Индуктивный измеритель искривления трубчатого канала

Изобретение относится к измерительной технике и может быть использовано для измерения искривлений трубчатых каналов, преимущественно в атомной энергетике. Сущность: индуктивный измеритель искривления трубчатого канала содержит индуктивные датчики зазора, соединенные с измерительной системой. Индуктивные датчики зазора выполнены в виде магнитопроводов (5) с возбуждающей (7) и измерительной (6) обмотками, закрепленных на держателях, установленных на корпусе измерителя, и замыкающих магнитных элементов (8), закрепленных на корпусе измерителя напротив разомкнутых магнитопроводов. Возбуждающие (7) и измерительные (6) обмотки установлены на магнитопроводах (5) соосно. Обмоточные провода этих обмоток и их выводы (10) выполнены из кабеля с минеральной изоляцией в металлической герметичной оболочке. Возбуждающие обмотки (7) подключены к генератору стабильного тока постоянной частоты. Измерительные обмотки (6) через усилители подключены к входам синхронных детекторов, управляемых от генератора стабильного тока. Технический результат: расширение функциональных возможностей измерителя. 4 ил.

 

Изобретение относится к измерительной технике и может быть использовано для измерения искривлений трубчатых каналов, преимущественно в атомной энергетике.

Известен индуктивный датчик перемещений по патенту РФ на изобретение №2474786. Датчик содержит индуктивную катушку, размещенную на одной из перемещаемых деталей, а на другой детали размещен магнитный сердечник, который при изменении зазора между деталями в большей или меньшей степени вводится внутрь катушки, изменяя, таким образом, ее индуктивность. Катушка питается импульсами тока от генератора стабильного тока и в моменты выключения импульсов в катушке индуцируется ЭДС, величина которой пропорциональна индуктивности катушки, т.е. глубине перемещения сердечника внутрь катушки и, соответственно, величине зазора между контролируемыми деталями.

Недостатком известного датчика является использование в нем медных проводов в органической изоляции, которые не могут работать в активной зоне ядерного реактора. Кроме того, конструкция рассмотренного датчика предполагает больше перемещения, десятки миллиметров, в то время как контролируемые зазоры в датчиках искривления каналов составляют величины до 2 мм.

Наиболее близким по технической сущности к предлагаемому устройству является электромагнитный датчик перемещения по патенту РФ на изобретение №1301086. Датчик содержит Н-образный магнитопровод, на центральной перемычке которого размещены секции катушки возбуждения, а на его выступах, перпендикулярных к этой перемычке, размещены измерительные катушки. При изменении зазора между выступами магнитопровода и перемещаемой магнитной деталью происходит изменение сопротивления магнитной цепи, и, соответственно, величины магнитного потока и ЭДС измерительных катушек, которая измеряется соответствующей вторичной аппаратурой.

Недостатком известного устройства является относительно низкая надежность контроля искривления трубчатого канала в экстремальных условиях работы датчика измерителя внутри активной зоны ядерного реактора.

Задача изобретения состоит в исключении указанного недостатка, а именно, повышение надежности контроля искривления трубчатого канала в экстремальных условиях работы датчика измерителя.

Для исключения указанных недостатков в индуктивном измерителе искривления трубчатого канала, содержащем индуктивные датчики зазора, соединенные с измерительной системой, предлагается:

- индуктивные датчики зазора выполнить в виде разомкнутых магнитопроводов с возбуждающей и измерительной обмотками, закрепленными на одной из перемещаемых деталей, и замыкающих магнитных элементов, закрепленных на другой перемещаемой детали;

- возбуждающие и измерительные обмотки установить на разомкнутых магнитопроводах соосно;

- обмоточные провода этих обмоток и их выводы выполнить из кабеля с минеральной изоляцией в металлической герметичной оболочке;

- возбуждающие обмотки подключить к генератору стабильного тока постоянной частоты, а измерительные обмотки через усилители подключить ко входам синхронных детекторов, управляемых от генератора стабильного тока.

Сущность изобретения поясняется на чертежах, где на фиг. 1 и 2 представлены продольные осевые сечения устройства с прямым и изогнутым трубчатыми каналами; на фиг. 3 - поперечное сечение устройства, а на фиг. 4 - электрическая схема предложенного устройства.

