Способ освещения подводной обстановки



Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки
Способ освещения подводной обстановки

Владельцы патента RU 2578807:

Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" (ФГУП "Крыловский государственный научный центр") (RU)

Изобретение относится к способам наблюдения за подводной средой и поиска подводных объектов. Для освещения подводной обстановки осуществляют поиск подводных объектов автономным необитаемым подводным аппаратом. При движении подводного аппарата по заданному маршруту перед пуском обнаруживают подводный объект и сообщают об обнаружении его на надводный корабль или береговой пункт. Определяют упрежденную или расчетную точку расположения необитаемого подводного аппарата и рассчитывают данные для выполнения стрельбы одним или двумя радиогидроакустическими реактивными буями. Уточняют географическое положение необитаемого подводного аппарата по известным координатам надводного корабля или берегового пункта и радиогидроакустического буя реактивного и передают на необитаемый подводный аппарат по действующей линии связи необходимые команды дистанционного управления. Достигается систематическое уточнение местоположения и дистанционного управления необитаемого подводного аппарата. 1 з.п. ф-лы, 2 табл., 8 ил.

 

Изобретение относится к способам наблюдения за подводной средой (освещения подводной обстановки) и поиска подводных объектов автономными необитаемыми подводными аппаратами (НПА), удаленными от надводного корабля (НК) или берегового поста (БП) с использованием радиогидроакустических буев реактивных (РГБР).

Известны способы поиска подводных объектов поисковыми (многоцелевыми) НПА, управляемыми автономно или дистанционно с надводных кораблей (ПК) [1], [2], [3].

При дистанционном управлении НПА с НК для поиска подводных объектов (мин) [1] обычно используют кабельную линию связи, которая ограничивает дальность действия НПА. Автономное управление НПА позволяет существенно увеличить район его действий [2]. Однако увеличение дальности действия НПА оказывает существенное влияние на точность его движения по заданной траектории. В современных системах управления НПА применяют инерциальные навигационные системы (ИНС) [4]. Точность позиционирования места НПА при использовании ИНС снижается пропорционально времени его движения и может достигать сотен метров при многочасовой работе. Для повышения точности географического позиционирования НПА совместно с ИНС применяют различные способы, в том числе используют космические (КНС), радионавигационные (РНС), гидроакустические навигационные системы или устанавливают в районе действий НПА специальные маяки [5, с. 75].

Таким образом, поиск подводных объектов автономными поисковыми (многоцелевыми) НПА при использовании только ИНС сопровождается постепенным снижением точности удержания ими заданной (программной) траектории, а значит, и точности информации по обнаруженным ими подводным объектам.

Известно устройство - радиогидроакустический буй (РГБ), содержащий корпус, батарею, парашютную систему, передатчик, приемник с гидрофонами, запоминающее устройство, кабель-трос, антенну, механизм автоотцепа, блок управления, часовой механизм [6]. РГБ состоят на вооружении Военно-морских сил многих государств уже долгое время и применяются авиацией для наблюдения за подводной средой [7].

Известно устройство - радиогидроакустический буй реактивный (РГБР), включающий корпус, батарею, парашютную систему, передатчик, приемник с гидрофонами, запоминающее устройство, кабель-трос, антенну, механизм автоотцепа, блок управления, часовой механизм, ракетный двигатель, стабилизатор, механизм отделения, устройство ввода данных, датчик приводнения, поплавок, газогенератор [8]. РГБР предназначен к применению с надводных кораблей ВМФ путем выстреливания из пусковой установки (ПУ), в качестве которой может использоваться ПУ реактивной системы залпового огня (РСЗО). Решение задачи стрельбы предусматривается вычислительным устройством и приборами управления стрельбой (ПУС).

Известен способ применения РГБР, при котором определяют координаты опорной точки (точки потери контакта с подводным объектом), относительно которой требуется расположить необходимое число РГБР (по окружности или в секторе предполагаемых курсов движения подводного объекта), посредством вычислительного устройства решают задачи по определению требуемого числа РГБР в залпе и координат точек их приводнения, заряжают ПУ необходимым числом РГБР, посредством ПУС решают задачи по наведению ПУ для выполнения стрельбы, наводят ПУ для стрельбы РГБР в расчетные точки в соответствии с очередностью пуска, после чего выстреливают РГБР из ПУ, включают РГБР после их приводнения и принимают от них сигналы о подводной обстановке [9].

