Квазикогерентный демодулятор сигналов квадратурной фазовой манипуляции

Изобретение относится к радиотехнике и может быть использовано в системах телекоммуникации и вой передачи данных в составе радиотехнических комплексов. Технический результат - комплексное (одновременное) улучшение основных параметров квазикогерентного демодулятора, а именно: расширение полос захвата и удержания синхронного режима работы, сокращение времени вхождения в синхронный режим работы, повышение помехоустойчивости при наличии дестабилизирующих факторов, воздействующих на коэффициент петлевого усиления устройства. Устройство содержит подстраиваемый генератор 1, фазовращатель 2 на π/2, первый и второй фазовые детекторы 3 и 4, коммутатор 5 полярности сигнала, первый и второй компараторы напряжений 6 и 7, формирователь импульсов 8, первую линию 9 временной задержки, логическую схему «ИСКЛЮЧАЮЩЕЕ ИЛИ» 10, реверсивный счетчик 11, цифроаналоговый преобразователь (ЦАП) 12, первый сумматор 13, первый перемножитель сигналов 14, второй сумматор 15, интегратор 16, первый масштабирующий делитель напряжения 17, блок 18 установки и стабилизации петлевого усиления (БУСПУ) и блок 19 управления фазой (БУФ). Блок БУСПУ содержит первый и второй блоки возведения текущего значения напряжения во вторую степень 20 и 21, третий сумматор 22, блок возведения текущего значения напряжения в 1 2 степень 23 и второй делитель напряжений 24. Блок БУФ включает в себя второй, третий, четвертый и пятый перемножители сигналов 25, 27, 28, 29, а также вторую линию 26 временной задержки. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к радиотехнике и может быть использовано в системах телекоммуникации и цифровой передачи данных в составе радиотехнических комплексов.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является демодулятор сигналов двукратной фазовой телеграфии (авторское свидетельство СССР SU 1392630 А1 «Демодулятор сигналов двукратной фазовой телеграфии». Московский авиационный институт им. Серго Орджоникидзе, В.Е. Мартиросов). Достоинства указанной схемы заключаются в повышенной помехоустойчивости при значительных скоростях передачи информации и больших диапазонах начальных частотных расстроек в условиях постоянного значения коэффициента петлевого усиления устройства, что достигается использованием специальной дополнительной цифровой ветви управления (блок 13 прототипа) частотой подстраиваемого генератора. Устройство работает следующим образом. При отсутствии входного сигнала демодулятора на вход блока поиска и фиксации фазового рассогласования (блок 13 прототипа) поступает нулевое напряжение, реверсивный счетчик включен на счет в одном направлении и на выходе ЦАП формируется непрерывно повторяющееся линейно нарастающее напряжение, которое через сумматор модулирует частоту подстраиваемого генератора, осуществляя таким образом поиск входного сигнала демодулятора по частоте.

При появлении сигнала на входе демодулятора на выходе фазовых детекторов появляются сдвинутые по фазе на 90° напряжения биений с линейно изменяющейся частотой. Амплитудные компараторы (блоки 3 и 4 прототипа) совместно с коммутаторами полярности (блоки 5 и 6 прототипа) осуществляют выпрямление напряжений биений. При сближении частот входного и опорного колебаний биения прекращаются, на выходе фазовых детекторов и соответственно коммутатора сигналов (блок 8 прототипа) возникают изменяющиеся по уровню постоянные напряжения. В момент превышения выходного напряжения коммутатора сигналов над опорным уровнем, задаваемым источником опорного напряжения (блок 15 прототипа), осуществляется останов однонаправленного счета реверсивного счетчика, прекращается режим поиска и демодулятор переходит в режим синхронной работы.

В данном устройстве происходит фиксация фазовых рассогласований колебаний на первом и втором фазовых детекторах на уровнях, соответствующих задаваемому напряжению с выхода источника опорного напряжения (блок 15 прототипа).

При изменении фазы на 90°, 180° или 270° входного сигнала демодулятора, находящегося в синхронном режиме работы, напряжения на выходах первого и второго фазовых детекторов сохраняют свое значение, но могут изменять свою полярность. Сигнал на выходе коммутатора сигналов остается неизменным за счет управляющегося воздействия с выходов амплитудных компараторов и с выхода элемента ИСКЛЮЧАЮЩЕЕ ИЛИ (блок 7 прототипа). Таким образом, обеспечивается нечувствительность подстраиваемого генератора к информационной манипуляции фазы входного сигнала демодулятора.