На указанных чертежах приняты следующие позиционные обозначения: 1 - трубчатый канал; 2 - корпус измерителя; 3 - фиксатор; 4 - держатель магнитопровода; 5 - разомкнутый магнитопровод; 6 - измерительная обмотка; 7 - возбуждающая обмотка; 8 - замыкающий магнитный элемент; 9 - вывод возбуждающей обмотки; 10 - вывод измерительной обмотки.

Индуктивный измеритель искривления трубчатого канала содержит индуктивные датчики зазора, соединенные с измерительной системой и выполненные в виде разомкнутых магнитопроводов 5 с возбуждающей 7 и измерительной 6 обмотками, закрепленных на держателях 4, установленных на корпусе измерителя 2, и замыкающих магнитных элементов 8, закрепленных на корпусе измерителя 2.

Возбуждающие 7 и измерительные 6 обмотки установлены на магнитопроводах 5 соосно.

Обмоточные провода этих обмоток 7, 6 и их выводы 9, 10 выполнены из кабеля с минеральной изоляцией в металлической герметичной оболочке.

Возбуждающие обмотки 7 подключены к генератору стабильного тока постоянной частоты, а измерительные обмотки 6 через усилители подключены ко входам синхронных детекторов, управляемых от генератора стабильного тока.

Устройство работает следующим образом.

В трубчатый канал 1, искривление которого необходимо контролировать, вставляется корпус измерителя 2, который фиксируется в трубчатом канале 1 с помощью фиксатора 3, представляющего собой кольцо, плотно прилегающее к трубчатому каналу 1 и корпусу измерителя 2. По высоте трубчатого канала 1 располагается ряд фиксаторов 3, расстояние между ними выбирается из условия неискаженной передачи профиля искривления трубчатого канала 1 на корпус измерителя 2. На корпусе измерителя 2 закреплена цепочка держателей 4 разомкнутых магнитопроводов 5, их количество и расстояние между ними также выбирается в соответствии с заданной точностью контроля величины искривления, которое характеризуется радиусом искривления и отклонением оси корпуса от исходной прямолинейной в выбранной точке по высоте трубчатого канала 1 - т.н. стрелой прогиба. Каждый держатель 4 разомкнутых магнитопроводов 5 содержит четыре разомкнутых магнитопровода 5, выполненных в форме незамкнутого магнитопровода Ш-образной или горшкообразной формы. На разомкнутых магнитопроводах 5 соосно размещены измерительные 6 и возбуждающие 7 обмотки. Крепление разомкнутых магнитопроводов 5 в держателе 4 разомкнутых магнитопроводов 5 производится лазерной сваркой или высокотемпературной пайкой. На корпусе измерителя 2 напротив разомкнутых магнитопроводов 5 закреплены сваркой или пайкой замыкающие магнитные элементы 8. При использовании разомкнутых магнитопроводов 5 горшкообразной формы замыкающие магнитные элементы 8 выполнены в виде дисков из магнитного металла.

При прямолинейной оси трубчатого канала 1 ось корпуса измерителя 2 также будет прямолинейной, разомкнутые магнитопроводы 5 и замыкающие магнитные элементы 8 расположены симметрично относительно оси корпуса измерителя 2, все зазоры между разомкнутыми магнитопроводами 5 и замыкающими магнитными элементами 8 одинаковы и составляют величину h0. При искривлении трубчатого канала 1 аналогичным образом прогибается корпус измерителя 2, это приводит к изменению величины зазоров - на выпуклой стороне изогнутого корпуса измерителя 2 зазор увеличивается и становится в среднем равным hi, на вогнутой стороне зазор уменьшается до величины h2, т.е. h1>h0>h2. В устройстве в состав датчика искривления входят четыре разомкнутых магнитопровода 5 и соответствующее количество возбуждающих обмоток 7, измерительных обмоток 6 и замыкающих магнитных элементов 8. Такой состав и угловое расположение элементов датчика позволяет определить не только величину, но и азимутальное направление стрелы прогиба.