Данный способ целесообразно использовать для поиска подводной цели, когда известно хотя бы приблизительное ее местонахождение или маршрут движения, так как иначе выставленные буи будут использованы безрезультатно.

Целью изобретения является разработка способа освещения подводной обстановки и поиска подводных объектов автономным НПА, удаленным от НК или БП, позволяющего контролировать точность местоположения НПА, осуществлять непрерывное наблюдение за обнаруженными НПА подводными объектами, а при необходимости и дистанционно управлять его работой.

Данная цель достигается благодаря тому, что предлагается способ освещения подводной обстановки, при котором осуществляют поиск подводных объектов автономным НПА, оснащенным неконтактной системой обнаружения (НСО) подводных объектов, при его движении по заданному маршруту, установленному в его бортовую ИНС перед пуском, обнаруживают подводный объект, сообщают об обнаружении подводного объекта на НК или БП, классифицируют обнаруженный подводный объект, отличающийся тем, что рассчитывают время, через которое точность удержания НПА заданного маршрута движения достигнет минимально допустимого значения, определяют упрежденную (расчетную) точку расположения НПА через это время, по истечении рассчитанного времени на НК или БП посредством вычислительного устройства рассчитывают данные для выполнения стрельбы одним РГБР при работе НСО НПА в активном режиме или двумя РГБР при работе НСО НПА в пассивном режиме в упрежденную (расчетную) точку расположения НПА, наводят пусковую установку и выполняют стрельбу одним или двумя РГБР, после приводнения РГБР включают его (их) НСО подводных объектов, уточняют географическое положение НПА по известным координатам НК (БП) и РГБР путем регистрации НСО НПА пеленга и дистанции на приводнившийся РГБР при работе НСО НПА в активном режиме или путем регистрации пеленгов на приводнившиеся РГБР при работе НСО НПА в пассивном режиме и передают эти данные на НК (БП) по действующей линии связи между НПА, РГБР и НК (БП), передают на НПА по действующей линии связи необходимые команды дистанционного управления.

В вариантном исполнении предлагается способ освещения подводной обстановки, отличающийся от рассмотренного выше тем, что в случае, когда НПА не в состоянии преследовать обнаруженный им подводный объект и поддерживать с ним контакт, на НК (БП) посредством вычислительного устройства рассчитывают параметры заградительного (перехватывающего) барьера РГБР и данные стрельбы для них, с учетом действительной скорости подводного объекта, наводят пусковую установку и выполняют стрельбу РГБР в расчетные точки барьера, после приводнения РГБР включают их НСО, обнаруживают подводный объект, передают информацию о нем на НК (БП) по действующей линии связи, уточняют координаты и характер движения подводного объекта.

Техническое осуществление способа освещения подводной обстановки поясняется чертежами, на которых:

Фиг. 1 - схема поиска подводной цели НПА;

Фиг. 2 - схема действия НПА при обнаружении цели;

Фиг. 3 - схема уточнения места НПА (цели) с применением РГБР;

Фиг. 4 - схема постановки барьера РГБР;

Фиг. 5 - схема кругового барьера РГБР;

Фиг. 6 - интервал между соседними буями барьера;

Фиг. 7 - пример расчетного кругового барьера РГБР;

Фиг. 8 - схема постановки секторного барьера РГБР.

Сущность предлагаемого способа освещения подводной обстановки с применением автономных НПА и его техническое осуществление заключаются в следующем.

На Фиг. 1 НПА (1) производит поиск подводной цели (2) в некотором районе (3) в соответствии с установленной в ИНС программой движения (4) и включенной НСО цели (5). Посредством линии связи (6) осуществляют передачу/прием информации с НПА на НК (БП) (7).

Фиг. 2 иллюстрирует схему действия НПА (1) при обнаружении цели (2) в зоне действия своей НСО (5), об обнаружении цели НПА доносит на корабль (БП) (7) посредством действующей линии связи (6) (радиотехнической, звукоподводной или светосигнальной).

