Питательная среда для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов

Изобретение относится биотехнологии и может быть использовано в микробиологии. Питательная среда содержит дигидрофосфат калия, гидрофосфат калия, сульфат магния гептагидрат, хлорид натрия, сульфат кальция дигидрат, молибдат натрия, сульфат железа(II), сахарозу, наносапропель и дистиллированную воду при заданном соотношении компонентов. Изобретение позволяет повысить скорость роста фосфатмобилизующих и азотфиксирующих микроорганизмов. 1 табл., 15 пр.

 

Изобретение относится к области создания биопрепаратов на основе индивидуальных микроорганизмов и их сочетаний (консорциумов) и может быть использовано в микробиологии и сельском хозяйстве.

Известна питательная среда для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов, содержащая глюкозу, аспарагин, сульфат калия, кукурузный экстракт, хлорид кальция, фосфат натрия и воду [1]. Недостатком этой питательной среды является относительно низкая скорость роста фосфатмобилизующих микроорганизмов, а также практическое отсутствие на ней роста азотфиксирующих микроорганизмов, что делает ее малопригодной для выращивания их консорциума.

Известна питательная среда для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов, содержащая дигидрофосфат калия, гидрофосфат калия, сульфат магния, хлорид натрия, карбонат кальция, сахарозу и воду [2]. Недостатком этой питательной среды является практическое отсутствие на ней роста фосфатмобилизующих микроорганизмов, что также делает ее малопригодной для выращивания их консорциума.

Известна также питательная среда для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов, содержащая дигидрофосфат калия, гидрофосфат калия, сульфат магния, хлорид натрия, сульфат кальция, молибдат натрия, сульфат железа(II), сахарозу и воду, описанная в [3]. Недостатком данной питательной среды также является относительно низкая скорость роста фосфатмобилизующих микроорганизмов.

Наиболее близким к заявляемому нами объекту по совокупности признаков и достигаемому техническому эффекту является питательная среда для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов, содержащая дигидрофосфат калия, гидрофосфат калия, сульфат магния, хлорид натрия, сульфат кальция, молибдат натрия, сульфат железа(II), сахарозу, минеральную добавку - сапропель и воду, описанная в [4]. Недостатком данной питательной среды, которая в связи с только что отмеченным обстоятельством выбрана нами в качестве объекта-прототипа, также является относительно низкая скорость роста фосфатмобилизующих микроорганизмов.

Цель данного изобретения - увеличение скорости роста фосфатмобилизующих микроорганизмов при культивировании консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов.

Поставленная цель достигается тем, что питательная среда для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов, содержащая дигидрофосфат калия, гидрофосфат калия, сульфат магния, хлорид натрия, сульфат кальция, молибдат натрия, сульфат железа(II), сахарозу, минеральную добавку и воду, в качестве минеральной добавки содержит наносапропель при следующем соотношении ингредиентов (г/л):

Дигидрофосфат калия 0.60-0.70
Гидрофосфат калия 0.12-0.20
Сульфат магния гептагидрат 0.15-0.25
Хлорид натрия 0.15-0.25
Сульфат кальция дигидрат 0.02-0.06
Молибдат натрия 0.0005-0.0007
Сульфат железа(II) 0.002-0.004
Сахароза 18.0-22.0
Наносапропель 0.5-1.5
Вода дистиллированная До 1 л

В результате использования данной питательной смеси скорость роста фосфатмобилизующих микроорганизмов возрастает в 7-8 раз по сравнению с аналогичным показателем для питательной среды-прототипа [4].

