Устройство для съемки сечений горных камерных выработок

Изобретение относится к приборам, используемым в горной промышленности для съемки сечения выработанного пространства. Устройство для съемки сечений горных камерных выработок состоит из пластины, лазерных дальномеров, закрепленных на пластине и соединенных между собой и с механизмом регулирования, а также трубы, расположенной выше центра тяжести пластины и навешанной на горизонтальную направляющую из троса. Пластина выполнена с проемом, расположенным по ее оси, при этом к трубе прикреплена круговая угломерная шкала, с расположенной в центре шпилькой, на которую надета опора, а торцы опоры закреплены в посадочных отверстиях пластины. При этом опора выполнена с возможностью поворота вокруг оси шпильки, а пластина - с возможностью поворота вокруг оси опоры, кроме того, к трубе прикреплен электронный уровень, соединенный электрическим проводом с механизмом регулирования. Техническим результатом изобретения является повышение точности съемки сечений горных камерных выработок, а также точности построения сечений на маркшейдерской документации. 3 з.п. ф-лы, 8 ил.

 

Изобретение относится к приборам, используемым в горной промышленности для съемки сечения выработанного пространства.

Известно устройство для съемки сечения выработанного пространства, состоящее из точечного источника света, расположенного на верхнем конце рейки, с помощью которой источник света последовательно обводится по контролируемому сечению (А.А. Трофимов и др. Фотограмметрический способ контроля поперечного сечения горных выработок больших размеров. / Сб. науч. тр. Передовые технологии и технико-экономическая политика освоения месторождений в XXI веке. - ГАЦМиЗ, Красноярск, 2000. - С. 67).

Однако данное устройство обладает достаточной точностью съемки сечений камерных выработок, так как инструментально не контролируется положение снимаемого сечения относительно продольной оси выработки.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является устройство для съемки сечений камерных выработок, состоящее из пластины, лазерных дальномеров, закрепленных на пластине и соединенных между собой и с механизмом регулирования электрическим проводом, а также трубы, навешанной на горизонтальную направляющую из троса с возможностью перемещения по ней при помощи шнура (патент РФ №2529658, МПК G01C 11/02, 2014 г.).

Недостатком данного устройства является недостаточная точность съемки сечений камерных выработок, обусловленная отклонением пластины с дальномерами от вертикали по отношению к оси выработки вследствие провисания направляющей из троса, а также при размещении направляющей не параллельно оси выработки. Это приводит к ошибкам при съемке сечений и переносе их на маркшейдерские документы.

Задачей изобретения является повышение точности съемки сечений горных камерных выработок.

Поставленная задача достигается тем, что устройство для съемки сечений горных камерных выработок, состоящее из пластины, лазерных дальномеров, закрепленных на пластине и соединенных между собой и с механизмом регулирования электрическим проводом, а также трубы, расположенной выше центра тяжести пластины и навешанной на горизонтальную направляющую из троса с возможностью перемещения по ней при помощи шнура, согласно изобретению, пластина выполнена с проемом, расположенным по ее оси, при этом к трубе прикреплена круговая угломерная шкала, с расположенной в центре шпилькой, на которую надета опора, а торцы опоры закреплены в посадочных отверстиях пластины, при этом опора выполнена с возможностью поворота вокруг оси шпильки, а пластина - с возможностью поворота вокруг оси опоры, кроме того, к трубе прикреплен электронный уровень, соединенный электрическим проводом с механизмом регулирования.

Посадочные отверстия пластины перпендикулярны ее оси. Опора снабжена ограничителями. Шпилька снабжена стопором.

Использование заявляемого изобретения повышает точность съемки сечений горных камерных выработок.

Это достигается следующим.

Наличие в пластине проема позволяет разместить в нем трубу, с присоединенными к трубе круговой шкалой и опорой, а также обеспечивает возможность поворота пластин в горизонтальной и вертикальной плоскостях.