На Фиг. 3 показана схема уточнения места НПА, когда ошибки в его местонахождении на маршруте (4) превысили допустимые значения в результате длительности работы ИНС. В этом случае с НК (БП) выстреливают одиночный РГБР (8) с дальностью действия буя dб (9) в расчетную (упрежденную) точку местонахождения НПА на маршруте (4) (на схеме показан случай использования НСО НПА в активном режиме). Место приводнения РГБР (пеленг и дистанцию) регистрируют НСО НПА (1), устанавливают контакт НПА с РГБР по линии связи (10) и передают эту информацию на НК (БП) по линии связи РГБР-НК (БП) (11), где уточняют место НПА по известным координатам НК (БП) и РГБР. По линиям связи (10) и (11) осуществляют также передачу данных об обнаруженном НПА подводном объекте и команд дистанционного управления НПА.

На Фиг. 4 изображена схема постановки барьера РГБР, когда НПА не в состоянии преследовать обнаруженную цель (2) и поддерживать с ней контакт. В этом случае с НК (БП) выстреливают несколько РГБР (8) в качестве заградительного (перехватывающего) барьера (12). При подходе подводной цели на дальность действия буя dб (9) он срабатывает и передает сигнал об обнаружении цели по линии связи (11) на НК (БП), где классифицируют цель и уточняют характер ее движения.

На Фиг. 5 изображена схема постановки кругового барьера РГБР [9].

В вычислительном устройстве на НК (БП) рассчитывают радиус окружности кругового барьера по формуле

где Vц - скорость цели, м/с; t - время, необходимое для выставления буев, с; dб - дальность действия буя, м. В предлагаемом способе в отличие от способа применения РГБР [9] скорость цели Vц принимается равной текущей скорости ее движения, наблюдаемой на НПА.

Время t представляет собой сумму

где tреш - время на принятие решения, с; tподг - время на подготовку к выстреливанию РГБР, с; tпол - время полета РГБР, с; tвкл - время включения РГБР в работу после приводнения, с.

Интервал между двумя соседними буями iб (Фиг. 6) рассчитывают по формуле

Здесь k - коэффициент перекрытия зон наблюдения соседних буев.

Число буев на окружности будет равно

Число nб округляют в большую сторону.

Угол α между направлениями на два соседних буя из центра окружности (Фиг. 5) рассчитывают по формуле

Уточняют интервал между двумя соседними буями iб и коэффициент k

Координаты каждого буя (хi; zi) (Фиг. 5) определяют по формулам

Здесь xц, zц - координаты цели (2); αi - угол между направлением (2)-(7) («цель - корабль», ось «-.x») и направлением на i-й буй; α - угол между направлениями на два соседних буя из центра окружности, совпадающей с центром цели (2); n - номер буя.

Пример 1. Расчет кругового барьера РГБР (Фиг. 7).

Исходные данные:

Vц=10 м/с; tреш=60 с; tподг=30 с; tпол=60 с; tвкл=30 с; dб=2000 м; k=0,9.

Решение задачи дает следующие результаты:

t=180 с; Rб=3800 м; nб=7; α=51,4°; iб=3600 м; k=0,85.

На Фиг. 8 показана схема постановки сектора РГБР.

Сектор РГБР применяют при известном диапазоне возможных курсов подводного объекта β. Для этого по формуле (1) рассчитывают радиус сектора (Фиг. 8).

По формуле (2) рассчитывают время t постановки буев.

Интервал iб между двумя соседними буями рассчитывают по формуле (3).

Число буев в секторе будет равно

Число nб округляют в большую сторону.

Угол α между направлениями на два соседних буя из точки (2) рассчитывают по следующей формуле (фиг. 8):

Уточняют интервал между двумя соседними буями iб и коэффициент k:

Координаты каждого буя (xi; zi) рассчитывают в вычислительном устройстве в зависимости от направления генерального курса цели.

Пример 2. Расчет сектора РГБР (фиг. 8).