До сих пор в литературе не описывалась питательная среда для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов, содержащая вышеуказанную совокупность ингредиентов вообще и наносапропель в частности; более того, применение последнего в составе питательных сред для микроорганизмов неизвестно вообще. Указанный факт позволяет нам сделать заключение о соответствии заявляемого нами объекта первому установленному патентным законодательством РФ критериальному признаку изобретения - новизна. Сопоставление же известных признаков питательной среды-прототипа [4] и отличительных признаков, характеризующих наш заявляемый объект (а именно введение в нее наносапропеля), априори не позволяет предсказать появления у него новых по сравнению с прототипом свойств, а именно указанного выше резкого увеличения скорости роста фосфатмобилизующих микроорганизмов (при одновременном снижении скорости роста азотфиксирующих микроорганизмов), входящих в состав консорциума. Указанный момент дает нам основания считать, что заявляемый объект явным образом не следует из известного в данной отрасли техники уровня; следовательно, он подпадает под второй из установленных законодательством РФ критериальных признаков изобретения - изобретательский уровень. Заявляемая нами питательная среда легко может быть получена в промышленном масштабе, а ее применение для выращивания консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов не связано со сколько-нибудь серьезными техническими проблемами; в связи с этим мы вправе утверждать, что данному объекту присущ и третий установленный законодательством РФ критериальный признак изобретения, а именно промышленная применимость.

Заявляемая на предмет изобретения питательная среда для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов может быть продемонстрирована на следующих примерах.

Пример 1

Природный сапропель из месторождения близ озера Белое (Тукаевский район Республики Татарстан) измельчают в муку и смешивают с дистиллированной или деионизированной (обессоленной) водой из расчета 20 г сапропеля на 100 мл воды. Полученную смесь обрабатывают ультразвуком в ультразвуковом диспергаторе УЗУ-0,25 мощностью 80 Вт при частоте 18.5 кГц с амплитудой колебаний ультразвукового волновода 5 мкм в течение (5-20) мин при комнатной температуре, в результате чего получается водно-сапропелевая суспензия с размерами частиц сапропеля от 5 до 100 нм. Приготовленную таким образом суспензию наносапропеля далее используют в качестве одного из компонентов питательной среды для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов.

Пример 2

Приготавливают питательную среду для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов состава, г/л:

Дигидрофосфат калия 0.60
Гидрофосфат калия 0.12
Сульфат магния гептагидрат 0.15
Хлорид натрия 0.15
Сульфат кальция дигидрат 0.02
Молибдат натрия 0.0005
Сульфат железа(II) 0.002
Сахароза 18.0
Наносапропель 0.5
Вода дистиллированная До 1 л

Составляют консорциум фосфатмобилизующих и азотфиксирующих микроорганизмов с соотношение 1:1 по количеству колониеобразующих единиц на основе коллекционных (депонированных) штаммов поименованных микроорганизмов (Sphingobacterium multivorum, Регистрационный номер в ВКПМ В-10385) и (Pseudomonas brassicacearum, Регистрационный номер в ВКПМ В-10388) соответственно. Для этого предварительно выращивают фосфатмобилизующие микроорганизмы на агаризованной среде Муромцева, азотфиксирующие - на агаризованной среде Эшби; далее эти культуры высеваются на питательную среду указанного выше состава. Выращивание ведут в течение того периода времени, в котором имеет место прирост их численности (4.5 сут), после чего этот процесс прекращают. Для определения численности микроорганизмов сразу же проводят посев консорциума на ага-ризованные питательные среды (среда Муромцева в случае фосфатмобилизующих микроорганизмов и среда Эшби в случае азотфиксирующих) и определяют среднюю скорость их роста в (млн·г-1·сут-1) как частное от деления числа микроорганизмов (в миллионах единиц) на массу питательной среды (в г) и время выращивания (в сут). Данные по скорости роста фосфатмобилизующих и азотфиксирующих микроорганизмов для вышеуказанной питательной среды представлены в Таблице 1.

Пример 3

Осуществляют, как и Пример 2, но для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов берут питательную среду состава, г/л:

Дигидрофосфат калия 0.64
Гидрофосфат калия 0.16
Сульфат магния гептагидрат 0.20
Хлорид натрия 0.20
Сульфат кальция дигидрат 0.05
Молибдат натрия 0.0006
Сульфат железа(II) 0.003
Сахароза 20.0
Наносапропель 1.0
Вода дистиллированная До 1 л

Данные по скорости роста микроорганизмов для этого случая представлены в Таблице 1.