В качестве недостатка схемы прототипа можно отметить неэффективное использование разрядности ЦАП. Младшие разряды ЦАП предназначены для установки дискретных (ненулевых) уровней фазы выходного колебания подстраиваемого генератора относительно фазы входного сигнала. При этом полосы захвата и удержания синхронного режима работы устройства определяются воздействием только старших разрядов ЦАП. Это ограничивает значения полос захвата и удержания синхронного режима работы устройства и снижает точность установа дискретов фазы при задании фиксированного фазового рассогласования в процессе демодуляции входного сигнала.

Вторым существенным недостатком устройства является длительное время вхождения в синхронный режим работы при значительной начальной частотной расстройке, которое определяется фиксированной и ограниченной по значению сверху частотой следования счетных импульсов ЦАП.

Кроме того, у данного устройства точность и стабильность установа значений дискретов фазы снижается при наличии дестабилизирующих факторов, воздействующих на коэффициент петлевого усиления устройства, таких как паразитные изменения амплитуд входного колебания и колебания с выхода подстраиваемого генератора или изменение коэффициентов передач фазовых детекторов (ФД), что характерно при использовании устройства на повышенных рабочих частотах.

Предлагаемая схема квазикогерентного демодулятора сигналов квадратурной фазовой манипуляции обладает следующими достоинствами:

- Все разряды ЦАП используются для синхронизации устройства по частоте. При этом минимальный дискрет напряжения с выхода ЦАП соответствует полному размаху напряжения сигнала с выхода ФД. Это обеспечивает расширение полос захвата и удержания синхронного режима работы устройства при заданной разрядности ЦАП.

- Скорость вхождения в синхронный режим работы зависит от текущего значения частоты биений на выходах ФД и, соответственно, тем выше, чем больше частотное рассогласование. Это обеспечивает минимальное и практически фиксированное значение времени вхождения в синхронный режим работы при любых значениях начальной частотной расстройки.

- Устройство защищено от воздействия дестабилизирующих факторов на коэффициент петлевого усиления, так как производится его установка и стабилизация с помощью блока установки и стабилизации петлевого усиления БУСПУ.

Квазикогерентный демодулятор сигналов квадратурной фазовой манипуляции содержит подстраиваемый генератор 1, фазовращатель 2 на π/2, первый и второй фазовые детекторы 3 и 4, коммутатор 5 полярности сигнала, первый и второй компараторы напряжений 6 и 7, формирователь импульсов 8, первую линию 9 временной задержки, логическую схему «ИСКЛЮЧАЮЩЕЕ ИЛИ» 10, реверсивный счетчик 11, цифроаналоговый преобразователь (ЦАП) 12, первый сумматор 13, первый перемножитель сигналов 14, второй сумматор 15, интегратор 16, первый масштабирующий делитель напряжения 17, блок 18 установки и стабилизации петлевого усиления (БУСПУ) и блок 19 управления фазой (БУФ). Блок БУСПУ содержит первый и второй блоки возведения текущего значения напряжения во вторую степень 20 и 21, третий сумматор 22, блок возведения текущего значения напряжения в 1 2 степень 23 и второй делитель напряжений 24. Блок БУФ включает в себя второй, третий, четвертый и пятый перемножители сигналов 25, 27, 28, 29, а также вторую линию 26 временной задержки.

Устройство работает в двух режимах: режим первоначальной синхронизации и режим синхронной работы.

1. В режиме первоначальной синхронизации при включении устройства на выходах первого 3 и второго 4 фазовых детекторов возникают квадратурные составляющие биений с частотой, соответствующей начальной частотной расстройке Δω=ωс0, где ωс - частота колебаний входного сигнала, ω0 - частота колебаний подстраиваемого генератора 1 при исходном значении управляющего напряжения Up (p - регулирующее). На фиг. 2, 3 показаны эпюры напряжений в точках схемы устройства.

Выходной сигнал второго фазового детектора 4 показан на фиг. 2а, фиг. 3а, а выходной сигнал первого фазового детектора 3 на фиг. 2б, фиг. 3б для случаев ωс больше ω0 и ωс меньше ω0 соответственно. Первый 6 и второй 7 компараторы напряжений (КН) из выходных сигналов фазовых детекторов формируют логические сигналы, показанные на фиг. 2в, д и фиг. 3в, д. Фиг. 2в соответствует выходному сигналу второго компаратора 7, фиг. 2д - выходному сигналу первого компаратора 6 при ωс больше ω0; аналогично на фиг. 3в и фиг. 3д для выходных сигналов второго 7 и первого 6 компараторов при ωс меньше ω0. Формирователь импульсов 8 формирует короткие импульсы в моменты времени, соответствующие заднему фронту выходного импульсного сигнала второго компаратора 7. На фиг. 2г и фиг. 3г показаны эти импульсы, прошедшие через первую линию 9 временной задержки. Выходной сигнал логической схемы «ИСКЛЮЧАЮЩЕЕ ИЛИ» 10 при ωс больше ω0 показан на фиг. 2е, а при ωс меньше ω0 - на фиг. 3е. Из эпюр фиг. 2г, е и фиг. 3г, е следует, что код, записанный в реверсивном счетчике 11, и, следовательно, выходное напряжение ЦАП 12 возрастают при ωс больше ω0 и уменьшаются при ωс меньше ω0. Эпюры выходного напряжения ЦАП 12 показаны на фиг. 2ж (при ωс больше ω0) и 3ж (при ωс меньше ω0).