Исходные данные: диапазон возможных курсов подводной цели составляет угол β=120°, остальные данные соответствуют примеру 1.

Решение задачи дает следующие результаты:

t=180 c; Rб=3800 м; nб=4; α=40°; iб=2653 м; k=0,66.

О соответствии предложенного технического решения условию патентоспособности «новизна» свидетельствуют сведения, приведенные в Таблице 1 «Соответствие предложенного способа условию патентоспособности «новизна».

Предложенный способ соответствует условию патентоспособности «новизна», так как ни один из отличительных признаков в известных способах не обнаружен.

Достижение положительного эффекта при осуществлении предложенного способа подтверждается сведениями, приведенными в Таблице 2 «Ожидаемые эксплуатационные свойства предложенного технического решения».

Таким образом, использование НПА совместно с РГБР позволяет осуществлять систематическое уточнение местоположения НПА, вести непрерывное наблюдение за обнаруженными НПА подводными объектами, а также дистанционно управлять работой НПА.

Источники информации

1. Попов В.А., Маркевич С.Г. Развитие отечественных гидроакустических средств поиска мин: ретроспектива и перспектива. // МРЭ, №4, 2004.

2. Сиденко К.С., Илларионов Г.Ю. Подводная лодка и автономный необитаемый подводный аппарат. // МРЭ, №2, 2008.

3. Многоцелевой автономный подводный аппарат. // ВМС и кораблестроение. Дайджест зарубежной прессы. Выпуск 70-71, СПб, 2014. С. 59.

4. Инерциальная навигационная система. // ВМС и кораблестроение. Дайджест зарубежной прессы. Выпуск 70-71, СПб, 2014. С. 108-109.

5. Новиков А.В. Подводные диверсионные силы и средства ведущих морских держав и средства борьбы с ними. - СПб, ВМИ, 2009. 138 с.

6. Техническое описание радиогидроакустического буя РГБ-Н-СТ. - М.: Воениздат, 1974.

7. Сурнин В.В., Пелевин Ю.Н., Чулков В.Л. Противолодочные средства иностранных флотов. - М.: Воениздат, 1991. 128 с.

8. Устройство радиогидроакустический буй реактивный. Патент на изобретение RU 2400392 C1, 25.05.2010. - М.: ФИПС, 2010. Бюл. №27.

9. Способ применения радиогидроакустических буев реактивных (варианты). Заявка на изобретение №2011145915 от 14.10.2011. - М.: ФИПС, 2013. Бюл. №14.

1. Способ освещения подводной обстановки, при котором осуществляют поиск подводных объектов автономным необитаемым подводным аппаратом, оснащенным неконтактной системой обнаружения подводных объектов, при его движении по заданному маршруту, установленному в его бортовую инерциальную навигационную систему перед пуском, обнаруживают подводный объект, сообщают об обнаружении подводного объекта на надводный корабль или береговой пункт, классифицируют обнаруженный подводный объект, отличающийся тем, что рассчитывают время, через которое точность удержания необитаемого подводного аппарата на заданном маршруте движения достигнет минимально допустимого значения, и определяют упрежденную или расчетную точку расположения необитаемого подводного аппарата через это время, по истечении рассчитанного времени на надводном корабле или береговом пункте посредством вычислительного устройства рассчитывают данные для выполнения стрельбы одним радиогидроакустическим буем реактивным при работе неконтактной системы обнаружения необитаемого подводного аппарата в активном режиме или двумя радиогидроакустическими буями реактивными при работе неконтактной системы обнаружения необитаемого подводного аппарата в пассивном режиме в упрежденную или расчетную точку расположения необитаемого подводного аппарата, наводят пусковую установку и выполняют стрельбу одним или двумя радиогидроакустическими буями реактивными, после приводнения буя или буев включают его или их неконтактную систему обнаружения подводных объектов, уточняют географическое положение необитаемого подводного аппарата по известным координатам надводного корабля или берегового пункта и радиогидроакустического буя реактивного путем регистрации неконтактной системой обнаружения необитаемого подводного аппарата пеленга и дистанции на приводнившийся радиогидроакустический буй реактивный при работе неконтактной системы обнаружения необитаемого подводного аппарата в активном режиме или путем регистрации пеленгов на приводнившиеся радиогидроакустические буи реактивные при работе неконтактной системы обнаружения необитаемого подводного аппарата в пассивном режиме и передают эти данные на надводный корабль или береговой пункт по действующей линии связи между необитаемым подводным аппаратом, радиогидроакустическим буем реактивным и надводным кораблем или береговым пунктом, передают на необитаемый подводный аппарат по действующей линии связи необходимые команды дистанционного управления.

