Способ получения триметилфторсилана

Изобретение относится к способам получения триметилфторсилана. Предложен способ получения триметилфторсилана из гексаметилдисилоксана и кремнефтористоводородной кислоты, в котором гексаметилдисилоксан подвергают взаимодействию с 10-30%-ным раствором кремнефтористоводородной кислоты при нагревании в присутствии кислоты, такой как серная или пара-толуолсульфокислота. Технический результат - предложенный способ технологичен и экологичен, так как не требует специального оборудования и позволяет утилизировать отходы многотоннажного производства фосфорных удобрений - растворы кремнефтористоводородной кислоты. 3 пр.

 

Изобретение относится к химии соединений кремния и фтора, в частности к способу получения триметилфторсилана из гексаметилдисилоксана и кремнефтористоводородной кислоты, растворы которой являются отходами производства фосфорных удобрений.

Изобретение наиболее эффективно может быть использовано в химической промышленности для получения триметилфторсилана, а также для утилизации отходов производства фосфорных удобрений.

Как известно, триметилфторсилан является электрофильным силилирующим реагентом [Gornowicz G.A., West R., J. Am. Chem. Soc, 90, 4478 (1968)], а также катализатором фосфорилирования гидроксильных групп (в таких соединениях, как сахара, полисахариды, нуклеозиды, терпенолы, липиды, фенолы, полифенолы, гидроксифункциональные полимеры и т.п. [WO 199734853; патент США №6479656 (2002)], что имеет важное значение для производства лекарственных средств, детергентов, антиоксидантов, пластификаторов и других продуктов. Описано применения фтортриметилсилана для покрытия поверхности графена, используемого в суперконденсаторах, для повышения его смачиваемости и электрохимической стабильности, что приводит к удлинению времени их жизни и повышению мощности [патентная заявка Китая CN 102701191 A (2012)]. Известно, что фтортриметилсилан используют в неводных электрохимических батареях для подавления саморазрядки элементов [патентная заявка США US 20120244414 А1 (2012)].

Известны способы получения триметилфторсилана путем фторирования триметилхлорсилана, при этом в качестве фторирующих агентов используют фториды олова, цинка, свинца, сурьмы, натрия, аммония (которые способны генерировать HF) или фтористый водород [К.А. Андрианов. Кремнийорганические соединения. ГХИ, 1955; Патент ГДР DD74271 (1970)].

Известен способ получения триметилфторсилана из Me3SiCl под действием фторида натрия в присутствии межфазного катализатора и нескольких капель воды, выход 41% [Synthesis, No. 12, 996-7 (1988)].

Известен способ получения триметилфторсилана фторированием триметилхлорсилана трехфтористой сурьмой [J. Am. Chem. Soc, 68, 2658 (1946); J. Chem. Soc., Perkin Transactions 2, Phys. Org. Chem., 1861-1866 (1999); Inorg. Synth. 16, 139 (1976)].

Известен способ получения триметилфторсилана фторированием триметилхлорсилана гидрофторидом пиридина в 1,4-диоксане (Ga-I Ung and Guy Bertrand. С-F Bond Activation with an Apparently Benign Ethynyl Dithiocarbamate, and Subsequent Fluoride Transfer Reactions, Chem. Eur. J. 2012, 18, No. 41, 12955-12957) с количественным выходом. Однако гидрофторид пиридина труднодоступный реагент, кроме того, реакцию необходимо проводить в инертной атмосфере.

Недостатками всех способов получения триметилфторсилана из триметилхлорсилана, который также, как и целевой продукт, является достаточно летучим соединением, является загрязнение целевого продукта исходным веществом, а также образование хлорсодержащих отходов, которые сложно утилизировать.

Известен способ получения триметилфторсилана, который состоит во взаимодействии трифторметансульфоната с фторидом калия в диметилформамиде, содержащим 18-краун-6 [Synthesis, No.5, 407 (1988)].

Известен способ получения триметилфторсилана из гексаметилдисилоксана, включающий его взаимодействие с эфиратом трифторида бора при температуре 50-60°C и мольном соотношении реагентов 3:1, соответственно [патент США US 2713063]. Недостатком способа является использование эфирата трехфтористого бора - дорогого и огнеопасного реагента.

Известен способ получения триметилфторсилана взаимодействием гексаметилдисилоксана, растворенного в серной кислоте, с фторидом аммония [J. Am. Chem. Soc, 70, 433 (1948)]. Недостатком этого способа является необходимость использования в качестве растворителя концентрированной серной кислоты, т.е. проведения реакции в агрессивной среде.

