака 4.

Таким образом, отличительные признаки, по сравнению с прототипом, обеспечивают возможность непрерывного отвода диализата с первой ступени аппарата и подачи в линию дилюата второй ступени, и далее возврат на аппарат первой ступени, одновременной работы по последовательной схеме многокамерных электромембранных аппаратов обеих ступеней, и следовательно, параллельной схемы питания многокамерных электромембранных аппаратов двух ступеней постоянным электрическим током.

Установка электромембранного получения умягченного солевого раствора и концентрированного щелочного раствора из щелочных высокоминерализированных промышленных стоков работает в циркуляционном режиме.

В процессе работы контролируются давление на входе и выходе из многокамерных электромембранных аппаратов, расход растворов по каждому тракту.

Для контроля за эффективностью и степенью завершенности процесса предусмотрен отбор проб растворов на химический анализ.

Система оснащена насосами (на чертеже условно не показаны) для подачи растворов в блоки 3 и 4 электромембранной обработки. Щелочной раствор в ходе циркуляции очищается от механических примесей фильтрацией через патронные фильтры (на чертеже условно не показаны).

Источник электрического питания многокамерных электромембранных аппаратов блоков 2 и 3 электромембранной обработки, устанавливаемый отдельно, обеспечивает питание постоянным током каждого многокамерного электромембранного аппарата с плавной регулировкой выходного напряжения.

Диапазон регулирования напряжения 0-100 В, максимальное значение силы тока - 15 А.

Суммарное потребление электроэнергии двумя многокамерными электромембранными аппаратами блоков 2 и 3 электромембранной обработки составляет 6 кВтч на 1 тонну обрабатываемого промышленного стока. Продуктами переработки в этом случае являются 0,1 тонны концентрированного щелочного раствора (4% щелочи, 2% солей) и 0,9 тонны умягченного солевого раствора (2,5% исходных солей), используемые в дальнейшем в технологическом процессе.

В процессе переработки промышленных стоков и получения концентрированного щелочного раствора и умягченного солевого раствора не требуется дополнительного ввода химических реагентов.

Наличие в предлагаемой установке блоков 2 и 3 электромембранной обработки позволяет доводить концентрацию получаемого щелочного раствора до концентрации, требуемой для его повторного использования в технологическом цикле.

Таким образом, использование предлагаемого изобретения позволит повысить производительность получения умягченного солевого раствора и концентрированного щелочного раствора, снизить удельное потребление электроэнергии, упростить технологическую схему за счет обеспечения возможности одновременной работы аппаратов обеих ступеней, параллельной схемы питания аппаратов двух ступеней постоянным электрическим током, непрерывного отвода диализата с первой ступени аппарата и подачи в линию диализата второй ступени, и далее в промежуточный бак.

Установка электромембранного получения умягченного солевого раствора и концентрированного щелочного раствора из щелочных высокоминерализированных промышленных стоков, включающая расположенные в технологической последовательности блок предварительной очистки промышленных стоков, блок рециркуляции щелочного раствора, блок многокамерных электромембранных аппаратов, при этом блок многокамерных электромембранных аппаратов состоит из блока первой ступени электромембранной обработки для отделения диализата от очищенного щелочного стока, а также получения умягченного солевого раствора, и блока второй ступени электромембранной обработки для получения дилюата и концентрированного щелочного раствора, блок рециркуляции щелочного раствора содержит два бака, обвязанных трубопроводами из химически стойкого материала, причем первый бак установлен с возможностью заполнения щелочным раствором, второй бак установлен с возможностью заполнения очищенным щелочным стоком и соединен с блоком предварительной очистки промышленных стоков, причем входы блока первой ступени электромембранной обработки соединены соответственно с выходами первого, второго баков блока рециркуляции щелочного раствора, выход блока первой ступени электромембранной обработки соединен с входом первого бака блока рециркуляции щелочного раствора, а вход блока второй ступени электромембранной обработки соединен с выходом первого бака блока рециркуляции щелочного раствора, выход блока второй ступени электромембранной обработки соединен с входом первого бака блока рециркуляции щелочного раствора, отличающаяся тем, что в нее дополнительно введены линия подачи дилюата второй ступени электромембранной обработки в блок первой ступени электромембранной обработки, линия подачи по последовательной схеме диализата первой ступени электромембранной обработки в блок второй ступени электромембранной обработки, а также линия подачи щелочного раствора из первого бака в камеру концентрирования блока второй ступени электромембранной обработки.