Пример 4

Выполняют, как и Пример 2, но для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов берут питательную среду состава, г/л:

Дигидрофосфат калия 0.70
Гидрофосфат калия 0.20
Сульфат магния гептагидрат 0.25
Хлорид натрия 0.25
Сульфат кальция дигидрат 0.06
Молибдат натрия 0.0007
Сульфат железа(II) 0.004
Сахароза 22.0
Наносапропель 1.5
Вода дистиллированная До 1 л

Сведения о скорости роста указанных микроорганизмов для данного случая приведены в Таблице 1.

Пример 5 (сравнительный)

Проводят таким же образом, что и Пример 2, но для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов приготавливают питательную среду состава, г/л:

Дигидрофосфат калия 0.64
Гидрофосфат калия 0.16
Сульфат магния гептагидрат 0.20
Хлорид натрия 0.20
Сульфат кальция дигидрат 0.05
Молибдат натрия 0.0005
Сульфат железа(II) 0.003
Сахароза 20.0
Наносапропель 0.3
Вода дистиллированная До 1 л

Сведения о скорости роста вышеуказанных микроорганизмов для данного случая представлены в Таблице 1.

Пример 6 (сравнительный)

Выполняют по общей схеме Примера 2, но для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов применяют питательную среду состава, г/л:

Дигидрофосфат калия 0.64
Гидрофосфат калия 0.16
Сульфат магния гептагидрат 0.20
Хлорид натрия 0.20
Сульфат кальция дигидрат 0.05
Молибдат натрия 0.0005
Сульфат железа(II) 0.003
Сахароза 20.0
Наносапропель 2.0
Вода дистиллированная До 1 л

Показатели скорости роста микроорганизмов для данного случая см. в Таблице 1.

Пример 7 (сравнительный)

Проводят таким же образом, что и Пример 2, но для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов используют питательную среду состава, г/л:

Дигидрофосфат калия 0.50
Гидрофосфат калия 0.09
Сульфат магния гептагидрат 0.10
Хлорид натрия 0.15
Сульфат кальция дигидрат 0.015
Молибдат натрия 0.0003
Сульфат железа(II) 0.001
Сахароза 14.0
Наносапропель 1.0
Вода дистиллированная До 1 л

Показатели скорости роста микроорганизмов для данного случая см. в Таблице 1.

Пример 8 (сравнительный)

Проводят по общей схеме Примера 2, но культивирование консорциума вышеуказанных микроорганизмов осуществляют на питательной среде состава, г/л:

Дигидрофосфат калия 0.90
Гидрофосфат калия 0.30
Сульфат магния гептагидрат 0.30
Хлорид натрия 0.35
Сульфат кальция дигидрат 0.09
Молибдат натрия 0.0010
Сульфат железа(II) 0.006
Сахароза 28.0
Наносапропель 1.0
Вода дистиллированная До 1 л

Сведения о скорости роста микроорганизмов для данного случая см. в Таблице 1.

Пример 9 (сравнительный)

Выполняют таким же образом, как и Пример 2, но для культивирования консорциума микроорганизмов используют питательную среду состава, г/л:

Дигидрофосфат калия 0.50
Гидрофосфат калия 0.09
Сульфат магния гептагидрат 0.10
Хлорид натрия 0.15
Сульфат кальция дигидрат 0.015
Молибдат натрия 0.0003
Сульфат железа(II) 0.001
Сахароза 14.0
Наносапропель 2.0
Вода дистиллированная До 1 л

Значения скорости роста микроорганизмов для данного случая приведены в Таблице 1.

Пример 10 (сравнительный)

Выполняют по той же общей схеме, что и Пример 2, но культивирование консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов осуществляют на питательной среде состава, г/л:

Дигидрофосфат калия 0.90
Гидрофосфат калия 0.30
Сульфат магния гептагидрат 0.30
Хлорид натрия 0.35
Сульфат кальция дигидрат 0.09
Молибдат натрия 0.0010
Сульфат железа(II) 0.006
Сахароза 28.0
Наносапропель 2.5
Вода дистиллированная До 1 л

Показатели скорости роста микроорганизмов для этого случая даны в Таблице 1.

