Способ получения нанокапсул резвератрола в альгинате натрия

Изобретение относится в области нанотехнологии, в частности к способу получения нанокапсул резвератрола. В качестве оболочки нанокапсул используется альгинат натрия, в качестве ядра - резвератрол. Массовое соотношение оболочка:ядро составляет 3:1 или 1:5. Способ получения нанокапсул заключается в том, что резвератрол порциями добавляют в суспензию альгината натрия в бензоле в присутствии препарата Е472с при перемешивании 1000 об/сек. Далее приливают гексан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре. Способ по изобретению обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 1 ил., 1 табл., 3 пр.

 

Изобретение относится к области нанотехнологии, а именно к фармацевтике и медицине.

Ранее были известны способы получения микрокапсул.

В патенте РФ 2173140, МПК А61К 009/50, А61К 009/127, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В патенте РФ 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10ºC, температура воздуха на выходе 28ºC, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10ºC, температура воздуха на выходе 28ºC, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в патенте РФ 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999. В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул резвератрола, отличающимся тем, что в качестве оболочки нанокапсул используется альгинат натрия, а в качестве ядра - резвератрол при получении нанокапсул методом осаждения нерастворителем с применением гексана в качестве осадителя, процесс получения нанокапсул осуществляется без специального оборудования.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием гексана в качестве осадителя, а также использование альгината натрия в качестве оболочки частиц и резвератрола - в качестве ядра.

Результатом предлагаемого метода являются получение нанокапсул резвератрола.

ПРИМЕР 1. Получение нанокапсул резвератрола в альгинате натрия, соотношение оболочка:ядро 3:1

1 г резвератрола медленно по порциям добавляют в суспензию альгината натрия в бензоле, содержащую 3 г указанного полимера, в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1000 об/сек. Далее приливают 5 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул резвератрола в альгинате натрия, соотношение оболочка:ядро 1:5

5 г резвератрола медленно по порциям добавляют в суспензию альгината натрия в бензоле, содержащую 1 г указанного полимера, в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/сек. Далее приливают 5 мл гексана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length:Auto, Min Expected Size:Auto, длительность единичного измерения 215s, использование шприцевого насоса.

Результаты размеров нанокапсул резвератрола представлены на рис. 1 и в таблице 1.

Способ получения нанокапсул резвератрола в альгинате натрия, характеризующийся тем, что в качестве оболочки нанокапсул используется альгинат натрия, а в качестве ядра - резвератрол, при этом массовое соотношение оболочка:ядро составляет 3:1 или 1:5, и резвератрол порциями добавляют в суспензию альгината натрия в бензоле в присутствии препарата Е472с при перемешивании 1000 об/сек, далее приливают гексан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре.



 

Похожие патенты:

Изобретение может быть использовано при изготовлении аналоговых и/или цифровых электронных схем. Наноструктурное устройство (105) с множеством наноструктур (101) получают путём осаждения нижнего слоя (103), содержащего кристаллографическую структуру зерен с первым средним размером, на подложке (102), последующего осаждения слоя (104) катализатора, содержащего кристаллографическую структуру зерен со вторым средним размером, который больше первого.

Изобретения могут быть использованы при изготовлении композитов или катализаторов. В средстве 3 получают рабочую смесь 2 с температурой 400-1400°C, включающую наночастицы, содержащие вещество катализатора, несущий газ и газообразные углеводороды.

Изобретения относятся к области химии, а именно к полимерным лакокрасочным материалам, образующим на защищаемой поверхности после высыхания супергидрофобное покрытие, и способу получения супергидрофобного покрытия для использования для защиты различных конструкций и сооружений строительства, транспорта и энергетики, эксплуатируемых в условиях открытого выпадения климатических осадков в виде дождя, снега, тумана, от обледенения, коррозии.

Изобретение относится к области изготовления многослойных магнитных пленочных материалов и может быть использовано в технологии получения сред для записи информации или при производстве датчиков.

Изобретение относится к технологии получения порошкового материала, содержащего наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине.

Изобретение может быть использовано для получения материалов и элементов наноэлектроники, нанофотоники, газовых сенсоров и лазерных систем с ультракороткими импульсами излучения.