Известен способ получения триметилфторсилана из гексаметилдисилоксана, который включает (1) растворение гексаметилдисилоксана в концентрированной серной кислоте, (2) пропускание через раствор газообразного безводного фтористого водорода, (3) выделение образовавшегося триметилфторсилана в виде газа [Патент США US 2519879 (1950)]. Этот способ был выбран в качестве прототипа.

Недостатком способа-прототипа является необходимость использования опасных и токсичных веществ. В качестве фторирующего реагента используют безводный фтористый водород, чрезвычайно опасное агрессивное вещество, работа с которым требует специального оборудования; кроме того, реакцию проводят в агрессивной среде - концентрированной (90-95%) серной кислоте. Таким образом, способ-прототип неудобен с технологической точки зрения: для его осуществления требуется специальное оборудование, предназначенное для работы с агрессивными веществами, что делает проблематичным его осуществление в промышленных масштабах.

Технический результат - разработка нового технологичного способа получения триметилфторсилана, в котором используют растворы кремнефтористоводородной кислоты - отходы производства фосфорных удобрений.

Задачей настоящего изобретения является создание технологичного способа получения триметилфторсилана из доступного сырья, осуществление которого не требует применения специального оборудования.

Задача решается предлагаемым способом получения фтортриметилсилана из гексаметилдисилоксана (ГМДС), где гексаметилдисилоксан подвергают взаимодействию с водным 10-30% раствором кремнефтористоводородной кислоты, которое проводят при нагревании в присутствии кислоты, такой как серная или пара-толуолсульфокислота, при соотношении кремнефтористоводородная кислота:гексаметилдисилоксан 1,0:3,5-4,5; при этом целевой продукт собирают в охлаждаемой ловушке. Целевой триметилфторсилан образуется с количественным выходом и одновременно получается диоксид кремния.

В качестве источника фтора в заявляемом способе используют кремнефтористоводородную кислоту. Раствор кремнефтористоводородной кислоты является отходом многотоннажного производства фосфорных удобрений и фосфорной кислоты из апатитов и фосфоритов. Побочным продуктом кислотной переработки апатитов и фосфоритов является четырехфтористый кремний - высокотоксичное газообразное вещество, выбросы которого в атмосферу наносят значительный вред экологии и здоровью человека. Газы, выделяющиеся в процессе производства суперфосфата из апатитового концентрата, содержат около 6 кг фтора в виде четырехфтористого кремния на 1 т полученного удобрения, поэтому улавливание его водой либо щелочными растворами - неотъемлемая часть производства фосфорных удобрений. При нормальных условиях тетрафторид кремния SiF4 - газ, хорошо растворимый в воде. Вода является хорошим абсорбентом отходящих газов. Реакция протекает с образованием кремнефтористоводородной кислоты H2SiF6. Введение в раствор добавок (солей, щелочей и т.д.) способствует более глубокой очистке. В результате водной абсорбции образуется 10-12% раствор кремнефтористоводородной кислоты (Егоров А.Н., Шерешевский А.И., Шманенков И.А. Общая химическая технология неорганических веществ. М., Химия, 1964. 688 с. 542; Н.П. Галкин, В.А. Зайцев, М.Б. Серегин. Улавливание и переработка фторсодержащих газов. М., Атомиздат, 1975, с. 240; Справочник химика. М., Госхимиздат, 1963, Т. 1. с. 774).

В заявляемомом способе растворы кремнефтористоводородной кислоты, полученные при поглощении четырехфтористого кремния, служат исходным сырьем для получения целевого продукта - триметилфторсилана.

Способ заключается во взаимодействии раствора кремнефтористоводородной кислоты различной концентрации с гексаметилдилоксаном (ГМДС), причем соотношение кремнефтористоводородная кислота:гексаметилдисилоксан составляет 1,0:3,5-4,5 в присутствии кислоты, такой как серная или пара-толуолсульфокислота при нагревании. При этом с количественным выходом образуется фтортриметилсилан и одновременно выделяется диоксид кремния.

Предлагаемый способ не требует какой-либо специальной аппаратуры, а исходным фторсодержащим сырьем для получения триметилфторсилана является кремнефтористоводородная кислота, которая представляет собой отход производства фосфорных удобрений, таким образом, создается возможность использования фтора, выделенного из отходящих газов, образующихся при производстве фосфорных удобрений, т.е. из отходов многотоннажного производства. Таким образом, решается задача предотвращения загрязнения окружающей среды путем улавливания токсичных фторсодержащих газов и уменьшение потерь уже уловленного фтора, природные источники которого сокращаются. Диоксид кремния, получающийся в ходе предлагаемого процесса, также можно использовать в промышленности.

