Система диагностики технического состояния магистрального трубопровода на участках надземных переходов

Изобретение относится к трубопроводному транспорту. Технический результат - создание экономичной, стационарной оптической системы мониторинга надземных переходов магистральных трубопроводов, позволяющей получать информацию о реальном изменении геометрии трубы надземного перехода и положения ее опор в формате 3D. Система диагностики технического состояния магистрального трубопровода на участках надземных переходов содержит оптическое устройство и аппаратно-программный комплекс. Она также снабжена мишенями-маркерами, закрепленными на трубопроводе и его опорах и выполненными с вертикальными и горизонтальными градуировками, эталонные снимки которых занесены в базу данных аппаратно-программного комплекса. В качестве оптического устройства использован фотоаппарат. Аппаратно-программный комплекс выполнен с возможностью обработки снимка каждой мишени-маркера посредством наложения на ее эталонный снимок и расчета величины отклонения геометрии трубопровода и положения его опор по величине смещений вертикальных и горизонтальных градуировок мишеней-маркеров от их положений на эталонных снимках. 3 ил.

 

Изобретение относится к трубопроводному транспорту и может быть использовано для диагностики технического состояния надземных переходов магистральных трубопроводов.

Наиболее современным видом контроля геометрии объекта является лазерное сканирование. В отличие от традиционных геодезических измерений лазерное сканирование позволяет выполнить с высокой детальностью цифровую 3D модель любого объекта [1] (.ru/projects/671/4571/).

Недостатки данного метода:

- высокая стоимость оборудования;

- невозможность получения информации в режиме online без применения дополнительных устройств.

Наиболее близкой по технической сущности и достигаемому результату к заявляемой системе диагностики технического состояния магистрального трубопровода на участках воздушных переходов является система диагностики технического состояния опасного участка магистрального газопровода [2] (RU 2334163 С, 20.09.2008). Оптическая часть известной системы состоит из четырех видеокамер, расположенных друг от друга на базисных расстояниях в вершинах прямоугольника. Совместное использование четырех пар видеокамер позволяет получить глубину и объемность изображений контролируемого участка. А это, по мнению авторов, позволяет определить координаты всех объектов на контролируемом участке.

Недостатки данного метода:

- оценивать смещение объектов на контролируемом участке можно только в 2-координатной системе, так как видеокамеры установлены в одной плоскости;

- отсутствие алгоритма математического расчета положения объектов на контролируемом участке.

Целью настоящего изобретения является создание экономичной, стационарной оптической системы мониторинга надземных переходов магистральных трубопроводов, позволяющей получать информацию о реальном изменении геометрии трубы надземного перехода и положения ее опор в формате 3D.

Сущность настоящего изобретения заключается в том, что заявленная система диагностики технического состояния магистрального трубопровода на участках надземных переходов, содержащая оптическое устройство и аппаратно-программный комплекс, согласно изобретению дополнительно снабжена мишенями-маркерами, закрепленными на трубопроводе и его опорах и выполненными с вертикальными и горизонтальными градуировками, эталонные снимки которых занесены в базу данных аппаратно-программного комплекса, а в качестве оптического устройства использован фотоаппарат, при этом аппаратно-программный комплекс выполнен с возможностью обработки снимка каждой мишени-маркера посредством наложения на ее эталонный снимок и расчета величины отклонения геометрии трубопровода и положения его опор по величине смещений вертикальных и горизонтальных градуировок мишеней-маркеров от их положений на эталонных снимках.

На фиг. 1 показана система диагностики технического состояния магистрального трубопровода на участках надземных переходов, где:

1 - аппаратно-программный комплекс;

2 - мишень-маркер;

3 - труба надземного перехода;

4 - опоры;

5 - фотоаппарат;

6 - экран монитора.

На фиг. 2 показана мишень-маркер, на которой имеется вертикальная и горизонтальная градуировки.

На фиг. 3 показано смещение исследуемого снимка мишени-маркера относительно эталонного снимка.

Система диагностики технического состояния магистрального трубопровода на участках надземных переходов содержит: аппаратно-программный комплекс 1; мишени-маркеры 2, закрепленные на трубе надземного перехода 3 и опорах 4; фотоаппарат 5. Информация о фактическом изменении геометрии трубы надземного перехода и положения его опор выводится на экран монитора оператора 6.

Перед началом работ производятся: фотографирование стационарно установленным фотоаппаратом 5 мишеней-маркеров 2 и замеры расстояний до них. Полученные снимки и замеренные расстояния являются эталонными и заносятся в базу данных программного обеспечения аппаратно-программного комплекса 1.

Заявляемая система диагностики технического состояния магистрального трубопровода на участках надземных переходов работает следующим образом.