Соотношение между радиусом изгиба трубчатого канала 1 и величиной изменения зазора между разомкнутым магнитопроводом 5 и замыкающим магнитным элементом 8 зависит от длины держателя 4 и разомкнутого магнитопровода 5. Эта длина выбирается исходя из оптимального с точки зрения чувствительности и допустимой максимальной величины зазора коэффициента пропорциональности между радиусом изгиба и величиной зазора.

Возбуждающие обмотки 7 подключены к генератору стабильного тока (ГСТ) синусоидальной или прямоугольной формы, соответственно вокруг этих обмоток создается электромагнитное поле, силовые линии которого замыкаются через разомкнутые магнитопроводы 5, замыкающие магнитные элементы 8 и зазор h0. Основное сопротивление на пути магнитного потока создают зазоры h0 между разомкнутыми магнитопроводами 5 и замыкающими магнитными элементами 8. Между величиной зазора h0 и величиной магнитного потока существует обратно пропорциональная зависимость. С другой стороны, величина ЭДС измерительной обмотки 6 при постоянной частоте прямо пропорциональна величине потока, т.о. при увеличении зазора уменьшается ЭДС измерительной обмотки 6. Измерительные обмотки 6, расположенные на диаметрально противоположных разомкнутых магнитопроводах 5, соединены последовательно встречно, поэтому при отсутствии изгиба корпуса измерителя 2 и равной величине соответствующих зазоров h0 их суммарная ЭДС равна нулю. При наличии прогиба величины ЭДС противоположных измерительных обмоток 6 меняются в противоположных направлениях и суммарная ЭДС этих обмоток становится отличной от нуля. Ее величина и фаза зависят от величины и направления прогиба. Эта ЭДС через усилители У1 и У2 поступает на синхронные детекторы СД1 и СД2, управляемые частотой генератора стабильного тока ГСТ. На выходе синхронных детекторов СД1 и СД2 формируются напряжения постоянного тока, величина и знак которых соответствуют величине и направлению стрелы прогиба трубчатого канала 1 в соответствующем его сечении.

Особенностями рассмотренной электрической схемы являются использование генератора стабильного тока ГСТ и синхронных детекторов СД1 и СД2. Генератор стабильного тока (а не напряжения) обеспечивает постоянство намагничивающей силы - произведения величины тока I на количество витков возбуждающей обмотки 7. При использовании для питания этой обмотки генератора стабильного напряжения намагничивающая сила не была бы стабильной, т.к. с изменением температуры изменяется электрическое сопротивление проводов и выводов 9 возбуждающих обмоток 7 и, соответственно, величина протекающего через них тока. Использование синхронных детекторов СД1, СД2, в отличие от амплитудных, позволяет определить не только величину, но и фазу электрического сигнала, соответственно величину и азимут стрелы прогиба трубчатого канала 1. Кроме того, синхронный детектор является самым эффективным подавителем помех, т.к. пропускает только сигналы с частотой, управляющей его работой, т.е. с частотой генератора стабильного тока ГСТ.

Для слежения за динамикой изменения стрелы прогиба необходим непрерывный, а не периодический контроль степени искривления канала, причем этот контроль должен проводиться на работающем реакторе, когда температура теплоносителя в зоне контроля составляет 270°C, а плотность потока нейтронов более 1013 нейтрон/см2/сек. В таких условиях работы конструкционные материалы датчиков искривления должны отработать не менее года - периода между остановками реактора на планово-предупредительный ремонт (ППР), а лучше на все предполагаемое время работы реактора до полной выработки расчетного ресурса. Таким требованиям удовлетворяют индуктивные датчики искривления, конструктивные элементы которых выполнены из специальных сталей, стойких в реакторных условиях, а в качестве обмоточного провода катушек и выводов обмоток используется кабель с токоведущими жилами из нержавеющей стали или сплавов: хромель, алюмель, копель. В качестве изоляции в таких кабелях используется окись магния (MgO), стойкая в реакторных условиях в течение всего периода работы реактора. В указанных кабелях токоведущие жилы, окруженные изоляцией, заключены в стальную герметичную оболочку, стойкую при высоких температурах и радиационных потоках. Упомянутые кабели типов КТМС, КНМС разработаны и выпускаются для изготовления кабельных термопар и нагревателей, их токоведущие жилы имеют высокое удельное электрическое сопротивление, большие температурные коэффициенты электросопротивления и по этой причине в качестве обмоточных проводов индуктивных катушек в обычных условиях не используются. Необходимы специальные схемные решения, обеспечивающие работоспособность индуктивных датчиков, в конструкции которых используются указанные провода. В предложенном устройстве таким решением является использование генератора стабильного тока постоянной частоты и синхронных детекторов, управляемых частотой генератора стабильного тока.