Наличие в пластине посадочных отверстий, расположенных перпендикулярно оси пластины, обеспечивает присоединение трубы со шкалой и опорой к пластине путем размещения торцов опоры в посадочных отверстиях.

Положение проема по оси пластины обеспечивает вертикальность положения пластины под действием собственного веса, а также совпадение осей пластины и направляющей в вертикальной плоскости, что повышает точность съемки сечений выработки.

Наличие опоры, соединенной с пластиной и надетой на шпильку, с возможностью поворота опоры вокруг оси шпильки, позволяет изменять угол установки пластины, соединенной с опорой, в горизонтальной плоскости относительно оси выработки путем поворота опоры, а следовательно, и пластин вокруг оси шпильки. Этим обеспечивается расположение пластины перпендикулярно продольной оси выработки, что повышает точность съемки сечений выработки.

Соединение опоры с пластиной с возможностью поворота пластины вокруг оси опоры обеспечивает, при провисании направляющей из троса, вертикальность положения пластины под действием собственного веса пластины и помещенных на ней лазерных дальномеров. Измеряемые сечения выработки выполняются в вертикальной плоскости и параллельны друг другу, что повышает точность измерения сечений устройством и изображения сечений на маркшейдерских документах.

Наличие на опорах ограничителей обеспечивает соосность осей пластины, трубы и направляющей, что обеспечивает точность измерения сечений устройством.

По закрепленной на трубе круговой угломерной шкале осуществляется поворот пластин на известное значение угла отклонения оси направляющей от оси выработки. Это производится путем поворота пластины вокруг оси шпильки, помещенной в центре угломерной шкалы. При этом пластина устанавливается перпендикулярно к оси выработки в горизонтальной плоскости и фиксируется в этом положении стопором, что обеспечивает высокую точность съемки сечения выработки.

Наличие прикрепленного к трубе электронного уровня, соединенного электрическим проводом с механизмом регулирования, позволяет зафиксировать угол провисания направляющей из троса в вертикальной плоскости в месте съемки сечения выработки. По значению этого угла при построении сечений на маркшейдерских документах вычисляется положение точки пересечения осей дальномеров, от которой откладываются расстояния от дальномеров до контура выработки. Это обеспечивает высокую точность при построении сечений выработки на маркшейдерских документах.

В качестве лазерного дальномера можно использовать, например, лазерный дальномер Leica DISTO D210, предназначенный для измерения длины до 80 метров с точностью до 1,0 мм и обладающий встроенной памятью. В качестве электронного уровня можно использовать, например, уровень марки УЭЛ-30М REDTRACE, обладающий встроенной памятью.

В качестве механизма регулирования можно применить, например, кнопочный выключатель с нормально-разомкнутыми контактами.

Сущность изобретения поясняется чертежами.

На фиг. 1 показано расположение устройства в камере (пунктирными стрелками показано перемещение троса через камеру); на фиг. 2 показан общий вид собранного устройства; на фиг. 3 показано соединение трубы с пластиной посредством опоры, присоединение к трубе круговой угломерной шкалы, а также опоры к угломерной шкале посредством шпильки; на фиг. 4 приведен общий вид собранного устройства с торца; на фиг. 5 показано подвешивание электропровода на направляющую с помощью карабинов; на фиг. 6 приведена схема расчета угла поворота устройства перпендикулярно оси выработки; на фиг. 7 приведена схема работы устройства при съемке сечения камеры в вертикальной плоскости; на фиг. 8 показана схема графического построения сечения камеры.

Устройство содержит пластину 1, в которой выполнен проем 2 с посадочными отверстиями 3. В посадочные отверстия 3 помещены торцы опоры 4, имеющей ограничители 5, с возможностью поворота пластины 1 вокруг оси опоры 4. Опора 4 надета на шпильку 6, снабженную стопором 7, с возможностью поворота опоры 1 вокруг оси шпильки 6. Шпилька 6 расположена в центре круговой угломерной шкалы 8, закрепленной на трубе 9. Через трубу 9 пропущена направляющая 10 в виде стального троса. Также к трубе 9 прикреплен электронный уровень 11, соединенный электрическим проводом 12 с механизмом регулирования 13, а также шнур 14.