Пример 11 (по прототипу [4])

Выполняют по той же общей схеме, что и Пример 2, но культивирование консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов осуществляют на питательной среде состава, г/л:

Дигидрофосфат калия 0.64
Гидрофосфат калия 0.16
Сульфат магния гептагидрат 0.20
Хлорид натрия 0.20
Сульфат кальция дигидрат 0.05
Молибдат натрия 0.0006
Сульфат железа(II) 0.003
Сахароза 20.0
Сапропель 1.0
Вода дистиллированная До 1 л

Показатели скорости роста микроорганизмов для этого случая даны в Таблице 1.

Пример 12 (по прототипу [4])

Выполняют по той же общей схеме, что и Пример 2, но культивирование консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов осуществляют на питательной среде состава, г/л:

Дигидрофосфат калия 0.70
Гидрофосфат калия 0.20
Сульфат магния гептагидрат 0.25
Хлорид натрия 0.25
Сульфат кальция дигидрат 0.06
Молибдат натрия 0.0007
Сульфат железа(II) 0.004
Сахароза 22.0
Сапропель 1.5
Вода дистиллированная До 1 л

Показатели скорости роста микроорганизмов для этого случая даны в Таблице 1.

Пример 13 (по аналогу [3])

Выполняют по той же технологической схеме, что и Пример 2, но для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов используют питательную среду состава, г/л:

Дигидрофосфат калия 0.64
Гидрофосфат калия 0.16
Сульфат магния гептагидрат 0.20
Хлорид натрия 0.20
Сульфат кальция дигидрат 0.05
Молибдат натрия 0.0005
Сульфат железа(II) 0.003
Сахароза 20.0
Вода дистиллированная До 1 л

Данные по скорости роста микроорганизмов для такого случая см. в Таблице 1.

Пример 14 (по аналогу [1])

Выполняют по той же технологической схеме, что и Пример 2, но для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов используют питательную среду состава, г/л:

Сульфат калия 0.20
Хлорид кальция гексагидрат 3.30
Фосфат натрия додекагидрат 3.80
Кукурузный экстракт 0.20
Глюкоза 10.0
Аспарагин 1.00
Вода дистиллированная До 1 л

Данные по скорости роста микроорганизмов для этого случая приведены в Таблице 1.

Пример 15 (по аналогу [2])

Выполняют по той же технологической схеме, что и Пример 2, но для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов используют питательную среду состава, г/л:

Дигидрофосфат калия 0.10
Гидрофосфат калия 0.20
Сульфат магния гептагидрат 0.20
Хлорид натрия 0.20
Карбонат кальция 5.00
Сахароза 20.0
Вода дистиллированная До 1 л

Данные по скорости роста микроорганизмов для этого случая также см. в Таблице 1.

Таблица 1
№ примера Содержание нано-сапропеля в питательной смеси, г/л Средняя скорость роста фосфатмобилизующих микроорганизмов {Sphingobacterium multivorum), млн·г-1·сут-1 Средняя скорость роста азотфиксирующих микроорганизмов (Pseudomonas brassicacearum), млн·г-1·сут-1
2 0.5 373.3 4.7
3 1.0 391.1 4.9
4 1.5 382.2 4.9
5 (сравнительный) 0.3 284.4 6.7
6 (сравнительный) 2.0 311.1 5.3
7 (сравнительный) 1.0 351.1 7.1
8 (сравнительный) 1.0 344.4 6.7
9 (сравнительный) 2.0 337.8 5.8
10 (сравнительный) 2.0 328.9 5.3
11 (по прототипу [4]) - 46.7 15.1
12 (по прототипу [4]) - 47.1 14.9
13 (по аналогу [3]) - 38.9 8.0
14 (по аналогу [1]) - 40.0 2.7
15 (по аналогу [2]) - 1.3 12.5