Фотоаппарат 5 направляется в автоматическом режиме на мишень-маркер 2, производится ее фотографирование. Аппаратно-программный комплекс 1 производит обработку снимка и накладывает его на имеющийся в его памяти эталонный снимок (см. фиг. 3). Данная операция повторяется для каждой мишени-маркера. По величине смещений (А и Б) вертикальных и горизонтальных градуировок мишеней-маркеров 2 от эталонов производится расчет изменения геометрии трубы надземного перехода 3 и положения опор 4 в плоской системе координат (X, Y). По изменению размеров градуировок (В) мишеней-маркеров относительно эталонных значений производится расчет величины отклонения трубы надземного перехода 3 и опор 4 по оси Z.

Информация с фотоаппарата 5, прошедшая обработку в аппаратно-программном комплексе 1, в режиме реального времени выводится на экран монитора 6, в том числе изображение контролируемого участка МГ в формате 3D и величины отклонений контролируемых точек по координатам X, Y, Z.

Техническим результатом применения данного изобретения является использование полученной информации об изменениях геометрии трубопровода и положения опор, для принятия обоснованных решений по снижению уровней напряженно-деформированного состояния трубопровода, например, с помощью регулировок опор или замены опор.

Источники информации

1. http://www/navgeocom.ru/projects/671/4571/.

2. RU 2334163 С, 20.09.2008.

Система диагностики технического состояния магистрального трубопровода на участках надземных переходов, содержащая оптическое устройство и аппаратно-программный комплекс, отличающаяся тем, что она снабжена мишенями-маркерами, закрепленными на трубопроводе и его опорах и выполненными с вертикальными и горизонтальными градуировками, эталонные снимки которых занесены в базу данных аппаратно-программного комплекса, а в качестве оптического устройства использован фотоаппарат, при этом аппаратно-программный комплекс выполнен с возможностью обработки снимка каждой мишени-маркера посредством наложения на ее эталонный снимок и расчета величины отклонения геометрии трубопровода и положения его опор по величине смещений вертикальных и горизонтальных градуировок мишеней-маркеров от их положений на эталонных снимках.



 

Похожие патенты:

Изобретение относится к технике неразрушающего контроля качества магистральных трубопроводов, в частности, к способам внутритрубной дефектоскопии с помощью дефектоскопов-снарядов.

Устройство и способ предназначены для определения положения трубопровода в пространстве при эксплуатации и строительстве трубопроводов. Устройство состоит из аппаратной части: акселерометров, гироскопов и одометра, и программной части, при этом аппаратная часть установлена на внутритрубный инспекционный прибор и состоит из набора датчиков.

Способ относится к системам автоматического контроля работы нефтегазового оборудования и позволяет своевременно обнаруживать предаварийные ситуации, связанные с отложением гидратов в газовом оборудовании.

Изобретение относится к системам управления, предназначенным для обеспечения дистанционного контроля технологическим процессом транспортировки нефти по магистральным нефтепроводам.

Изобретение относится к измерительной технике и может быть использовано для измерения профиля искривления протяженных трубчатых каналов. Измеритель искривления трубчатого канала содержит датчики изгиба (4), подключенные к измерительной схеме.

Изобретение относится к трубопроводному транспорту и может быть использовано для определения пространственного положения подводного трубопровода. В способе измеряют модуль вектора индукции магнитного поля Земли (ВИМПЗ) при помощи магнитометров, установленных совместно с точкой приема сигнала на одном вертикальном носителе, буксируемом за судном.

Группа изобретений относится к трубопроводному транспорту, в частности к защитным устройствам и к устройствам для наблюдения за оборудованием. Предложено предохранительное устройство для заглушки трубы и для трубы, в котором заглушка содержит закрывающую внутреннюю стенку трубы гильзу, при этом предохранительное устройство выполнено для выработки сигнала тревоги.

Изобретение относится к трубопроводному транспорту и может быть использовано для автоматического контроля технологического процесса транспортировки жидкости и газа, например для контроля и управления блоком электроприводных задвижек на участках нефтепроводов, газопроводов, водоводов, расположенных в труднодоступной местности.

Способ и устройство предназначены для управления внутритрубным объектом. Способ заключается в дистанционном управлении внутритрубным объектом с помощью команд управления по двум каналам управления - низкочастотному электромагнитному каналу и радиоканалу метрового диапазона волн, причем низкочастотные электромагнитные сигналы излучают и принимают с помощью приемо-передающего оборудования, установленного вне и внутри трубопровода, а сигналы, передающиеся по радиоканалу метрового диапазона волн, излучают и принимают с помощью приемо-передающего оборудования, установленного внутри трубопровода, используя его в качестве волновода, с размещением одного комплекта приемо-передающего оборудования метрового диапазона волн на внутритрубном объекте.

Изобретение относится к контрольно-измерительной технике и может использоваться для определения планово-высотного положения подземного магистрального трубопровода.