На пластине 1 радиально закреплены неподвижно лазерные дальномеры 15. Электрический провод 12 подвешен на направляющую 10 с помощью карабинов 16 и соединен с ними зажимами 17.

Значение азимутального угла оси выработки 18 (Ао) устанавливается по проектной документации, а значение азимутального угла положения направляющей 10 (Ан) устройства устанавливается маркшейдерской съемкой с использованием известных приборов, например, теодолита. Работа устройства осуществляется следующим образом. Из выработки, например из подэтажной буровой, через камеру с помощью, например, спортивного арбалета пробрасывается линь - тонкая прочная веревка. Затем к линю прикрепляется трос-направляющая 10 и шнур 14 и, с помощью линя, протаскиваются через камеру в противоположную подэтажную выработку. Концы троса 10 закрепляют к анкерам, установленным в кровле, или борту выработки, и трос 10 натягивают с помощью, например, винтовых струбцин. Перед закреплением к анкерам трос 10 пропускают через трубу 9, на которой закреплена круговая угломерная шкала 8, а также посредством шпильки 6 со стопором 7 опора 4. К опоре 4 присоединяется пластина 1, для чего труба 9 размещается в проеме 2 пластины 1, а концы опоры 4 вставляются в посадочные отверстия 3 в пластине 1 и фиксируются. Ограничители 5, расположенные на опоре 4, препятствуют перемещению пластины по опоре 4, тем самым обеспечивается совпадение осей пластины 1, трубы 9 и направляющей 10. На пластине 1 закрепляют лазерные дальномеры 15, а к трубе 9 присоединяют электронный уровень 11, которые соединяют с механизмом регулирования 13 посредством электрического провода 12. При этом электрический провод 12 подвешивают на направляющую 10 с помощью карабинов 16 и фиксируют на них зажимами 17. К трубе 9 присоединяют шнур 14.

Затем устройство ориентируется относительно оси 18 выработки (камеры) таким образом, чтобы пластина была перпендикулярна этой оси. Для этого с использованием известных приборов, например теодолита, устанавливается значение азимутального угла положения направляющей 10 в выработке (Ан). Значение азимутального угла оси камеры (Ао) устанавливается по проектной маркшейдерской документации. Далее рассчитывается численное угловое значение, по которому необходимо установить пластину 1 по круговой угломерной шкале 8 по формуле

где β - угол поворота платины; Ан - азимутальный угол положения направляющей; Ао - азимутальный угол оси камеры.

После этого пластину 1 с опорой 4 поворачивают вокруг шпильки 6, пока ось опоры 4 не установится по круговой угломерной шкале 8 на численное значение, равное значению (β). Устройство в этом положении фиксируется стопором 7. Пластины установлены перпендикулярно относительно оси 18 выработки (камеры).

Определяется также численное значение высотной отметки оси направляющей 10 в исходной точке, от которой начинается съемка сечений выработки. Данное значение используется, в дальнейшем, при построении сечений камеры на маркшейдерских документах.

Устройство готово к работе.

Далее натяжением шнура 14 перемещают пластину 1 с трубой 9 по направляющей 10 в камеру на определенную длину. Затем посредством механизма регулирования 113 через электрический провод 12 активируют работу лазерных дальномеров 15 и электронного уровня 11. Значения расстояния до контура камеры автоматически фиксируются в памяти каждого лазерного дальномера, а угол наклона направляющей 10 - в памяти уровня. После этого пластину 1 перемещают с помощью шнура 14 далее по направляющей 10 и осуществляют съемку следующего сечения камеры. Если количество измеряемых сечений превышает объем памяти дальномеров и уровня, то съемку осуществляют в несколько этапов. При этом после израсходования лимита памяти дальномеров и уровня устройство, посредством натягивания электрического провода 12, возвращают в выработку, из которой начиналась съемка сечений камеры. Записывают показания с дальномеров 15 и уровня 11, стирают эти значения из ячеек памяти и возвращают устройство натяжением шнура 14 в исходную точку на направляющей 10 и проводят далее съемку сечений камеры до следующего заполнения объема памяти дальномеров и уровня.