Для проверки работоспособности предложенного индуктивного измерителя искривления трубчатого канала был изготовлен макет, представляющий собой пару индуктивных датчиков зазора, выполненных в виде горшкообразных разомкнутых магнитопроводов 5 диаметром 26 мм и высотой 7 мм, внутри которых соосно размещались возбуждающая обмотка 7 и измерительная обмотка 6, из жаростойких кабелей типа КТМС наружным диаметром 1 мм. На отдельной скобе крепились замыкающие магнитные сердечники 8 диаметром 26 мм таким образом, чтобы обеспечивались начальные воздушные зазоры 2 мм между разомкнутыми магнитопроводами 5 и замыкающими магнитными элементами 8. Выводы 9 обмоток возбуждения 7 подключались к генератору стабильного тока напряжением 5 В и частотой 200 Гц, а выводы 10 измерительных обмоток 6 подключались к синхронным детекторам, управление которыми производилось от генератора стабильного тока. При перемещении скобы с замыкающими магнитными элементами 8 вдоль осевой линии разомкнутых магнитопроводов 5 изменялись воздушные зазоры между разомкнутыми магнитопроводами 5 и замыкающими магнитными элементами 8, что приводило к изменению выходных сигналов измерительных обмоток 6 - при уменьшении зазора выходное напряжение соответствующей обмотки 6 увеличивалось, а при увеличении - уменьшалось. При этом обеспечивалась стабильная функциональная зависимость между величиной зазора и выходным напряжением обмотки 6 и повторяемость результатов соответствующих измерений, таким образом, была подтверждена работоспособность индуктивного датчика в качестве измерителя зазора и, соответственно, возможность его использования в качестве индуктивного измерителя искривления трубчатых каналов, входящих в состав активной зоны ядерного реактора.

Технический результат - расширение функциональных возможностей индуктивного измерителя искривления трубчатого канала, проявляющееся в том, что обеспечивается надежность контроля искривления в экстремальных условиях работы датчика измерителя внутри активной зоны ядерного реактора.

Индуктивный измеритель искривления трубчатого канала, содержащий индуктивные датчики зазора, соединенные с измерительной системой, отличающийся тем, что индуктивные датчики зазора выполнены в виде разомкнутых магнитопроводов с возбуждающей и измерительной обмотками, закрепленных на держателях, установленных на корпусе измерителя, и замыкающих магнитных элементов, закрепленных на корпусе измерителя напротив разомкнутых магнитопроводов, причем возбуждающие и измерительные обмотки установлены на разомкнутых магнитопроводах соосно, обмоточные провода этих обмоток и их выводы выполнены из кабеля с минеральной изоляцией в металлической герметичной оболочке, возбуждающие обмотки подключены к генератору стабильного тока постоянной частоты, а измерительные обмотки через усилители подключены ко входам синхронных детекторов, управляемых от генератора стабильного тока.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для контроля изгиба удлиненных изделий, в частности каналов активной зоны ядерного реактора.

Использование: для уменьшения температурной погрешности при измерении перемещений электропроводящих объектов в условиях воздействия высоких температур. Сущность: в одновитковом вихретоковом преобразователе во внутреннем проводнике его коаксиального токовода, соединяющего чувствительный элемент с объемным витком согласующего трансформатора, располагают первую термопару.