Изобретение относится к области нанотехнологий и наноматериалов. Наноразмерный порошок кремния получают травлением монокристаллического кремния в ячейке электрохимического травления с контрэлектродом U-образной формы из нержавеющей стали с последующим механическим отделением пористого слоя от подложки, его измельчением в изопропиловом спирте в ультразвуковой ванне и сушкой в естественных условиях, при этом в качестве электролита используют раствор диметилформамида с добавлением плавиковой кислоты и 20% по объему перекиси водорода (30%).

Изобретение относится к области нанотехнологий и наноматериалов и может быть использовано в стоматологии и биомедицине. Сущность способа заключается в том, что получение наноразмерного порошка кремния обеспечивают травлением монокристаллического кремния в ячейке электрохимического травления с контрэлектродом U-образной формы из нержавеющей стали с последующим механическим отделением пористого слоя от подложки, его измельчением в изопропиловом спирте в ультразвуковой ванне и сушкой в естественных условиях, при этом в качестве электролита используют раствор диметилформамида с добавлением плавиковой кислоты и 20% по объему 30%-ной перекиси водорода.

Изобретение относится к химической технологии. Способ включает упаривание смеси водных растворов цинк- и железосодержащих солей карбоновой кислоты, взятых в стехиометрическом соотношении.

Изобретение относится к области производства оптических материалов. Технический результат изобретения заключается в повышении оптической прозрачности в УФ и ИК-областях спектра, механической прочности.

Изобретение относится к области нанотехнологии и фармацевтической химии. В способе получения нанокапсул аденина в альгинате натрия в качестве оболочки нанокапсул используется альгинат натрия, в качестве ядра - аденин.

Изобретение относится к области нанотехнологии и фармацевтической химии. В способе получения нанокапсул солей металлов в конжаковой камеди в качестве оболочки нанокапсул используется конжаковая камедь, а в качестве ядра - соль металла.

Изобретение относится в области нанотехнологии и фармацевтической химии. При получении нанокапсул солей металлов в качестве оболочки используется каррагинан.
Изобретение относится к способу инкапсуляции препарата Сел-Плекс. Указанный способ заключается в том, что Сел-Плекс диспергируют в суспензию ксантановой камеди в бутаноле в присутствии препарата Е472с при перемешивании, затем приливают хлороформ, полученную суспензию микрокапсул отфильтровывают и сушат, при этом соотношение ядро/оболочка в микрокапсулах составляет 1:1, 1:2 или 1:3.

Изобретение относится к способу получения микрокапсул ароматизатора «фейхоа». Указанный способ заключается в том, что ароматизатор «фейхоа» растворяют в бутаноле, диспергируют полученную смесь в альгинат натрия в изопропаноле в присутствии препарата Е472с при перемешивании, далее приливают бутанол и воду, полученную суспензию микрокапсул отфильтровывают и сушат.

Способ получения микрокапсул аминокислот в оболочке из альгината натрия может быть использован в фармакологии, фармацевтике, медицине. Согласно способу по изобретению аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию альгината натрия в бутаноле в присутствии препарата E472c при перемешивании 1000 об/сек.

Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул витамина А, С, D, Е или Q10, заключающийся в том, что витамин А, С, D, Е или Q10 добавляют в суспензию ксантановой камеди в бутаноле, при перемешивании 1300 об/с, после чего приливают ацетонитрил, отфильтровывают полученную суспензию и сушат, при определенных условиях.

Изобретение относится к способу получения нанокапсул антибиотиков. В качестве оболочки нанокапсул используется ксантановая камедь, в качестве ядра - антибиотик.
Изобретение относится к области инкапсуляции, в частности к способу получения микрокапсул танина в оболочке из альгината натрия. Согласно способу по изобретению танин суспензируют в бензоле и диспергируют полученную смесь в суспензию альгината натрия в бутаноле в присутствии препарата Е472с при перемешивании 1000 об/сек.
Изобретение относится к области нанотехнологии, в частности нанокапсулирования при получении нанокапсул аминогликозидных антибиотиков в оболочке из альгината натрия.

Изобретение относится к способу получения нанокапсул лозартана калия в ксантановой камеди. Указанный способ заключается в том, что лозартан калия растворяют в хлороформе и диспергируют полученную смесь в суспензию ксантановой камеди в бензоле в присутствии препарата Е472с при перемешивании, далее приливают ацетон и воду, полученную суспензию отфильтровывают и сушат, при этом соотношение оболочка/ядро в нанокапсулах составляет 3:1 или 1:5.
Наверх