Как можно видеть из приведенных в Таблице 1 данных, использование заявляемой питательной среды, содержащей наносапропель в количестве (0.5-1.5) г/л, позволяет значительно (в 7-8 раз) повысить скорость роста фосфатмобилизующих (Sphingobacterium multivorum) микроорганизмов при снижении скорости роста азотфиксирующих (Pseudomonas brassicacearum} микроорганизмов в рамках их консорциума по сравнению с таковыми для питательной среды-прототипа [4] (и в еще большей степени по сравнению со средами-аналогами [1], [2] и [3]). При этом заявляемые нами количества наносапропеля в питательной смеси являются существенными: при увеличении его сверхуказанного верхнего заявляемого предела (1.5 г/л) дальнейшего прироста скорости роста фосфатмобилизующих микроорганизмов уже не происходит, при уменьшении же нижеуказанного нижнего заявляемого значения (1.0 г/л) отмечается снижение скорости их роста (хотя она и остается значительно большей по сравнению с той, что имеет место на питательной среде [4]).

Аналогичные вышеуказанным результаты были получены нами и на других культурах азотфиксирующих и фосфатмобилизующих микроорганизмов (в частности, Azotobacter chroococcum, Регистрационный номер в ВКПМ В-10387 и Achromobacter xylosoxidans, Регистрационный номер в ВКПМ В-10386).

ЛИТЕРАТУРА

[1] Основные микробиологические и биохимические методы исследования почвы (Методические рекомендации) / Под ред. Ю.М. Возняковской. - Л.: ВНИИСХМ, 1987. С.31.

[2] Руководство к практическим занятиям по микробиологии. 3-е издание переработанное, под ред. Н.С. Егорова. М: Издательство Московского университета. 1995. С.204.

[3] Патент РФ 2.177.466 (2001), МПК C05F 11/08, C12N 1/20.

[4] Заявка на изобретение РФ №2012145906 от 26.10.2012, МПК C12N 1/00, C12N 1/20, C12N 1/22 (прототип).

Питательная среда для культивирования консорциума фосфатмобилизующих и азотфиксирующих микроорганизмов, содержащая дигидрофосфат калия, гидрофосфат калия, сульфат магния гептагидрат, хлорид натрия, сульфат кальция дигидрат, молибдат натрия, сульфат железа(II), сахарозу, минеральную добавку и дистиллированную воду, отличающаяся тем, что в качестве минеральной добавки она содержит наносапропель при следующем соотношении компонентов, г/л:

дигидрофосфат калия 0.60-0.70
гидрофосфат калия 0.12-0.20
сульфат магния гептагидрат 0.15-0.25
хлорид натрия 0.15-0.25
сульфат кальция дигидрат 0.02-0.06
молибдат натрия 0.0005-0.0007
сульфат железа(II) 0.002-0.004
сахароза 18.0-22.0
наносапропель 0.5-1.5
вода дистиллированная до 1 л



 

Похожие патенты:
Изобретение относится к биотехнологии и может быть использовано в микробиологии. Питательная среда содержит дигидрофосфат калия, гидрофосфат калия, сульфат магния гептагидрат, хлорид натрия, сульфат кальция дигидрат, молибдат натрия, сульфат железа(II), сахарозу, наноцеолит и дистиллированную воду в заданном соотношении компонентов.

Изобретение относится к области биотехнологии и касается штамма Escherichia coli BL21(DE3)Gold/pETmin-CypA - продуцента рекомбинантного циклофилина А человека. Охарактеризованный штамм получен путем трансформации клеток штамма BL21(DE3)Gold плазмидой pETmin-CypA.

Изобретение относится к биотехнологии. Штамм Aspergillus oryzae 12-84, обладающий высоким уровнем синтеза комплекса протеиназ и пептидаз, нуклеаз, хитиназы, β-глюканазы, маннаназы и α-амилазы, депонирован в ГНУ ВНИИСХМ РОССЕЛЬХОЗАКАДЕМИИ под регистрационным номером Aspergillus oryzae RCAM01134.

Изобретение относится к биотехнологии. Штамм зеленой микроводоросли Acutodesmus obliquus Syko-A Ch-055-12, обладающий способностью снижать содержание загрязняющих веществ в сточной воде, депонирован в Коллекции Микроводорослей ИФР РАН (IPPAS) под регистрационным номером IPPAS S-2016.