Таким образом, при появлении сигнала на входе системы выходное напряжение ЦАП 12 ступенчато нарастает (при ωс больше ω0) или ступенчато уменьшается (при ωс меньше ω0), в результате чего частота подстраиваемого генератора 1 изменяется в сторону уменьшения текущего частотного рассогласования Δω.

При снижении текущего частотного рассогласования Δω до величины, соответствующей полосе захвата аналоговой ветви управления частотой ПГ, включающей в себя первый фазовый детектор 3, коммутатор полярности сигнала 5, первый перемножитель сигналов 14, второй сумматор 15, интегратор 16 и первый сумматор 13 происходит установление синхронного режима работы модулятора.

Выходной сигнал коммутатора 5 полярности сигнала для случая ωс больше ω0 показан на фиг. 2л, а для случая ωс меньше ω0 показан на фиг. 3л.

Выходной сигнал первого сумматора 13 для случая ωс больше ω0 показан на фиг. 2л, а для случая ωс меньше ω0 показан на фиг. 3з.

Формирование счетных импульсов для реверсивного счетчика на основе колебаний разностной частоты с выхода фазовых детекторов внутри цифровой ветви управления частотой ПГ (включающей блоки 6, 7, 8, 9, 10, 11, 12 и 13) приводит к значительному сокращению времени вхождения в синхронный режим работы квазикогерентного демодулятора. При этом использование всей разрядности реверсивного счетчика в процессе синхронизации устройства по частоте приводит к расширению полос захвата и удержания синхронного режима работы устройства.

Для корректного функционирования устройства и повышения точности и стабильности демодуляции входного сигнала демодулятором необходимо обеспечить согласование локальных дискриминационных характеристик цифровой и аналоговой ветвей управления частотой ПГ. Единичный дискрет ΔUЦАП, формируемого на выходе ЦАП ступенчатого напряжения, должен соответствовать полному размаху напряжения сигнала на выходе коммутатора полярности, равному 2А0. Для этой цели опорное напряжение Uoп цифроаналогового преобразователя используется для формирования единичных аналоговых ступеней напряжения с выхода ЦАП (ΔUЦАП=Uoп/2q, где q - разрядность ЦАП) и для вычисления в первом масштабирующем делителе напряжения 17 нормализованного (требуемого) значения амплитуды сигнала фазового рассогласования с выхода фазового детектора (A0=Uoп/2q+1). Далее с помощью блока установки и стабилизации петлевого усиления 18 реально возникающее значение амплитуды сигнала фазового рассогласования приводится к нормализованному (требуемому) значению (А0=Uоп/2q+1).

Установка и стабилизация требуемого коэффициента петлевого усиления аналоговой ветви управления осуществляется в текущем масштабе времени и происходит следующим образом. Квадратурные составляющие биений с частотой Δω с выходов первого и второго фазовых детекторов 3 и 4 подаются на входы первого и второго блоков возведения текущего значения напряжения во вторую степень 20 и 21 соответственно. На фиг. 2а, б и фиг. 3а, б соответственно для случаев ωс больше ω0 и ωс меньше ω0 показаны сигналы с выходов фазовых детекторов при изменяющихся амплитудах сигналов на входе устройства и с выхода ПГ или изменяющихся коэффициентах передачи фазовых детекторов. Выходные сигналы блоков 20 и 21 подаются на первый и второй входы второго сумматора 22. Сигнал с выхода второго сумматора 22 поступает на вход блока возведения текущего значения напряжения в 1 2 степень 23, с выхода которого напряжение Ареал (реал - реальное) поступает на первый вход (вход знаменателя дроби деления) второго делителя напряжений 24. На второй вход (вход числителя дроби деления) второго делителя напряжений 24 поступает постоянное напряжение A0, уровень которого соответствует номинальному (требуемому) значению амплитуды выходных сигналов фазовых детекторов. Сигнал на выходе второго делителя напряжений 24 (показанный на фиг. 2к и фиг. 3к соответственно для случаев ωс больше ω0 и ωc меньше ω0) соответствует мгновенному текущему отклонению значения амплитуды выходных сигналов фазовых детекторов от номинального значения A0 и представляет собой корректирующий коэффициент, подаваемый на второй вход первого перемножителя 14. Выходной сигнал первого перемножителя 14 для случая ωс больше ω0 показан на фиг. 2л, а для случая ωс меньше ω0 показан на фиг. 3л.