После съемки всех сечений камеры отстраивают контуры сечений камеры в выбранном масштабе на маркшейдерских документах. Для этого по ранее выполненным натурным маркшейдерским замерам намечают по каждому отстраиваемому сечению положение центра оси направляющей 10 относительно оси камеры 18 с учетом азимутальных углов положения направляющей и оси выработки, а также значений углов наклона направляющей, замеренных электронным уровнем. Затем от осевой точки направляющей по вертикали и горизонтали устанавливают на чертеже положение точки пересечения осей дальномеров 15. От данной точки по известному положению дальномеров на пластине размечаются углы направления съемки каждым дальномером, например, от вертикальной оси пластины. На каждой линии направления съемки откладывается измеренное расстояние от соответствующего дальномера до контура камеры. При этом учитывается известная длина от каждого дальномера до точки пересечения осей дальномеров на пластине.

Также при обработке результатов измерений можно использовать компьютерные программы для построения сечений камеры и получать, кроме плоских изображений, объемную фигуру камеры.

Параметры устройства устанавливаются экспериментально: размеры пластины, диаметр троса, количество устанавливаемых лазерных дальномеров. Также экспериментально определяется число снимаемых сечений камеры.

Использование заявляемого изобретения повышает точность съемки сечений горных камерных выработок, а также точность построения сечений на маркшейдерской документации.

1. Устройство для съемки сечений горных камерных выработок, состоящее из пластины, лазерных дальномеров, закрепленных на пластине и соединенных между собой и с механизмом регулирования электрическим проводом, а также трубы, расположенной выше центра тяжести пластины и навешанной на горизонтальную направляющую из троса с возможностью перемещения по ней при помощи шнура, отличающееся тем, что пластина выполнена с проемом, расположенным по ее оси, при этом к трубе прикреплена круговая угломерная шкала, с расположенной в центре шпилькой, на которую надета опора, а торцы опоры закреплены в посадочных отверстиях пластины, при этом опора выполнена с возможностью поворота вокруг оси шпильки, а пластина - с возможностью поворота вокруг оси опоры, кроме того, к трубе прикреплен электронный уровень, соединенный электрическим проводом с механизмом регулирования.

2. Устройство по п. 1, отличающееся тем, что посадочные отверстия пластины перпендикулярны ее оси.

3. Устройство по п. 1, отличающееся тем, что опора снабжена ограничителями.

4. Устройство по п. 1, отличающееся тем, что шпилька снабжена стопором.



 

Похожие патенты:

Изобретение относится к способу и системе создания бесшовной фотокарты области топографической съемки. Изображения захватываются из устройств формирования обзорных и частичных изображений с различной степенью избыточности.

Изобретение относится к лесному хозяйству и может быть использовано при оценке динамики глобальных климатических изменений в Арктике. Согласно способу проводят спектрометрические измерения в переходной зоне 69°…70° с.ш., содержащей тестовые участки в диапазоне 0,55…0,68 мкм и 0,73…1,1 мкм, а также синхронные радиометрические измерения в диапазоне СВЧ на длине волны ~30 см.

Изобретение относится к приборам, используемым в горной промышленности для съемки сечения выработанного пространства. Техническим результатом изобретения является повышение точности измерений.

Фотоприемник предназначен для получения единых цифровых фотоизображений мозаичного типа. Фотоприемник включает оптическую систему, содержащую, по меньшей мере, два объектива, и расположенный на ее фокальной поверхности фоточувствительный прибор в виде соответствующих числу объективов групп цифровых фоточувствительных матриц.