Изобретения относятся к области медицинской микробиологии и касаются способа дифференциации токсигенных генетически измененных штаммов V.cholerae биовара Эль Тор и тест-системы.

Изобретение относится к микробиологической промышленности. Предложен штамм бактерии Bacillus subtilis ВКПМ B-11964 - высокоактивный продуцент пектолитических ферментов, мацерирующих растительную ткань.

Группа изобретений относится к области биотехнологии и микробиологии. Предложены штамм Bacillus sp.

Изобретение относится к области биотехнологии. Предложен штамм Microbacterium species BKM Ac-2614D для очистки загрязненных и хронически загрязненных пресноводных объектов в температурном диапазоне от +2ºC до +25ºC.

Изобретение относится к фотобиотехнологии. Штамм микроводоросли Chlorella vulgaris 711-54 обладает высокими показателями степени очистки сточных вод сельскохозяйственных и спиртовых производств, значительной продуктивностью и высоким содержанием ценных соединений в биомассе.
Изобретение относится к биотехнологии и может быть использовано в микробиологии. Питательная среда содержит дигидрофосфат калия, гидрофосфат калия, сульфат магния гептагидрат, хлорид натрия, сульфат кальция дигидрат, молибдат натрия, сульфат железа(II), сахарозу, наноцеолит и дистиллированную воду в заданном соотношении компонентов.

Группа изобретений относится к штамму Bifidobacterium longum NCIMB 41675, составу, его содержащему, и продукту питанию, содержащему указанные штамм или состав. Предложенный штамм обладает способностью к индукции продукции цитокинов и контролю отношения IL-10:IL-12 и пригоден для применения в иммуномодуляции, лечении аутоиммунного заболевания.

Изобретение относится к области биотехнологии. Предложен способ получения пробиотического препарата иммобилизованных бифидобактерий для кормления крупного рогатого скота мясных пород.

Группа изобретений относится к биотехнологии. Предложены варианты способа получения аргинина посредством ферментации агропромышленных отходов, в том числе крахмалосодержащих, с получением ферментированной жидкости, содержащей аргинин, и выделения аргинина из ферментированной жидкости.

Изобретения относятся к области биотехнологии и касаются cпособа предотвращения или лечения заболевания у субъекта, вызванного патогенным организмом, путем введения вакцинной композиции, вакцинной композиции и ее применения.

Изобретение относится к композиции для лечения или предотвращения нарушений, связанных с пониженным уровнем дефензинов. Композиция содержит от 0,005 до 1000 мг Lactobacillus johnsonii Lal (NCC533, № CNCM 1-1225) на ежедневную дозу.

Изобретение относится к биотехнологии, а именно к ферментационной среде и способу получения рекомбинатных белков с использованием данной среды. Ферментационная среда для получения рекомбинантных белков, выбранных из группы, включающей Г-КСФ, стрептокиназу и липазу, с использованием микроорганизмов, выбранных из группы, включающей: E.

Изобретение относится к микробиологической промышленности. Предложен штамм бактерии Bacillus subtilis ВКПМ B-11964 - высокоактивный продуцент пектолитических ферментов, мацерирующих растительную ткань.

Группа изобретений относится к области биотехнологии и микробиологии. Предложены штамм Bacillus sp.

Изобретение относится к области биотехнологии. Предложен штамм Microbacterium species BKM Ac-2614D для очистки загрязненных и хронически загрязненных пресноводных объектов в температурном диапазоне от +2ºC до +25ºC.
Изобретение относится к биотехнологии и может быть использовано в микробиологии. Питательная среда содержит дигидрофосфат калия, гидрофосфат калия, сульфат магния гептагидрат, хлорид натрия, сульфат кальция дигидрат, молибдат натрия, сульфат железа(II), сахарозу, нанобентонит и дистиллированную воду. Изобретение позволяет повысить скорость роста фосфатмобилизующих и азотфиксирующих микроорганизмов. 1 табл., 14 пр.
Наверх