Если ввести обозначения: Uкос, Uсин - напряжение на выходе второго и первого фазовых детекторов соответственно (кос - косинусное, син -синусное). Ареал - мгновенное текущее значение амплитуды выходного сигнала первого фазового детектора, Uoп - опорное напряжение ЦАП, A0 -номинальное (требуемое) значение амплитуды с выхода первого фазового детектора, kст - коэффициент коррекции значения коэффициента петлевого усиления (ст - стабилизации), e(t) - амплитуда напряжения на выходе коммутатора полярности 5, e*(t) - сигнал на выходе блока 14, то выполняемую в БУСПУ процедуру коррекции значения коэффициента петлевого усиления системы можно описать следующими соотношениями:

1. A р е а л = ( U к о с 2 + U с и н 2 ) 1 / 2 .

2. A0=Uoп/2q+1.

3. k=A0реал.

4. e*(t)=e(t)·kст.

Вследствие изложенного, реализуется сопряжение коэффициентов передачи аналоговой ветви управления частотой ПГ (ее локальная дискриминационная характеристика приведена на фиг. 2л, фиг. 3л) и цифровой ветви управления (ее локальная дискриминационная характеристика приведена на фиг. 2ж, фиг. 3ж). Это обеспечивает «сшивание» и «линеаризацию» (см. эпюры фиг. 2з, фиг. 3з) глобальной дискриминационной характеристики заявляемого устройства, что обеспечивает корректную работу демодулятора в условиях наличия изменений и флуктуации амплитуд колебаний входного сигнала и сигнала ПГ или при изменении коэффициентов передачи фазовых детекторов, то есть при наличии дестабилизирующих факторов, воздействующих на коэффициент петлевого усиления устройства.

После завершения процесса синхронизации устройство переходит в режим синхронной работы.

2. В режиме синхронной работы устройства осуществляется процесс демодуляции входного колебания, в результате которого получаются оценки α* и β* значений символов переданных информационных последовательностей α и β. Для устранения влияния манипуляция фазы входного сигнала на формируемое в демодуляторе опорное колебание подстраиваемого генератора в первом сумматоре 13 предусмотрен четвертый вход, на который подается первая специальная подставка напряжения, абсолютной величиной равная А0 и манипулированная по полярности во втором перемножителе 25 потоком демодулируемых оценок символов входного сигнала α*=±1. Кроме того, в устройство введен второй сумматор 15, на второй вход которого подается формируемая перемножителями 28 и 29 вторая специальная подставка напряжения, абсолютной величиной равная (√2/2)А0 и манипулированная по полярности потоком символов формируемой в перемножителе 27 вспомогательной последовательности γ=α*·β*=±1. Использование вспомогательной последовательности γ=α*·β*=±1 необходимо для обеспечения корректной работы демодулятора на интервале значений фазовых рассогласований (π/2;3π/2), на котором, вследствие использования в структуре демодулятора коммутатора полярности, происходит инверсия знака сигнала фазового рассогласования в ветви аналогового управления частотой подстраиваемого генератора.

В данном устройстве точки устойчивого равновесия фазового портрета (соответствующие синхронному режиму работы) располагаются с периодом π. Это обусловлено использованием в аналоговой ветви управления частотой ПГ коммутатора полярности и наличием в схеме устройства интегратора. Фазовый портрет системы при положительной и отрицательной полярности первой специальной подставки напряжения показан соответственно на фиг. 4в и фиг. 4г. Фазовый портрет системы при устранении из структуры коммутатора полярности для случаев положительной и отрицательной полярности первой специальной подставки напряжения изображен на фиг. 4а и фиг. 4б соответственно. С помощью первой специальной подставки напряжения в качестве точек устойчивого равновесия системы устанавливаются точки, соответствующие фазовым рассогласованиям между колебанием ПГ и входным колебанием величиной -45°, 135° (точки A1 и A1* на фиг. 4в) либо 45°, 225° (точки А2 и А2* на фиг. 4г).