Изобретение иллюстрируется следующими примерами.

Пример 1

В трехгорлую колбу объемом 250 мл, снабженную термометром, обратным холодильником, соединенным с ловушкой, охлаждаемой смесью сухого льда с ацетоном, помещают 20 г 30% водного раствора (41 ммоль) кремнефтористоводородной кислоты, 27,6 г (170 ммоль) ГМДС и добавляют 1,2 г серной кислоты. При перемешивании магнитной мешалкой смесь нагревают до 80-90°C, при этом в ловушке собирается триметилфторсилан, а на стенках колбы и обратного холодильника образуется налет диоксида кремния. В ловушке получают 23 г целевого триметилфторсилана с т.кип. 16°C. Выход количественный. 19F ЯМР: (CFCl3): -158 м.д. (с). 1Н ЯМР: 0,25 м.д. (с), что согласуется с лит. данными для этого соединения (Chemistry A European Journal, 2014, vol. 20, №5 с. 1218-1222).

Пример 2

В трехгорлую колбу объемом 500 мл, снабженную термометром, обратным холодильником, соединенным с ловушкой, охлаждаемой смесью сухого льда с ацетоном, помещают 65 г 10% водного раствора кремнефтористоводородной кислоты (45 ммоль), 32 г (198 ммоль) ГМДС и добавляют 1,3 г серной кислоты. Смесь нагревают до 80-90°C при перемешивании магнитной мешалкой, затем добавляют 2,3 г (15 ммоль) п-толуолсульфокислоты, при этом в ловушке собирается триметилфторсилан, а на стенках колбы и обратного холодильника образуется налет SiO2. В ловушке получают 23 г целевого триметилфторсилана с т.кип. 16°C. Выход количественный. 19F ЯМР: (CFCl3):-158 м.д. (с). 1Н ЯМР:0,25 м.д. (с).

Пример 3

В трехгорлую колбу объемом 2 л, снабженную термометром, обратным холодильником, соединенным с ловушкой, охлаждаемой смесью сухого льда с ацетоном, помещают 260 г 10% водного раствора кремнефтористоводородной кислоты (180 ммоль) и 105 г (647 ммоль) ГМДС, затем добавляют 9,2 г (60 ммоль) п-толуолсульфокислоты. Смесь нагревают до 80-90°C при перемешивании магнитной мешалкой, при этом в ловушке собирается триметилфторсилан, а на стенках колбы и обратного холодильника образуется налет SiO2. Выход 97%. 19F ЯМР: (CFCl3): -158 м.д. (с). 1Н ЯМР: 0,25 м.д. (с).

Заявляемый способ обладает следующими преимуществами:

в качестве исходного вещества используют растворы кремнефтористоводородной кислоты - отходы многотоннажного производства фосфорных удобрений;

- реализация способа не требует особых условий и использования специального оборудования;

- одновременно получают диоксид кремния, который также является ценным продуктом;

- создаются новые возможности для утилизации отходов производства фосфорных удобрений.

Способ получения триметилфторсилана из гексаметилдисилоксана, отличающийся тем, что гексаметилдисилоксан подвергают взаимодействию с 10-30%-ным раствором кремнефтористоводородной кислоты при нагревании в присутствии кислоты, такой как серная или пара-толуолсульфокислота, при соотношении кремнефтористоводородная кислота:гексаметилдисилоксан 1,0:3,5-4,5, при этом целевой продукт собирают в охлаждаемой ловушке.



 

Похожие патенты:

Изобретение относится к способам получения триметил(трифторметил)силана. Предложено получение триметил(трифторметил)силана взаимодействием триметил(трихлорметил)силана с фторирующим агентом, выбранным из ряда: трехфтористая сурьма, активированная бромом, или трехфтористая сурьма, активированная пятихлористой сурьмой, или газообразный фтористый водород в присутствии пятихлористой сурьмы; взаимодействие проводят при нагревании в инертном фторированном растворителе, таком как п-хлорбензотрифторид, или же без растворителя.

Изобретение относится к способам переработки отходов процесса синтеза хлорсиланов и алкилхлорсиланов. Предложен способ твердофазной нейтрализации жидких и твердых отходов синтеза хлорсиланов и алкилхлорсиланов, заключающийся в том, что жидкие и твердые отходы любого состава и в любом соотношении обрабатывают твердым реагентом, выбранным из карбонатов щелочных и щелочноземельных металлов и их природных смесей нестехиометрического состава в массовом соотношении не менее чем 1,0:1,2 в расчете на сумму всех отходов в размольном оборудовании до получения твердого нейтрализованного продукта.
Изобретение относится к способам получения фторированных силанов. Предложен способ получения бромдифторметил(триметил)силана бромированием дифторметил(триметил)силана при освещении лампой накаливания в интервале температур 50-85°C при мольном соотношении дифторметил(триметил)силан : Br2, равном 1:0,7-1.