2. Способ освещения подводной обстановки по п. 1, отличающийся тем, что в случае, когда необитаемый подводный аппарат не в состоянии преследовать обнаруженный им подводный объект и поддерживать с ним контакт, на надводном корабле или береговом пункте посредством вычислительного устройства рассчитывают параметры заградительного или перехватывающего барьера радиогидроакустических буев реактивных и данные стрельбы для них, с учетом действительной скорости подводного объекта наводят пусковую установку и выполняют стрельбу радиогидроакустическими буями реактивными в расчетные точки барьера, после приводнения радиогидроакустических буев реактивных включают их неконтактные системы обнаружения, обнаруживают подводный объект, передают информацию о нем на надводный корабль или береговой пункт по действующей линии связи, уточняют координаты и характер движения подводного объекта.



 

Похожие патенты:

Изобретение относится к способам применения морских мин. Способ применения мины заключается в том, что в противодесантном минном заграждении применяют реактивную донную противодесантную мину, для чего производят расчет требуемого числа мин и их координат.
Изобретение относится к способам постановки мин надводным кораблем. Способ постановки мин надводным кораблем заключается в том, что применяют сборный минный носитель, представляющий собой контейнер, который помещают на плавучее средство (баржу), которое устанавливают на отделяемую колесную платформу, оборудованную сцепным устройством, минные партии заблаговременно загружают в контейнер и закрепляют их на палубе, производят окончательную подготовку мин к постановке, хранят сборный минный носитель, по команде минные партии транспортируют в сборный минный носитель и автомобилем-тягачом в назначенное место на берег, оборудованный для его спуска в воду, где с корабля (судна) заводят на плавучее средство носителя буксирный трос и начинают буксировку плавучего средства, с погружением его в воду отделяют колесную платформу и буксируют плавучее средство в район постановки мин, где в определенной последовательности освобождают мины от креплений в контейнере и производят их скатывание (сброс) в воду, для точной регистрации координат каждой поставленной мины используют систему географического позиционирования.

Изобретение относится к устройствам радиоэлектронного подавления. Надувной отражатель оснащается поплавком с расположенной в нем системой телеуправления и включает надувную оболочку, трехгранный уголковый радиоотражатель, устройство для наполнения надувной оболочки сжатым газом, механизм отделения с замедлителем, парашют, датчик приводнения, газогенератор.

Изобретение относится к способам наблюдения за подводной средой. Способ применения радиогидроакустических буев реактивных (РГБР) с надводных кораблей для наблюдения за подводной обстановкой, с выставлением буев по окружности, заключается в том, что определяют координаты центра окружности, на счетно-решающем приборе (СРП) радиус окружности, требуемое число буев и координаты точек их местонахождения, заряжают пусковую установку (ПУ) необходимым числом РГБР, решают на приборах управления стрельбой задачи по наведению ПУ для выполнения стрельбы, наводят ПУ для стрельбы в первую точку, подают питание на пиропатроны запуска ракетного двигателя РГБР, выстреливают первый РГБР, наводят ПУ и стреляют РГБР в последующие точки, применяют сигналы от буев после их приводнения и начала работы.

Изобретение относится к устройствам радиоэлектронной борьбы. Способ использования ложных морских целей включает использование надувного уголкового отражателя и дрейфующего и самоходного имитаторов подводной лодки.

Изобретение относится к области морской техники и может быть использовано в качестве устройства первичного гидроакустического наблюдения за подводной сигнально-помеховой обстановкой в системах, предназначенных для защиты акваторий от несанкционированного проникновения малошумных подводных объектов в районах охраняемых техногенных объектов (буровые вышки, приливные станции, морские станции экологического мониторинга, морские рубежи и т.д.).