Путем управления знаком первой специальной подставки напряжения, поступающей на четвертый вход первого сумматора, осуществляется компенсация воздействия на подстраиваемый генератор манипуляции фазы входного колебания устройства на π радиан. Она производится следующим образом: при изменении полярности символа модулирующей последовательности а во входном сигнале демодулятора на выходе второго фазового детектора происходит резкое изменение значения напряжения на равное по абсолютной величине и противоположное по знаку, вследствие чего на выходе ФИ будет сформирован счетный импульс, PC в зависимости от состояния управляющего входа увеличит или уменьшит свое значение на 1 и выходное напряжение ЦАП соответствующим образом изменится на величину единичного дискрета ΔUЦАП. При этом происходит изменение знака первой специальной подставки напряжения, поскольку управляющим воздействием на ее знак является оценка полярности выхода второго фазового детектора 4, получаемая с выхода второго компаратора напряжений 7. За счет этого напряжение на выходе первого сумматора остается на прежнем уровне и обеспечивается нечувствительность подстраиваемого генератора к информационной манипуляции фазы входного сигнала демодулятора. Наличие второй линии задержки необходимо для совмещения моментов времени появления на входах первого сумматора измененных значений выходного напряжения ЦАП и напряжения первой специальной подставки.

Путем управления знаком второй специальной подставки напряжения осуществляется компенсация воздействия на подстраиваемый генератор манипуляции фазы входного колебания устройства на π/2 радиан. При изменении полярности символа модулирующей последовательности β во входном сигнале демодулятора на выходе первого фазового детектора происходит резкое изменение значения напряжения на равное по абсолютной величине и противоположное по знаку, вследствие чего на первом входе второго сумматора также изменяется величина напряжения на противоположное по знаку значение. При этом происходит изменение знака подаваемой на второй вход второго сумматора второй специальной подставки напряжения, поскольку в управляющем воздействии на ее знак присутствует оценка полярности выхода первого фазового детектора 3 получаемая с выхода первого компаратора напряжений 6. За счет этого напряжения на выходах второго и третьего сумматоров остаются на прежних уровнях и обеспечивается нечувствительность подстраиваемого генератора к информационной манипуляции фазы входного сигнала демодулятора.

При этом совокупность бинарных логических сигналов, получаемых с выходов первого и второго компараторов напряжений, отражает все четыре дискрета информационной манипуляции фазы входного сигнала демодулятора.

1. Квазикогерентный демодулятор сигналов квадратурной фазовой манипуляции, содержащий последовательно включенные реверсивный счетчик, цифроаналоговый преобразователь, первый сумматор, подстраиваемый генератор, первый фазовый детектор, второй вход которого соединен со входом демодулятора, и коммутатор полярности, а также последовательно включенные фазовращатель на π/2, вход которого соединен с выходом подстраиваемого генератора, и второй фазовый детектор, второй вход которого соединен со входом демодулятора, отличающийся тем, что в устройство введены последовательно соединенные второй компаратор напряжений, первый вход которого подключен к выходу второго фазового детектора, второй вход соединен с общей шиной, а выход является первым выходом демодулятора квадратурной фазовой манипуляции, формирователь импульсов и первую линию временной задержки, выход которой соединен со счетным входом реверсивного счетчика, а также последовательно соединенные первый компаратор напряжений, первый вход которого подключен к выходу первого фазового детектора, второй вход соединен с общей шиной, а выход является вторым выходом демодулятора квадратурной фазовой манипуляции, и логическую схему «исключающее или», второй вход которой соединен с выходом второго компаратора напряжений, а выход подключен к управляющему входу реверсивного счетчика, а также введены последовательно включенные блок установки и стабилизации петлевого усиления (БУСПУ), первый перемножитель сигналов, второй вход которого соединен с выходом коммутатора полярности сигнала, второй сумматор, выход которого, кроме того, подключен ко второму входу первого сумматора, и интегратор, выход которого подключен к третьему входу первого сумматора, а также введены первый масштабирующий делитель напряжения, на вход которого подается опорное напряжение цифроаналогового преобразователя, и блок управления фазой (БУФ), содержащий последовательно соединенные второй перемножитель сигналов, первый вход которого соединен с выходом первого масштабирующего делителя напряжения, а второй вход подключен к выходу второго компаратора напряжений, и вторую линию задержки, выход которой подключен к четвертому входу первого сумматора, а также содержащий последовательно соединенные третий перемножитель сигналов, на входы которого поступают сигналы с выхода первого и второго компараторов напряжений, четвертый перемножитель сигналов, второй вход которого подключен к выходу первого масштабирующего делителя напряжения и пятый перемножитель сигналов, на второй вход которого поступает постоянное напряжение, соответствующее фазовому рассогласованию, равному π/4, и выход которого подключен ко второму входу второго сумматора.