Изобретение относится к индуктивному сенсору сближения, выполненному с возможностью встраивания в монтажную плату (2), выполненную из мягкой стали. Сенсор включает корпус (16) с лицевой стенкой, выполненной из синтетического материала и образующей чувствительную поверхность (4), осциллятор (10), включающий воспринимающую обмотку (7) с сердечником (9), расположенный внутри корпуса за лицевой стенкой (16) таким образом, чтобы незамкнутая часть сердечника (9) была направлена к чувствительной поверхности (4), пустотелый цилиндрический металлический элемент (3), расположенный перпендикулярно чувствительной поверхности (4) и окружающий сердечник (9), а также измерительный контур (11), приспособленный для измерения затухания колебаний осциллятора (10), возникающего из-за наличия вихревых токов.

Изобретение относится к контрольно-измерительной технике и может быть использован, в частности, в гидравлических системах летательных аппаратов, где требуется информация о перемещениях исполнительных гидроцилиндров.

Изобретение относится к измерительной технике и может быть использовано для определения взаимных перемещений различных объектов, в том числе отдельных участков деформируемых тел.

Изобретение относится к области прецизионных измерений перемещений посредством измерения емкости и может быть использовано для определения линейных перемещений сканирующих устройств в сканирующих зондовых микроскопах (СЗМ).

Изобретение относится к измерительной технике и может быть использовано для измерения радиальных зазоров и осевых смещений торцов турбинных лопаток с большим углом изгиба профиля пера.

Изобретение относится к области измерительной техники и может быть использовано для измерения координатных составляющих смещений торцов лопаток ротора относительно статора турбомашины.

Изобретение относится к области измерительной техники и может быть использовано для измерения координатных составляющих смещений торцов лопаток ротора относительно статора турбомашины.

Изобретение относится к датчикам перемещения, в частности к перемещениям двух каких-либо объектов относительно друг друга. .

Использование: для измерения зазоров и осевых смещений торцов рабочих лопаток турбины. Сущность изобретения заключается в том, что во взаимодействие с торцом контролируемой лопатки вводят распределенный кластер из двух высокотемпературных одновитковых вихретоковых преобразователей (ОВТП) с чувствительными элементами (ЧЭ) в виде линейного отрезка проводника, устанавливаемых на статорной оболочке с нормированным смещением друг относительно друга в направлении, параллельном оси рабочего колеса (ось X), на расстояние равное ожидаемому смещению торца лопатки Δх0, причем кластер преобразователей устанавливают по оси Х левее выходной кромки лопатки на половину длины ЧЭ (λЧЭ/2), а также ЧЭ преобразователей ориентируют параллельно касательной к средней линии профиля торца лопатки в точке пересечения ее с плоскостью вращения, проходящей через геометрический центр кластера преобразователей (середина линии, соединяющей центры ЧЭ преобразователей); из совокупности результатов преобразования параметров первого ЧЭ с торцевыми кромками спинки и корыта каждой контролируемой лопатки выбирают наименьшее из экстремальных значений кодов, а из совокупности результатов преобразования параметров второго ЧЭ с торцевыми кромками спинки и корыта каждой контролируемой лопатки выбирают наибольшее из экстремальных значений кодов. Технический результат: повышение чувствительности ОВТП с ЧЭ в виде линейного отрезка проводника при измерении радиальных зазоров и осевых смещений торцов турбинных лопаток с большим углом изгиба профиля и U-образном продольном сечении ее пера. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может найти применение при конструировании систем виброконтроля габаритных валов роторных машин в электрогенераторах, при эксплуатации турбонасосов, в нефтегазовой промышленности и других областях. Датчик воздушного зазора выполнен в виде двух конденсаторных пластин, рабочие поверхности которых расположены рядом в плоскости статора, совпадающей с нулем воздушного зазора между статором и ротором, изолированные от статора диэлектрической прокладкой, по торцам пластин выполнены металлические экраны замыкания краевых эффектов, пластины выполнены с перпендикулярными прорезями для уменьшения вихревых токов и стабилизации емкости конденсатора, образуемого пластинами, конденсатор является реактивной нагрузкой высокочастотного генератора, сигнал которого параметрически модулируется изменяемой емкостью воздушного зазора при прохождении полюса ротора над пластинами, промодулированный сигнал генератора детектируют пиковым детектором измерения минимального зазора и амплитудным детектором среднего профиля зазора, для увеличения чувствительности и интервала линейности выходной характеристики используют режим регенерации при соотношении частот генератора (fс) и модулятора 4:1. Технический результат - повышение чувствительности датчика и расширение линейного интервала измерений величины зазора. 4 ил.