Изобретение относится к подводному судостроению и касается носовых оконечностей корпуса, надстроек и боевой рубки подводной лодки. Устройство повышения скорости подводной лодки состоит из цилиндрического корпуса подводной лодки с радиусом поперечного сечения RЦ носовой оконечности корпуса с конформно-покровными антеннами, из боевой рубки.

Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров. Предложено: устройство для разрушения ледяного покрова, состоящее из подводного судна, снабженного якорем, диаметр раскрытия лап которого должен быть больше длины рубки, обеспечивающим при помощи троса прикрепление судна ко льду, и балластными цистернами, заполнение которых забортной водой обеспечивает возникновение отрицательной силы плавучести, достаточной для разрушения ледяного покрова заданной толщины.

Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров при всплытии. Предложен способ разрушения ледяного покрова подводным судном, заключающийся в создании разрушающей ледяной покров нагрузки, которую обеспечивают путем заполнения балластных цистерн забортной водой, вращения гребных винтов и предварительного прикрепления подводного судна к ледяному покрову при помощи якоря и троса.

Изобретение относится к подводному кораблестроению и может быть использовано преимущественно при строительстве атомных подводных лодок. Подводный авианосец содержит соединённые параллельно между собой три модуля, в том числе два двигательных модуля с гребными валами.
Изобретение относится к телеуправляемым подводным робототехническим системам, обеспечивающим высокоточное обследование, фотовидеосъемку и профилирование подводных протяженных поверхностей, обследование зон обледенения корпусов судов и подводных конструкций.

Изобретение относится к области кораблестроения и касается конструкции подводной лодки и ее эксплуатации в ледовых условиях. Предложена подводная лодка, которая имеет направленное вверх буровое устройство (12, 12′), при этом буровое устройство (12, 12′) расположено в прочном корпусе (4) подводной лодки и имеет бур (14, 14′), выдвигаемый из расположенного на верхней палубе отверстия (10) прочного корпуса (4), буровая головка (42, 42′) бура (14, 14′) образует закрывающее тело, закрывающее отверстие (10) прочного корпуса (4).

Изобретение относится к подводному судостроению, в частности к конструкции спуско-подъемных устройств для подводных транспортных средств, и может быть использовано для спуска на дно и подъёма грузов со дна моря.

Изобретение относится к области судостроения, а именно к обитаемым подводным аппаратам. Предложен многокорпусный глубоководный обитаемый аппарат, являющийся универсальной интегрированной системой, который состоит из нескольких (например, трех) корпусов, расположенных, например, в ряд, один из которых основной движущий, а остальные - взаимозаменяемые модули.

Изобретение относится к подводному кораблестроению и может быть использовано преимущественно для атомных подводных лодок. Предложен подводный авианосец, содержащий соединенные параллельно между собой модули, в том числе два двигательных модуля, всего выполнено четыре модуля, при этом третий модуль установлен между двигательными модулями, выполнен авианесущим и содержит взлетную палубу и индуктивную катушку, выполненную концентрично прочному корпусу, под ним выполнен модуль-ангар для самолетов, при этом передняя и задняя оконечности авианесущего модуля выполнены с закрывающимися отверстиями для взлета и посадки.

Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров при всплытии посредством нагружения льда снизу за счет создания силы плавучести.

Использование: изобретение относится к области гидроакустической техники и может быть использовано при поиске и распознавании подводных объектов в условиях ограниченной оптической видимости на основе формирования их акустического изображения.
Изобретение относится к телеуправляемым подводным робототехническим системам, обеспечивающим высокоточное обследование, фотовидеосъемку и профилирование подводных протяженных поверхностей, обследование зон обледенения корпусов судов и подводных конструкций.

Изобретение относится к области судостроения, а более конкретно - к техническим средствам для обеспечения технического обслуживания и ремонта подводных добычных комплексов и доставки технологического оборудования с борта надводного обеспечивающего судна на дно акватории, и может быть использовано при создании подводных аппаратов для выполнения работ на подводных добычных комплексах в арктических ледовых условиях.
Наверх