2. Демодулятор по п. 1, отличающийся тем, что блок установки и стабилизации петлевого усиления (БУСПУ) содержит последовательно включенные первый блок возведения текущего значения напряжения во вторую степень, вход которого соединен с выходом первого фазового детектора, третий сумматор, блок возведения текущего значения напряжения в 1 2 степень и соединенный по входу знаменателя дроби деления второй делитель напряжений, выход которого является выходом БУСПУ и второй вход которого, являющийся числителем дроби деления, подключен к выходу первого масштабирующего делителя напряжения, и, кроме того, содержит второй блок возведения текущего значения напряжения во вторую степень, вход которого соединен с выходом второго фазового детектор, а выход подключен ко второму входу третьего сумматора.



 

Похожие патенты:

Изобретение относится к радиотехнике и может быть использовано для формирования помехоустойчивых радиосигналов. Технический результат - повышение помехоустойчивости радиосигналов в системах связи за счет увеличения ширины спектра (занимаемой ими полосы частот).

Изобретение относится к радиотехнике и может быть использовано в системах телекоммуникации и цифровой передачи данных в составе радиотехнических комплексов. Технический результат - комплексное улучшение основных параметров квазикогерентного модулятора, а именно: расширение полос захвата и удержание синхронного режима работы, сокращение времени вхождения в синхронный режим работы, повышение точности и стабильности установа дискретов манипулируемой фазы при наличии дестабилизирующих факторов, воздействующих на коэффициент петлевого усиления устройства.

Изобретение относится к технике радиосвязи и может быть использовано в системах передачи данных для оценки качества канала связи. Способ оценивания отношения сигнал/шум (ОСШ) при использовании при передаче данных сигналов с фазовой модуляцией основывается на восстановлении плотности распределения вероятности случайной величины, параметром которой является ОСШ, и оценивании этого параметра по статистике амплитуд сигнала, соответствующих длительности элементарной посылки, которые доступны для измерения при приеме полезного информационного сигнала.

Изобретение относится к радиотехнике и может быть использовано в аппаратуре, предназначенной для приема и анализа фазоманипулированных (ФМн) сигналов с бинарным значением фазы.

Изобретение относится к области радиотехники, в частности к радиоприемным устройствам прямого преобразования, и может быть использовано в составе программно-определяемых радиоприемных устройств (Software Defined Radio).Технический результат заключается в увеличении степени подавления помех по зеркальному каналу при одновременном упрощении устройства.

Изобретение относится к области радиотехники и предназначено для цифровых каналов радиосвязи, подверженных воздействию селективных замираний и аддитивных помех как узкополосных (сосредоточенных по частоте), так и импульсных.

Изобретение относится к радиотехнике, в частности к радиоприемным устройствам, применяемым на линиях многоканальной цифровой связи и в системах множественного доступа, а также может быть использовано в области цифрового радиовещания и цифрового телевидения.

Изобретение относится к области радиотехники и может быть использовано при реализации систем связи и радионавигации с фазоманипулированными сигналами. Достигаемый технический результат - восстановление сигнала несущей частоты из принятого фазоманипулированного сигнала, искаженного шумами с уменьшением дисперсии фазовых шумов в шумовой полосе ФАПЧ.

Изобретение относится к области приема двоичных сигналов, передаваемых методом относительной модуляции (ОФМ), и может быть использовано для построения аппаратуры передачи дискретной информации.

Изобретение относится к радиотехнике, а именно к способам обнаружения сигналов. .

Изобретение относится к области радиотехники и может использоваться в радиоприемных устройствах систем радиосвязи. Достигаемый технический результат - повышение помехоустойчивости приема шумоподобных фазоманипулированных сигналов путем подавления ложных сигналов и помех. Способ приема шумоподобных фазоманипулированных сигналов характеризуется тем, что принимают и разветвляют шумоподобный фазоманипулированный сигнал, генерируют перестраиваемый по частоте синусоидальный сигнал, которым преобразуют одну ответвленную часть принимаемого сигнала, в процессе преобразования которой выделяют низкочастотное напряжение, перемножают его с другой ответвленной частью принимаемого сигнала, выделяют гармоническое колебание, сравнивают его по частоте и фазе с генерируемым синусоидальным сигналом и формируют управляющий сигнал, которым воздействуют на генерируемый сигнал и обеспечивают равенство по частоте генерируемого сигнала и несущей частоты принимаемого сигнала. 4 ил.

Изобретение относится к супергетеродинному приемнику сложных фазоманипулированных сигналов с двойным преобразованием частоты. Технический результат заключается в повышении избирательности, помехоустойчивости и достоверности приема сложных фазоманипулированных сигналов. Приемник содержит последовательно включенные антенну, входную цепь и усилитель радиочастоты, последовательно включенные первый гетеродин, первый смеситель и первый усилитель первой промежуточной частоты, последовательно включенные второй гетеродин, второй смеситель, усилитель второй промежуточной частоты, демодулятор и выходную цепь, выход которой является выходом приемника, два узкополосных фильтра, три фазоинвертора, четыре сумматора, два фазовращателя на 90°, перемножитель, амплитудный детектор, ключ, третий смеситель и второй усилитель первой промежуточной частоты. 4 ил.