Изобретение относится к области мониторинга состояния трубопроводов. Технический результат - повышение точности контроля. Способ включает установку датчиков на трубопроводе, измерение ими параметров текущего состояния трубопровода, определение отклонения текущих параметров состояния трубопровода от нормы, получение адаптированной к текущему состоянию модели состояния трубопровода и оценку дальнейшего состояния трубопровода. При этом в качестве датчиков используют распределенные или квазираспределенные волоконно-оптические датчики, расположенные непрерывно по всей длине трубопровода в виде секций. Датчики измеряют в непрерывном режиме магнитное, электрическое, тепловое и акустическое поля в качестве текущих параметров состояния трубопровода. Анализируют отклонения измеренных полей от нормы, выявляют на трубопроводе участки проявления отклонений, осуществляют местную диагностику состояния трубопровода в указанных участках. При этом либо устраняют выявленную неисправность, либо, при отсутствии неисправности, адаптируют модель состояния трубопровода к текущему состоянию путем включения в указанную модель описания выявленного отклонения. Также изобретение относится к системе мониторинга технического состояния трубопровода, предназначенной для осуществления указанного способа. 2 н. и 12 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области диагностики и контроля состояния подземных стальных трубопроводов и может быть использовано в нефтегазодобывающей промышленности, коммунальном хозяйстве и других областях промышленности, эксплуатирующих стальные трубопроводы. Способ определения положения кольцевых сварных швов подземного трубопровода, изготовленного из ферромагнитного материала, включает измерение индукции постоянного магнитного поля над осью трубопровода с определенным шагом, построение графика и поиск экстремумов зависимости параметров индукции магнитного поля от линейной координаты, осуществляют приведение измеренных значений параметров индукции к среднему значению глубины заложения трубопровода, определяют значения высоты экстремумов, линейные координаты экстремумов, высота которых превышает заданное пороговое значение, считают вероятными координатами кольцевых сварных швов трубопровода. Технический результат - повышение достоверности определения линейных координат кольцевых сварных швов подземного трубопровода на основании результатов наземных магнитометрических измерений и обеспечение возможности проведения поиска швов в автоматизированном режиме. 1 з.п. ф-лы, 10 ил., 1 табл.

Изобретение относится к средствам неразрушающего контроля и может быть использовано для диагностики напряженно-деформированного состояния магистральных трубопроводов. Комплекс содержит герметичный контейнер 1, GSV-канал связи 8, сервер 9, электронный блок 2, магнитошумовые датчики 3,4,5,6 напряженно-деформированного состояния. На боковых образующих трубопровода во взаимно перпендикулярных осях с привязкой к линии горизонта устанавливают четыре тензометрических датчика 10,11,12,13 в точках, сходных с точками установки магнитошумовых датчиков. Комплект из четырех тензометрических датчиков связан с электронным узлом 20, входящим в электронный блок 2. С помощью электронного узла происходит вычисление вектора механических деформаций трубопровода в плоскости установки тензометрических датчиков и определение угла и направления действия оползневых масс на трубопровод. Достигается предотвращение разрушения трубопровода. 3 ил.

Изобретение относится к области добычи природного газа и, в частности, к определению коэффициента фактического гидравлического сопротивления газосборного шлейфа. Автоматизированная система управления технологическими процессами газового промысла в реальном масштабе времени контролирует значение коэффициента эффективности эксплуатации газопромыслового шлейфа Е по паспортным параметрам шлейфа, данным по его эксплуатации и контролируемым технологическим параметрам. Если значение коэффициента Е вышло за допустимые границы, то констатируют: нормальный режим работы скважин и шлейфа нарушены (в шлейфе кроме газа присутствует выше допустимой нормы иной фактор: газовый гидрат, пластовая вода, механические примеси). Способ позволяет оперативно выявлять потенциальную возможность отказа газосборного шлейфа.

Изобретение относится к области экспертизы промышленной безопасности опасных производственных объектов. Технический результат - повышение точности определения срока службы трубопровода. Способ заключается в том, что проводят количественную оценку процесса деградации трубопровода от переменных нагрузок, количественно выраженную в усталостной поврежденности трубопровода как функции времени эксплуатации, характеризующей процесс накопления усталостных повреждений в трубопроводе. Определяют поврежденность трубопровода, характеризующую процесс деградации трубопровода от коррозии и коррозионного растрескивания под напряжением и поврежденность трубопровода от эксплуатационных дефектов, в частности трещин, язв, гофр, вмятин, задиров или царапин. 1 з.п. ф-лы,3 табл., 1 ил.
Изобретение относится к области мониторинга трубопроводных систем, эксплуатируемых в сложных климатических условиях, в частности к способам оценки технического состояния трубопроводов надземной прокладки в условиях вечной мерзлоты. Способ мониторинга заключается в выполнении этапов установки контрольного и измерительного оборудования, сбора данных по показаниям контрольного и измерительного оборудования, передачи и записи данных, анализа и оценки результатов обработки и принятия решения о необходимости проведения компенсационных мероприятий по результатам комплексного мониторинга технического состояния трубопроводов надземной прокладки. В процессе выполнения способа определяют текущее положение трубопровода и опор трубопровода и его отклонение от проектного положения, величины нагрузок на опоры, напряжение изгиба трубопровода, напряжения компенсатора, и оценивают допустимость напряженно-деформированного состояния трубопровода. Изобретение позволяет проводить оценку технического состояния и определение режимов безаварийной работы трубопроводов надземной прокладки, эксплуатируемых в условиях вечной мерзлоты.