Изобретение относится к измерительной технике, а именно к емкостному датчику для измерения расстояния, в частности, до мишени в литографическом устройстве. Сущность: емкостная измерительная система содержит два или более емкостных датчиков (30a, 30b), один или более источников (306a, 306b) питания переменного тока для подачи питания на емкостные датчики и схему обработки сигналов для обработки сигналов от датчиков. Датчики скомпонованы попарно. Один или более источников питания переменного тока выполнены с возможностью запитывать первый датчик из пары датчиков переменным током (307) или напряжением со сдвигом фаз 180 градусов относительно тока или напряжения для второго датчика из пары датчиков. Схема обработки сигналов выполнена с возможностью обработки принятых выходных сигналов для генерации единого измеренного значения расстояния, соответствующего среднему расстоянию между измерительным блоком и мишенью. Схема обработки сигналов выполнена с возможностью генерации результата дифференциального измерения путем суммирования выходных сигналов от измерительного блока в течение первого полупериода питающего сигнала и в течение второго полупериода питающего сигнала по отдельности и вычитания просуммированных значений. 14 з.п. ф-лы, 32 ил.

Изобретение относится к области неразрушающего контроля и может быть использовано для измерения расстояний, в частности в качестве датчика в дефектоскопах, профилемерах, нефтяной и газовой промышленности, для измерения геометрии трубопровода и положения дефектоскопа в трубопроводе. Задача предлагаемого решения: увеличение быстродействия, уменьшение взаимного влияния датчиков друг на друга при применении в многоканальных измерительных системах. Это достигается тем, что в измерителе расстояния между датчиком и объектом из электропроводящего материала, содержащем источник питания переменного тока, присоединенный к нему измерительный канал, состоящий из индуктивного резонансного преобразователя зазора с двумя катушками, блок линеаризации выходного сигнала от перемещения, катушки выполнены с взаимно перпендикулярным расположением осей катушки генератора и катушки приемника, причем ось катушки приемника расположена перпендикулярно поверхности объекта, параллельно катушке приемника подсоединены конденсатор, резистор и соединены с генератором, усилителем, логарифмическим усилителем, детектором, аналого-цифровым преобразователем, блоком линеаризации и введен экран. Блок линеаризации выполнен в виде контроллера с алгоритмом аппроксимации нелинейной зависимости в виде полинома с коэффициентами, которые получены после калибровки в лабораторных условиях. Экран выполнен из проводящего парамагнетика, а со стороны, обращенной к объекту, со стенкой из диэлектрика. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, а именно к области создания средств и методов бесконтактных измерений изменений зазоров между измерительным преобразователем и контролируемой поверхностью. Способ измерения нестационарных перемещений электропроводящих объектов заключается в том, что используют бесконтактное измерительное устройство с первичным измерительным преобразователем, чувствительные элементы которого, электрически независимые друг от друга, устанавливают на одной базе со смещением в направлении объекта контроля, по показаниям измерительного устройства рассчитывают значение перемещения объекта контроля относительно измерительного устройства, согласно изобретению смещение между чувствительными элементами заменяют на эквивалентное расстояние между ними, оптимальное значение которого рассчитывают при градуировке измерительного устройства. Вычисляют i-ые приращения перемещения, а полное перемещение объекта контроля относительно измерительного устройства определяют, суммируя все i-е приращения перемещений. Технический результат заключается в повышении точности измерения нестационарных перемещений электропроводящих объектов с различной проводимостью и конфигурацией в труднодоступных местах при переменных внешних климатических условиях. 5 ил.

Демпфер/детектор в сборе содержит модуль (1) датчика перемещения, имеющий катушку (4) и корпус (2) катушки для помещения в него катушки (4) и/или опору (6) катушки для поддержки катушки (4) и демпфер (30) телескопического типа для бытового электроприбора, имеющий корпус (20) демпфера и поршень (22), выполненный с возможностью перемещения в нем и расположенный с ним на одной оси. Участок поршня (22) содержит материал или образован из материала, предназначенного для изменения электромагнитного поля катушки модуля датчика перемещения. Модуль датчика перемещения установлен так, что он надет поверх участка корпуса демпфера. Бытовой электроприбор, использующий демпфер/детектор, представляет собой стиральную машину или стиральную машину с функцией сушки, или сушильную машину. Облегчаются сборка и эксплуатация демпфера/детектора. 3 н. и 31 з.п. ф-лы, 6 ил.