Способ включает фотографирование поверхности несколькими оптико-электронными фотоприемниками с частичным перекрытием получаемых субкадров, образующих кадр центральной проекции в виде полосы, ориентированной длинной стороной поперек направления движения носителя, получение кадров по мере движения носителя с их частичным перекрытием между собой и последующее объединение кадров в единое изображение.

Изобретение относится к диагностике состояния контактной сети. .

Изобретение относится к области определения положения объектов при выполнении съемки как в оптическом диапазоне, так и в произвольном диапазоне электромагнитного излучения и может использоваться при создании фотосъемочной и радиолокационной аппаратуры и при фотограмметрической обработке результатов съемки.

Изобретение относится к оптическому приборостроению, а именно к аэрофотосъемке. .

Изобретение относится к способу устранения геометрических искажений изображений, получаемых щелевым или трассовым сенсором дистанционного зондирования, связанных со сложной траекторией движения носителя сенсора относительно исследуемой поверхности наблюдаемого объекта, например при съемке поверхности земли с вертолета.

Изобретение относится к области локального инженерно-геологического и геоэкологического аэромониторинга. .

Изобретение относится к области приборостроения и может найти применение в системах аэромониторинга, обнаружения и оценки численности и размерно-возрастного состава популяции тюленей. Техническим результат - повышение оперативности и достоверности результатов аэромониторинга. Для этого в системе аэромониторинга, содержащей бортовой блок устройств фото-видеосъемки и бортовой блок управления полетом, выполненный с возможностью формирования сигналов управления механизмами подвеса устройств фото-видеосъемки, в состав бортовой аппаратуры, размещенной на беспилотном летательном аппарате (БЛА) судового базирования, дополнительно введен бортовой блок связи, соединенный с бортовым блоком управления полетом и бортовым блоком устройств фото-видеосъемки и взаимодействующий по радиоканалу с судовым блоком связи, входящим в состав судовой аппаратуры управления полетом и обработки результатов мониторинга, которая содержит пульт управления, соединенный с вычислительно-управляющим блоком, блок навигации и расчета полетного задания (ПЗ), блок формирования команд управления БЛА, блок внешних данных, соединенный с входом данных метеоусловий и данных местоположения судна вычислительно-управляющего блока, блок форматирования, обработки и распознавания объектов, вход которого соединен с выходом данных фото-видеосъемки судового блока связи, а выход соединен с первым входом блока агрегации информации о распознаваемых объектах, второй вход которого соединен с выходом телеметрических данных вычислительно-управляющего блока, а выход подключен к входу блока формирования базы данных и отчетов, и к соответствующему входу вычислительно-управляющего блока, при этом вход загрузки ПЗ блока навигации и расчета ПЗ соединен с соответствующим выходом вычислительно-управляющего блока, а выход соединен с входом блока анализа ПЗ блока формирования команд управления БЛА, в состав которого входят также вычислитель управляющих команд и блок анализа выполнения ПЗ, вход которого соединен с выходом данных телеметрии судового блока связи, а выход соединен с входами данных телеметрии блока навигации и расчета ПЗ и вычислительно-управляющего блока, выход вычислителя управляющих команд подключен к входу судового блока связи, а его вход соединен со вторым выходом блока анализа ПЗ, первый выход которого соединен с соответствующим входом вычислительно-управляющего блока. 1 ил.