Изобретение относится к радиотехнике и может быть использовано для повышения помехоустойчивости радиосигналов в системах связи. Технический результат - повышение помехоустойчивости радиосигналов в системах связи путем увеличения ширины полосы занимаемой ими частот. Способ формирования помехоустойчивых радиосигналов основан на формировании широкополосного сигнала, для которого используют расширение спектра методом формирования псевдослучайной последовательности, и характеризуется тем, что для модуляции логических элементов псевдослучайной последовательности используют радиоимпульсы, которые получают в результате перемножения биортогональных вейвлет-функций и сигналов с линейной частотной модуляцией, у которых для модуляции логического элемента «1» и логического элемента «0» псевдослучайной последовательности задают различную скорость увеличения частоты, при этом в качестве биортогональных вейвлет-функций используют функции второй производной от функции Гаусса. 11 ил.

Изобретение относится к радиотехнике. Технический результат - расширение функциональных возможностей способа автокорреляционного приема шумоподобных сигналов путем точного и однозначного определения местоположения источника излучения сигнала, размещенного на борту летательного аппарата. Для этого устройство, реализующее предлагаемый способ, содержит измеритель 1 длительности сигнала, частотный детектор 2, счетчик 3 импульсов, арифметические блоки 4 и 19, масштабирующие перемножители 5 и 6, линии задержки 7, 10 и 14, перемножители 8, 11, 15, 22.1, 22.2 и 22.3, полосовые фильтры 9 и 12, генератор 13 пилообразного напряжения, фильтры 16, 26.1, 26.2, 26.3 нижних частот, пороговый блок 17, ключ 18, блок 20 регистрации, приемные антенны 21.1, 21.2 и 21.3, узкополосные фильтры 23.1, 23.2 и 23.3, фазовращатели 24.1 и 24.2 на 90 градусов, фазовые детекторы 25.1, 25.2 и 25.3, измерительные приборы 27.1, 27.2 и 27.3, экстремальные регуляторы 28.1, 28.2 и 28.3, блоки 29.1, 29.2 и 29.3 регулируемой задержки, корреляторы 30.1, 30.3 и 30.3, вычислительный блок 31 и указатель 32 местоположения источника излучения шумоподобных сигналов. 3 ил.

Изобретение относится к области радиосвязи и может найти применение в системах беспроводного доступа, сухопутной подвижной и спутниковой связи, призванных функционировать в условиях радиоэлектронной борьбы. Технический результат - обеспечение надежного приема сигналов с высокой структурной скрытностью в перспективных системах связи в условиях их длительной эксплуатации. Многоканальный приемник с кодовым разделением каналов для приема квадратурно-модулированных сигналов повышенной структурной скрытности содержит, в частности, первое, второе и третье коммутационные устройства, а также генератор маскирующей ортогональной кодовой последовательности, генератор канальных ортогональных кодовых последовательностей, устройство повторного обнаружения сигнала, элемент развязки и соответствующие связи между ними для обеспечения надежного приема квадратурно-модулированных сигналов, сигнально-кодовая конструкция которых изменяется в процессе эксплуатации системы связи, и повторного обнаружения сигналов при срыве синхронизации в системе. 1 з.п. ф-лы, 3 ил..

Изобретение относится к технике связи и может использоваться в системах мобильной связи. Технический результат состоит в повышении надежности связи. Для этого способ средневолновой зоновой сети двусторонней радиосвязи с временным разделением режимов приема и передачи сообщений заключается в создании средневолновой многоканальной зоновой сети двусторонней мобильной автоматической радиосвязи с временным разделением режимов приема и передачи сообщений, которая дает возможность в одной и той же ограниченной полосе частот одновременно обмениваться дискретными сообщениями большому количеству абонентов, которые удалены друг от друга на значительные расстояния и используют малогабаритные возимые и носимые антенны, не требующие высокого подъема над поверхностью Земли при проведении сеансов связи на расстояниях, не удовлетворяющих требованиям прямой видимости между антеннами передающей и приемной радиостанций. Абонентские радиостанции имеют относительно маломощные передатчики и передача сообщений с их стороны осуществляется сигналами с предельно низкой скоростью с целью повышения как помехоустойчивости каналов связи, так и с целью размещения максимального числа абонентов в полосе частот, отведенной для работы сети радиосвязи. Сигналы со стороны абонентских радиостанций передаются одновременно по параллельным каналам на частотах, удовлетворяющих требованию обеспечения взаимной ортогональности этих сигналов. Изобретение относится к области радиотехники и предназначено для одновременной двусторонней мобильной автоматической радиосвязи большого числа абонентов, использующих параллельные частотно-разнесенные радиоканалы в общей ограниченной полосе частот (например, в однополосном телефонном канале связи) для передачи дискретных сообщений на территории зоны, граница которой может находиться далеко за пределами прямой видимости между антенной базовой радиостанции и антеннами периферийных радиостанций. Базовая радиостанция имеет передатчик относительно большой мощности, который позволяет передавать сообщения на большие расстояния с высокой скоростью в режиме уплотнения по времени и с использованием обычных методов манипуляции, например методов двухпозиционной или многопозиционной фазовой манипуляции. Данная сеть радиосвязи может быть использована подразделениями МЧС для мониторинга потенциально опасных объектов, оповещения и передачи сигналов тревоги. 8 ил.