Использование: для измерения радиальных зазоров между торцами лопаток рабочего колеса и статорной оболочкой. Сущность изобретения заключается в том, что фиксируется экстремальное значение кода с измерительного преобразователя при прохождении центра зоны чувствительности датчика торцом контролируемой лопатки; фиксируется экстремальное значение кода с измерительного преобразователя при прохождении центра зоны чувствительности датчика центром межлопаточного промежутка, следующего за контролируемой лопаткой; вычисляется радиальный зазор для контролируемой лопатки по разности двух зафиксированных экстремальных значений кодов с измерительного преобразователя. Технический результат: уменьшение числа датчиков и установочных отверстий в статорной оболочке, а также повышение точности измерения радиальных зазоров. 1 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для проверки и настройки вихретоковых дифференциальных датчиков перемещения. Технический результат: расширение функциональных возможностей за счет обеспечения имитации механического смещения контролируемого объекта как поперек плоскости чувствительного элемента вихретокового датчика перемещения (зазора), так и вдоль плоскости его чувствительного элемента. Сущность: вихретоковый имитатор перемещений содержит основную обмотку индуктивности, магнитосвязанную с обмоткой возбуждения вихретокового датчика, и основной резистор переменного сопротивления, дополнительную обмотку индуктивности, магнитосвязанную с обмоткой возбуждения и первой измерительной обмоткой вихретокового датчика, и дополнительный резистор переменного сопротивления. Основная обмотка имитатора магнитосвязана со второй измерительной обмоткой датчика. Обе обмотки имитатора выполнены идентично измерительным обмоткам датчика, соединены последовательно и шунтированы основным резистором переменного сопротивления и дополнительным резистором переменного сопротивления. Средний вывод дополнительного резистора переменного сопротивления соединен с общей точкой соединения обмоток имитатора. 3 ил.

Изобретение относится к контрольно-измерительной технике и может быть использован, в частности, в системе управления электрогидравлических и электромеханических приводов летательных аппаратов, где требуется информация о перемещениях исполнительных звеньев. Технический результат: снижение температурной погрешности и повышение симметричности выходной характеристики датчика. Сущность: датчик содержит: корпус, трубку, катушку на каркасе из немагнитного материала, подвижный сердечник, выполненный из магнитомягкого материала, который соединен механически с контролируемым объектом посредством немагнитного штока. Катушка содержит две ступенчатые измерительные обмотки и обмотку возбуждения, выполненную проводом по всей длине рабочего хода датчика. Шток и трубка датчика, находящиеся во внутреннем пространстве катушки датчика, выполнены из титановых сплавов ВТ3-1 или ВТ5-1. 1 ил.

Изобретение относится к измерительной технике и, может быть использовано для контроля положения движущихся металлических частей роторных машин в энергетике, турбонасосных агрегатов в нефтегазовой промышленности и других областях. Технический результат заключается в расширении функциональных возможностей устройства путем увеличения линейного участка характеристики преобразования измерителя. Измеритель перемещений содержит вихретоковый датчик, подключенный к выходу высокочастотного генератора. Выход вихретокового датчика подключен к входу выпрямителя, выход которого соединен с входом низкочастотного фильтра, выход которого соединен с входом основного усилителя и индикатор. Для достижения технического результата введены ступень с регулируемой зоной нечувствительности, вход которой подключен к выходу низкочастотного фильтра, сумматор, выход которого подключен к индикатору, дополнительный усилитель и ключ, управляющий вход которого подключен к выходу ступени с регулируемой зоной нечувствительности. Вход ключа соединен с выходом низкочастотного фильтра, а выход - к входу дополнительного усилителя. Выход основного усилителя подключен к первому входу сумматора, выход дополнительного усилителя подключен ко второму входу сумматора. 4 ил.
Наверх