 

Похожие патенты:

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа и может быть использовано для осуществления процессов мембранной технологии. Электробаромембранный аппарат трубчатого типа содержит цилиндрический корпус с расположенными на его внешней поверхности патрубком для ввода разделяемой жидкости и на внутренней поверхности продольными каналами, устройство для подвода электрического тока, микропористые подложки, внешняя поверхность которых служит электродом-катодом, а внутренняя поверхность которых служит электродом-анодом, прикатодные мембраны, прианодные мембраны, последовательно соединенные камеры разделения, образованные концентрическими трубчатыми фильтрующими элементами, имеющими различные площади поверхности фильтрации и диаметры, с переточными каналами, центральную трубу и торцевые крышки, имеющие патрубки для вывода анионов и катионов с пермеатом.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электрогиперфильтрации, электромикрофильтрации, электроультрафильтрации и электронанофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и других отраслях промышленности.

Изобретение относится к области разделения, концентрирования и очистки растворов методом электрофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и других отраслях промышленности.

Изобретение относится к конструкциям мембранных аппаратов рулонного типа. Электробаромембранный аппарат рулонного типа содержит корпус из диэлектрического материала, монополярных электродов анода и катода, выполненных из графитовой ткани, устройство для подвода электрического тока, перфорированную трубку, непористую пленку, опирающуюся на диэлектрические пластины с перфорированными отверстиями, при этом пленка расположена по обе стороны от сетки-турбулизатора, между которыми с одной стороны находится прикатодная мембрана и прикатодная дренажная сетка, а с другой стороны прианодная мембрана и прианодная дренажная сетка, которые создают межмембранный канал, торцевые поверхности элементов сетки-турбулизатора и расположенные с обеих сторон от нее прикатодной мембраны, прикатодной дренажной сетки и непористой пленки и прианодной мембраны, прианодной дренажной сетки и непористой пленки залиты клеевой композицией.
Изобретение относится к молочной промышленности и может быть использовано для получения натуральной и концентрированной творожной сыворотки, деминерализованной методом электродиализа, и предназначенной для получения молочных, молокосодержащих, кисломолочных продуктов, мороженого и замороженных десертов, молочных консервов, детских и диетических продуктов, хлебобулочных и кондитерских изделий, колбасных изделий.

Изобретение относится к способу извлечения аммиака, содержащегося в газообразном продувочном потоке, получаемом в процессе синтеза мочевины. .

Изобретение относится к конструкциям мембранных аппаратов рулонного типа и может быть использовано для осуществления процессов мембранной технологии: электроультрафильтрации, электронанофильтрации, электромикрофильтрации и электроосмофильтрации.

Изобретение относится к устройствам для разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электроосмофильтрации и может быть использовано в химической и других отраслях промышленности.

Изобретение относится к области судостроения. .

Изобретение относится к мембранным аппаратам рулонного типа и может быть использовано для фильтрации и обратного осмоса. Аппарат содержит коллекторы отвода прикатодного и прианодного пермеата, образованные пространством между полуцилиндрами корпуса аппарата, корпусом аппарата и полимерной перфорированной перегородкой с перфорацией в три ряда отверстиями в шахматном порядке по всей длине. Со стороны торцевых поверхностей полуцилиндров корпуса аппарата на торцевых крышках имеются отверстия с резьбой, в которую вкручены штуцера для отвода пермеата и ретентата. Пространство между корпусом аппарата, прикатодными, прианодными мембранами и перфорированной трубкой образует коллектор для протекания исходного раствора, в котором расположены сетки-турбулизаторы, в которые вплетены металлические трубки. Межмембранный канал образован последовательно уложенными с двух сторон от сетки-турбулизатора двумя парами прикатодной, прианодной мембран, подложек мембран, дренажных сеток - катода и анода, которые все вместе проклеены с торцевых поверхностей и с сетками-турбулизаторами, в которые вплетены металлические трубки, обернуты вокруг перфорированной трубки, при этом дренажные сетки - катод и анод расположены между подложками мембран и уложенными на них прикатодными и прианодными мембранами, приклеенными в месте перфорации к перфорированной трубке. Технический результат - повышение качества разделения растворов при улучшенном охлаждении пермеата и монополярных электродов. 5 ил., 1 табл.