Изобретение относится к асфальту и асфальто-минеральным композициям, приемлемым для дорожных покрытий или нанесения покрытий на поверхность сооружений. Асфальто-минеральная композиция содержит 100 мас.ч.

Изобретение относится к способу крекинга высококипящих полимеров для увеличения выхода и минимизации отходов в процессе получения трихлорсилана. Предложен способ крекинга полихлорсилана и/или полихлорсилоксана, включающий стадии а) получения смеси, содержащей полихлорсилан и/или полихлорсилоксан; б) удаления твердых частиц из этой смеси с получением чистой смеси; и в) рециркуляции полученной чистой смеси в дистилляционный аппарат, и крекинг полихлорсилана и/или полихлорсилоксана в дистилляционном аппарате с получением трихлорсилана, тетрахлорсилана или их комбинации.
Изобретение относится к химической технологии кремнийорганического синтеза. .
Изобретение относится к области получения метил(фенэтил)дихлорсилана, применяемого в качестве мономера при получении морозо-, термо- и радиационно стойких полимеров.

Изобретение относится к области химической технологии кремнийорганических соединений. .

Изобретение относится к способу получения фенилсодержащих хлорсиланов на основе процесса Гриньяра. .

Изобретение относится к способам получения алкенилгалогенсиланов. Предложен способ получения алкенилгалогенсиланов путем превращения алкенилгалогенида, выбранного из группы, включающей винилгалогенид, винилиденгалогенид и аллилгалогенид, с галогенсиланом, выбранным из группы, включающей моногалогенсилан, дигалогенсилан и тригалогенсилан, в газовой фазе в реакторе, представляющем собой реакционную трубу (1) с входным отверстием (2) на одном конце и выходным отверстием (3) на другом конце, а также снабженном концентрическим распылителем (4), который имеет центральный ввод (5) для реагента (7) и ввод (6) для других реагентов (8), окружающий центральный ввод (5), причем концентрический распылитель (4) установлен у входного отверстия (2) и выходит внутрь реакционной трубы (1). Для осуществления способа алкенилгалогенид впрыскивают в реакционную трубу (1) через центральный ввод (5), а галогенсилан через ввод (6), окружающий центральный ввод (5), причем соответствующие потоки перемещаются через реакционную трубу (1) в направлении к выходному отверстию (3). Горячую реакционную смесь на конце реакционной трубы (1) со стороны продукта резко охлаждают жидким сырым продуктом. Предложен также реактор для осуществления заявленного способа. Технический результат - предложенный способ позволяет получать алкенилгалогенсиланы с высоким выходом и высокой селективностью. 2 н. и 12 з.п. ф-лы, 1 ил.

Изобретение относится к способам получения алкенилгалогенсиланов. Предложен способ получения алкенилгалогенсиланов путем превращения алкенилгалогенида, выбранного из группы, включающей винилгалогенид, винилиденгалогенид и аллилгалогенид, с галогенсиланом, выбранным из группы, включающей моногалогенсилан, дигалогенсилан и тригалогенсилан, в исходном мольном отношении галогенсилана к алкенилгалогениду между 1,0 и 10 в газовой фазе в реакторе, представляющем собой реакционную трубу (1) с входным отверстием (2) на одном конце и выходным отверстием (3) на другом конце, а также снабженном газоподводящим устройством (4), которое имеет несколько мест ввода газа (5), расположенных вдоль продольной оси реакционной трубы (1) на определенном расстоянии друг от друга и выходящих внутрь реакционной трубы (1). Для осуществления способа моногалогенсилан, дигалогенсилан или тригалогенсилан подают через входное отверстие (2) в реакционную трубу (1), по которой он перемещается в направлении к выходному отверстию (3), в то время как винилгалогенид, винилиденгалогенид или аллилгалогенид дробно вводят в перемещающийся внутри реакционной трубы (1) газовый поток через места ввода газа (5). Горячую реакционную смесь на конце реакционной трубы (1) со стороны продукта резко охлаждают жидким сырым целевым продуктом. Предложен также реактор для осуществления заявленного способа. Технический результат - способ позволяет получать алкенилгалогенсиланы с высоким выходом и высокой селективностью. 2 н. и 14 з.п. ф-лы, 1 ил.
Наверх