Изобретение относится к технике связи и может быть применено для приема дискретных сигналов с относительной фазовой модуляцией в системах с расширенным спектром, с псевдослучайными сигналами в условиях преднамеренных помех. Техническим результатом изобретения является повышение помехоустойчивости приема псевдослучайных сигналов в условиях преднамеренных помех. Демодулятор псевдослучайных сигналов с относительной фазовой модуляций содержит перемножитель, генератор псевдослучайной последовательности, блок синхронизации, фазовращатель, второй, третий, четвертый, пятый шестой, седьмой, восьмой перемножители, два интегратора, два суммирующих накопителя , четыре элемента задержки, автономный генератор, три инвертора, семь сумматоров, блок выбора максимального сигнала, решающий блок. 2 ил.

Изобретение относится к области передачи цифровой информации и предназначено для применения в системах цифровой связи с шумоподобными сигналами (ШПС). Технический результат - повышение скорости передачи цифровой информации. В способ передачи информации в системе связи с ШПС на передающей стороне разделяют поток передаваемых данных на блоки, содержащие по бит и по k дополнительных бит; формируют заранее заданную псевдослучайную последовательность (ПСП) с циклическим временным сдвигом (ЦВС), определяемым комбинацией из бит соответствующего передаваемого блока в соответствии с выбранным методом кодирования; над результатами формирования ПСП с ЦВС реализуют кодовую модуляцию (КМ), определяемую комбинацией из k дополнительных бит соответствующего передаваемого блока в соответствии с выбранным методом кодирования; формируют последовательность ШПС путем фазовой манипуляции высокочастотного тонального сигнала, причем манипулирующей функцией при передаче каждого блока является результат выполнения операции КМ; передают сформированную последовательность ШПС, причем входными данными операции разделения потока подлежащих передаче данных являются входные последовательности этих данных, а операция формирования ПСП с ЦВС осуществляется над результатами выполнения операции разделения потока передаваемых данных, на приемной стороне преобразуют принимаемые сигналы в электрические; определяют максимум корреляции принятого сигнала с ШПС, сформированным путем фазовой модуляции по закону заранее заданной ПСП с нулевым ЦВС, при каждой qk-й (при qk=1 … Q, причем Q=2k) альтернативе КМ; определяют комбинацию k дополнительных бит принятого данного блока данных на основе результатов определения максимума корреляции принятого сигнала с ШПС при каждой qk-й альтернативе КМ; определяют величину ЦВС применительно к той альтернативе КМ, которой соответствует указанная комбинация k дополнительных бит; определяют комбинацию бит принятого блока на основании указанного результата определения ЦВС; формируют совокупность бит принятого блока по указанным результатам определения его бит и k дополнительных бит. В способе передачи информации реализовано кодирование (и соответствующее декодирование) k бит каждого блока передаваемых данных введением КМ в каждый результат формирования ПСП с ЦВС, при этом реализация КМ к увеличению длительности каждого передаваемого не приводит. 1 з.п. ф-лы, 3 ил.
Изобретение относится к передаче цифровой информации по каналу связи с многолучевым распространением и может быть использовано в системах связи для обеспечения правильного приема переданной информации. Технический результат – повышение устойчивости канала передачи дискретных сообщений (повышение коэффициента исправного действия каналов связи), подверженных селективным замираниям, без усложнения аппаратуры связи и без связанного с этим роста энергопотребления. Для этого способ включает формирование на передающей стороне информационного сигнала как последовательность символов, состоящих из последовательности тональных импульсов, передаваемых последовательно по времени на разнесенных по частоте поднесущих, количество которых соответствует числу временных позиций на длительности одного символа, при этом частоты всех поднесущих, соответствующих символу, принадлежат такому диапазону частот, что вся последовательность тональных импульсов, составляющих этот символ, обрабатывается на приемной стороне как один тональный импульс с длительностью, равной длительности символа.
Наверх