Изобретение относится к области энергетики, предназначено для одновременного получения пресной воды, холода и электроэнергии. Достигаемые технические результаты - более высокая экономия потребляемой электроэнергии, вплоть до полной компенсации энергозатрат на собственные нужды установки, сопровождающаяся снижением количества выбросов токсичных и парниковых газов судовой энергетической установки, больший коэффициент полезного действия, а также возможность получать холод - получены путем совмещения процесса опреснения воды с получением холода и электроэнергии. 3 н.п. ф-лы, 3 ил.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации. Электробаромембранный аппарат плоскокамерного типа, состоящий из двух фланцев, каналов ввода и вывода разделяемого раствора и отвода пермеата, устройства для подвода постоянного электрического тока, чередующихся диэлектрических камер корпуса, соединенных типа выступ-впадина, отверстий для подвода электрических проводов, отличается тем, что чередующиеся диэлектрические камеры корпуса с "выступом" и "впадиной" имеют прямоугольные переточные окна, в которых уложены на всю их длину и ширину в виде непрерывного полотна сверху и снизу с одной стороны чередующейся диэлектрической камеры корпуса с "выступом" и "впадиной" по другую последовательно дренажные сетки, монополярно-пористые пластины электрод-катод и электрод-анод, пористые подложки из ватмана, прикатодные и прианодные мембраны соответственно до внешнего периметра прокладок, за исключением тех мест пористых подложек из ватмана, прикатодных и прианодных мембран, где расположены прямоугольные пластины вставки толщиной 2 мм, соединяющие монополярно-пористые пластины электрод-катод и электрод-анод, по внутреннему периметру прокладок расположены центральные прямоугольные углубления величиной 0,5 мм от их толщины и одной третьей их части по ширине, причем в эти центральные прямоугольные углубления по всему внутреннему периметру прокладок вставлены концы сеток-турбулизаторов, представляющих собой переплетенные под углом 90 градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран, в пространстве прямоугольного переточного окна чередующейся диэлектрической камеры корпуса с "выступом" и "впадиной" образован межмембранный канал, который на всю ширину и высоту под прокладкой и от прокладки до прокладки с одной стороны чередующихся диэлектрических камер корпуса с "выступом" и "впадиной" по другую залит полимерной заливкой, межмембранный канал также образован в тех местах, где расположена сетка-турбулизатор, внутренние поверхности диэлектрических фланцев корпуса снабжены уложенными последовательно друг на друга дренажными сетками, монополярно-пористыми пластинами, электродом-катодом, пористыми подложками из ватмана, прикатодными мембранами соответственно, на чередующихся диэлектрических камерах корпуса с "выступом" и "впадиной" имеются двусторонние отверстия для подвода электрических проводов, залитые полимерным компаундом от отрицательной и положительной клемм устройства для подвода постоянного электрического тока, соединенные с дренажными сетками, на внутренней стороне диэлектрических фланцев корпуса имеется отверстие для подвода электрического провода от отрицательной клеммы устройства для подвода постоянного электрического тока к дренажной сетке и канал для отвода прикатодного пермеата с диэлектрической сеткой по всей площади, расположенные в тех же местах, что и на чередующихся диэлектрических камерах корпуса с "выступом" и "впадиной", на которых расположены каналы для отвода прикатодного и прианодного пермеата и отверстия для подвода электрических проводов в зависимости от схемы подключения электродов "минус" или "плюс". Технический результат - увеличение способности дифференцированного выделения прикатодного и прианодного пермеата, увеличение качества и эффективности разделения растворов, снижение гидравлического сопротивления в аппарате, увеличение площади прикатодных и прианодных мембран в единице объема аппарата, в предотвращение смещения сетки-турбулизатора от рабочей части поверхности. 8 ил.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электрогиперфильтрации, электромикрофильтрации, электроультрафильтрации и электронанофильтрации. Предложен электробаромембранный аппарат с плоскими охлаждающими камерами, в котором первый и последний фланцы корпуса аппарата выполнены с выступом и впадиной соответственно по плоской уплотнительной поверхности, в которых установлены монополярные пористые электроды и уложены мембраны, а между первым и последним фланцами имеются унифицированные промежуточные фланцы корпуса с каналами для циркуляции раствора и прокладки, в которых также имеются отверстия для циркуляции раствора. Между первым и вторым, третьим и четвертым, пятым и шестым, седьмым и восьмым промежуточными фланцами корпуса расположены с обеих сторон от резиновых прокладок диэлектрические пластины, которые в паре образуют охлаждающую камеру. На соответствующих промежуточных фланцах корпуса расположены штуцера для ввода и вывода охлаждающего агента, а на первом и последнем фланцах корпуса имеются каналы и штуцера для ввода и вывода разделяемого раствора. В аппарате чередуются камеры разделения раствора и камеры охлаждения прикатодного и прианодного пермеата. На всех фланцах корпуса имеются штуцера для отвода прикатодного и прианодного пермеата в зависимости от того, через какой монополярный пористый электрод и мембрану проходит пермеат. Для предотвращения утечек исходного и концентрированного раствора, а также для обеспечения необходимой траектории циркуляции раствора в аппарате, на внешней уплотнительной поверхности фланцев корпуса имеются унифицированные внешние паронитовые прокладки, размер внутреннего выреза которых, в целях упрощения совмещения цилиндрических каналов фланцев и отверстий прокладки при сборке, соответствует размерам выступа фланцев корпуса. Для обеспечения циркуляции разделяемого раствора в межмембранном пространстве установлены резиновые прокладки с отверстиями, совмещенными с цилиндрическими каналами промежуточных фланцев корпуса. У поверхности мембран расположены ионообменные спейсеры, состоящие из гранул ионообменного вещества и сетки. Подвод электрического тока к монополярным пористым электродам осуществлен от источника питания постоянного тока через электрические провода и отверстия, расположенные в промежуточных фланцах корпуса и на последнем фланце корпуса, и заполненные герметизирующей композицией. Для обеспечения прочности и жесткости конструкции электробаромембранного аппарата с плоскими охлаждающими камерами установлены металлические пластины на внешней поверхности первого и последнего фланцев корпуса. Технический результат – увеличение эффективной площади мембран, упрощение изготовления и упрощение сборки за счет изменения конструкции аппарата. 7 ил.