Изобретение относится к оптико-электронному приборостроению, а именно к аэрофотосъемке, и может быть использовано при создании малогабаритных панорамных аэрофотоаппаратов. Заявленный аэрофотоаппарат содержит по ходу луча в корпусе аэрофотоаппарата зеркальную систему, под углом к ее оптической оси установлен фокусирующий объектив, а в дополнительном корпусе - приемник оптического излучения, фотоприемная зона которого совмещена с плоскостью наилучшего изображения фокусирующего объектива. Зеркальная система установлена с возможностью поворота вокруг оптической оси фокусирующего объектива с помощью привода зеркальной системы. Дополнительный корпус установлен с возможностью смещения относительно центра масс с помощью приводов, все приводы снабжены моментными двигателями, вход каждого моментного двигателя связан с выходами блока системы управления приводами, на оси ротора каждого моментного двигателя закреплен соответствующий одноосный измеритель угловых скоростей, выходы которых связаны с соответствующими входами блока системы управления приводами. Зеркальная система выполнена в виде зеркальной афокальной насадки, оптическая ось которой перпендикулярна поверхности съемки, для чего зеркальная система жестко закреплена в подвижном корпусе, а подвижный корпус установлен с возможностью поворота с помощью привода зеркальной системы. Фокусирующий объектив установлен в дополнительном корпусе с оптической связью между зеркальной афокальной насадкой. Дополнительный корпус жестко закреплен в корпусе аэрофотоаппарата, а фокусирующий объектив выполнен двухзеркальным. В плоскости наилучшего изображения фокусирующего объектива добавлен второй приемник излучения. Переключение между приемниками излучения осуществлено за счет поворота вокруг оптической оси поворотного наклонного зеркала, расположенного между фокусирующим объективом и приемниками излучения. А корпус аэрофотоаппарата выполнен с возможностью поворота относительно центра масс аэрофотоаппарата за счет привода компенсации изменения тангажа и привода компенсации сдвига изображения, блок системы управления приводами выполнен в виде блока обработки навигационной информации. Технический результат - возможность производить высокоскоростную широкозахватную и высокоразрешающую узкозахватную съемку, возможность производить съемку на больших скоростях и маленьких высотах полета носителя аэрофотоаппарата, уменьшение длины аэрофотоаппарата и повышение качества получаемых снимков. 2 з.п. ф-лы, 1 ил.

Изобретение относится к способам коррекции изображений, связанных со сложной траекторией движения носителя сенсора относительно исследуемой поверхности, например, при авиасъемке. Способ получения изображения дистанционного зондирования включает в себя получение последовательности кадров щелевого сканирующего сенсора и получение референсного снимка подстилающей поверхности кадровым сенсором. Полученные щелевым сканирующим сенсором данные записывают на запоминающее устройство. Изображение, сформированное из этих данных путем их пространственной развертки по направлению съемки, сопоставляют с геопривязанным референсным снимком и находят пары опорных точек, соответствующих одним и тем же объектам подстилающей поверхности. Технический результат – устранение геометрических искажений изображений дистанционного зондирования, полученных щелевым сенсором, с одновременным их приведением к универсальной координатной сетке, позволяющей использовать их в ГИС-приложениях. 5 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам для получения изображений, специально предназначенным для фотографической съемки местности. Заявленный способ аэрофотосъемки наземных объектов в условиях недостаточной освещенности (ночью) с помощью беспилотных воздушных судов предусматривает использование беспилотного воздушного комплекса (БВК), включающего в себя два совершающих совместный полет беспилотных воздушных судна (БВС) с разнородными синхронно работающими нагрузками: БВС-1 - с цифровой фотокамерой; БВС-2 - с фотовспышкой. Технический результат заключается в обеспечении сохранения продолжительности потенциально полезного полетного времени БВС с цифровой фотокамерой (БВС-1), увеличении высоты полета, с которой проводится фотосъемка, в повышении достоверности дешифрирования фотоснимков за счет использования демаскирующих признаков объектов - теней объектов с камуфлированной раскраской (при условии совпадения в видимом диапазоне величин альбедо объектов и подстилающей поверхности), в избежании возможности возникновения засветки приемника излучения (матрицы) цифровой фотокамеры отраженным в обратном направлении излучением фотовспышки, вследствие его рассеяния на аэрозолях и гидрометеорах, в обеспечении возможности применении его как для плановой, так и перспективной аэрофотосъемки. 5 ил.
Наверх