Изобретение относится к системам контроля состояния магистральных и промысловых нефтепроводов, газопроводов и нефтепродуктопроводов и может быть использовано для отслеживания прохождения внутри обследуемых трубопроводов внутритрубных диагностических снарядов и определения местоположения особенностей трубопроводов. Техническим результатом является повышение точности определения времени прохождения внутритрубного снаряда вблизи контрольных точек и тем самым точности определения положения особенностей трубопровода. Этот результат достигается тем, что снаряд пропускают внутри трубопровода, измеряют измерительной системой снаряда физические величины, характеризующие состояние и/или характеристики снаряда и/или трубопровода, и записывают их в накопитель данных снаряда с привязкой ко времени по часам снаряда. С помощью регистратора, установленного вблизи контрольной точки трубопровода, измеряют физические величины, позволяющие идентифицировать прохождение снаряда вблизи регистратора, формируют и записывают в накопитель данных регистратора характеристики, идентифицирующие соответствующие моменты времени прохождения снаряда по часам регистратора. С помощью передатчика, расположенного в одном из пары объектов, состоящей из снаряда и регистратора, передают сигнал с временной характеристикой, связанной с показаниями часов на стороне передатчика; принимают переданный сигнал приемником, расположенным в другом из указанной пары объектов, и записывают в накопитель данных на стороне приемника характеристику, связанную с временной характеристикой принятого сигнала, с привязкой к часам на стороне приемника. Определяют разность показаний часов на стороне передатчика и приемника, тем самым величину расхождения времени по часам регистратора и снаряда, и используют ее в контрольной точке для определения характеристик трубопровода. 2 н. и 36 з.п. ф-лы, 7 ил.

Изобретение относится к обеспечению безопасности эксплуатируемых подземных трубопроводов и предназначено для предотвращения врезок в трубу, установке боеприпасов для ее подрыва, имитаторов утечек перекачиваемого продукта для дезинформации службы безопасности, а также для обнаружения утечек перекачиваемого продукта. Технический результат позволяет повысить надежность обнаружения. В способе анализируется суммарный сигнал от детекторов упругих колебаний, установленных по обе стороны трубопровода на наличие в нем составляющих от шагов нарушителей с определением их численности. При обнаружении такой информации оценивают минимально возможное время доступа к трубопроводу группой нарушителей установленной численности. Одновременно формируют огибающие энергии и плотности переходов через нуль суммарного сигнала и решение принимают при превышении ими эталонных уровней в течение указанного минимально возможного времени доступа к трубопроводу. 8 з.п. ф-лы, 3 ил., 1 табл.

Новое техническое решение обеспечивает расширение функциональных возможностей, повышение удобства и снижение трудоемкости обслуживания, а также создание компактной конструкции контрольно-измерительного пункта, благодаря тому, что стойка контрольно-измерительного пункта выполнена из отрезка трубы прямоугольного поперечного сечения, на верхнем торце которой размещен клеммный терминал, содержащий опорно-соединительное кольцо, на внутренней поверхности которого выполнены держатели в виде вертикальных направляющих с пазами, в которых установлены взаимозаменяемые клеммные панели; на каждой клеммной панели выполнена сетка монтажных отверстий, при этом соседние отверстия расположены на одинаковом расстоянии друг от друга, крышка выполнена в виде съемного колпака, представляющего собой четырехгранную призму, установленную с возможностью взаимодействия с опорно-соединительным кольцом, километровый знак выполнен сборно-разборным и состоит из двух указательных пластин и двух соединительных кронштейнов. 8 ил.

Изобретение относится к области автоматизированных систем мониторинга и диагностики технического состояния металлических подземных сооружений. Технический результат - повышение качества комплексного дистанционного мониторинга и анализа уровня коррозионной защиты подземных сооружений для определения причин возникновения коррозии и принятие своевременных мер по ее предотвращению. Аппаратно-программный комплекс мониторинга коррозионной защиты подземных сооружений состоит из связанных между собой системы измерений и обработки результатов измерений, системы обеспечения измерений и дистанционного управления, системы связи, центра мониторинга и управления. 4 ил.
Наверх