Изобретение относится к аппаратам, предназначенным для очистки, разделения и концентрирования растворов электрогиперфильтрационным и электронанофильтрационным методами. Электробаромембранный аппарат плоскокамерного типа состоит из двух фланцев и камер корпуса с каналами ввода и вывода разделяемого раствора и каналами для отвода прикатодного и прианодного пермеата, отверстиями для шпилек, устройством для подвода постоянного электрического тока к камерам аппарата, прикатодных и прианодных мембран, переточных отверстий, шпилек, прокладок, отличающийся тем, что аппарат между камерами корпуса в верхней и нижней частях пространства, образованного соседними камерами корпуса либо фланцем корпуса и камерой корпуса, имеет профильные трубы, образующие каналы подачи и вывода охлаждающей воды, втулки для разделения потоков рабочего раствора и охлаждающей жидкости, впаянные по центру в трубы, образующие каналы подачи и вывода охлаждающей воды, по шесть охлаждающих трубок в каждом межмембранном пространстве, соединяющих между собой указанные выше каналы, равномерно распределенных по их ширине, покрытых ионообменными мембранами и скрученных вокруг своей оси в спираль диаметром 12 мм, а также гранулы амфотерной ионообменной смолы в форме, напоминающей однополостной гиперболоид, но при этом верхняя и нижняя поверхности гранул выпуклые, которые расположены на витках двух соседних охлаждающих трубок, повернутых друг к другу, через шаг в 40 мм. Технический результат - одновременное равномерное охлаждение всех разделительных камер, увеличение скорости миграции катионов и анионов, увеличение турбулизации потока раствора в камере разделения. 7 ил.
Наверх