Способ оценки сдвига частоты для систем связи, использующих ofdm сигналы

Изобретение относится к радиотехнике, в частности к способам оценки частотного сдвига, и может быть использовано в аппаратуре беспроводных телекоммуникационных систем, использующих OFDM сигналы, а также в контрольно-измерительном оборудовании. Технический результат состоит в повышении точности оценки сдвига несущей частоты при низких отношениях сигнал/шум и частотно-селективных замираниях, при использовании одного пилотного OFDM символа, состоящего из 2 одинаковых повторяющихся частей. Для этого дополнительно вводятся: операция устранения частотного сдвига в цифровом виде для каждого OFDM символа, содержащегося в кадре, операция уточненной оценки частотного сдвига по N символам, следующим за пилотным символом, при условии что в уточненной оценке могут участвовать только те OFDM символы, которые могут быть безошибочно демодулированы, после грубой оценки частотного сдвига, операция оценки передаточной функции канала связи по пилотным поднесущим, эквалайзирование, операция восстановления спектра каждого OFDM символа к первоначальному виду, заданному в передатчике, по минимальному расстоянию между полученным отсчетом спектра и соответствующим ему, регламентированным стандартом, по которому работает система связи, расчет отношения спектра одного из OFDM символов, участвующего в уточненной оценке частотного сдвига, к каждому из OFDM символов, участвующему в уточненной оценке частотного сдвига, умножение спектра каждого принятого OFDM символа, участвующего в уточненной оценке частотного сдвига, на рассчитанное отношение, расчет разности фаз между соседними OFDM символами, участвующими в уточненной оценке частотного сдвига, усреднение рассчитанных значений разности фаз, расчет уточненной оценки частотного сдвига как отношения усредненной оценки разности фаз на 2π и на длительность одного OFDM символа, расчет результирующей оценки частотного сдвига как суммы грубой и уточненной оценки. 4 ил.

 

Изобретение относится к радиотехнике, в частности к способам оценки частотного сдвига, и может быть использовано в аппаратуре беспроводных телекоммуникационных систем, использующих OFDM сигналы, а также в контрольно-измерительном оборудовании.

Известен способ оценки доплеровского сдвига частоты, описанный в патенте РФ [1]. Данный способ заключается в том, что оценку частоты производят с помощью четырех последовательных OFDM (Orthogonal frequency-division multiplexing) символов (ranging code), причем первые два символа одинаковы и содержат код X и вторые два символа одинаковы и содержат код Х+1, после обнаружения первого ranging символа и определения времени задержки производится вычисление взаимной корреляционной функции с опорной последовательностью, далее производится прием второго, третьего и четвертого символов и вычисление взаимной корреляционной функции для каждого из них, далее производится операция свертки первой и второй взаимных корреляционных функций по трем точкам в пределах главного пика (который может быть найден при условии, что известна задержка сигнала), аналогично производится операция свертки между второй и третьей корреляционными функциями, а также между третьей и четвертой взаимными корреляционными функциями, затем производится вычисление разности фаз между первым и вторым символами путем деления мнимой части максимума свертки первой и второй взаимных корреляционных функций на действительную часть этой свертки, далее аналогично вычисляется разность фаз между вторым и третьим символами, а также между третьим и четвертым символами, значение сдвига частоты вычисляется путем усреднения разностей фаз между первым и вторым, вторым и третьим, третьим и четвертым символами, полученное усредненное значение делится на 2π и на длительность символа.

Недостаткам данного способа является то, что для оценки частотного сдвига используется 4 пилотных OFDM символа, имеющих определенную структуру (первые два символа одинаковы и содержат код X, вторые два символа одинаковы и содержат код Х+1), такая длинная пилотная последовательность уменьшает эффективность использования частотно-временного ресурса. Также к недостаткам данного способа относится то, что в данном способе вычисление ВКФ для каждого принятого символа производится с опорной последовательностью (так как пилотный сигнал проходит многолучевой канал распространения радиоволн, он искажается и отличается от опорного сигнала, в результате снижается точность оценки разности фаз между символами). Данный недостаток устранен в следующем ниже способе.

Наиболее близким к заявляемому способу оценки частотного сдвига является способ, приведенный в описании изобретения [2]. В этом способе оценку частотного сдвига производят по пилотному сигналу, состоящему из двух повторяющихся частей. Производится прием сигнала, определение начала пилотного сигнала (временная синхронизация), далее производится оценка частотного сдвига, для этого рассчитывают взаимокорреляционную функцию между первой и второй частями пилотной последовательности. Определяют разность фаз между первой и второй частями пилотной последовательности как арктангенс отношения мнимой части к действительной для максимального значения рассчитанной ВКФ. Далее рассчитывается частотный сдвиг как разность фаз между первой и второй частями пилотной последовательности, деленная на длительность одной части пилотной последовательности и 2π. Недостатком этого технического решения является то, что оценка сдвига частоты определяются по одному пилот-сигналу, что при низких отношениях сигнал/шум и частотно-селективных замираниях приводит к ухудшению характеристик оценки параметров сигналов.

Задача, на решение которой направлено предлагаемое техническое решение, - повышение точности оценки сдвига несущей частоты при низких отношениях сигнал/шум и частотно-селективных замираниях, при использовании одного пилотного OFDM символа, состоящего из 2 одинаковых повторяющихся частей.

Решение поставленной задачи достигается тем, что в способе оценки сдвига несущей частоты, включающем прием пилотной последовательности, определение начала пилотного сигнала (временная синхронизация), расчет взаимной корреляционной функции между первой и второй частями пилотного сигнала, расчет разности фаз между первой и второй частями пилот-сигнала как арктангенса отношения мнимой части пилот-сигнала к действительной, для максимального значения рассчитанной ВКФ, расчет частотного сдвига как разности фаз между первой и второй частями пилотной последовательности, деленной на длительность одной части пилотной последовательности и 2π, дополнительно вводятся: операция устранения частотного сдвига в цифровом виде для каждого OFDM символа, содержащегося в кадре, операция уточненной оценки частотного сдвига по N символам, следующим за пилотным символом, при условии что в уточненной оценке могут участвовать только те OFDM символы, которые могут быть безошибочно демодулированы, после грубой оценки частотного сдвига операция оценки передаточной функции канала связи по пилотным поднесущим, эквалайзирование, операция восстановления спектра каждого OFDM символа к первоначальному виду, заданному в передатчике, по минимальному расстоянию между полученным отсчетом спектра и соответствующим ему, регламентированным стандартом, по которому работает система связи, расчет отношения спектра одного из OFDM символов, участвующего в уточненной оценке частотного сдвига, к каждому из OFDM символов, участвующему в уточненной оценке частотного сдвига, умножение спектра каждого принятого OFDM символа (в первоначальном виде, без обработки), участвующего в уточненной оценке частотного сдвига, на рассчитанное отношение, расчет разности фаз между соседними OFDM символами, участвующими в уточненной оценке частотного сдвига, усреднение рассчитанных значений разности фаз, расчет уточненной оценки частотного сдвига как отношения усредненной оценки разности фаз на 2π и на длительность одного OFDM символа, расчет результирующей оценки частотного сдвига как суммы грубой и уточненной оценки.

Функциональная схема предлагаемого способа приведена на фиг. 1, на которой обозначено: 1 - прием кадра, 2 - временная синхронизация, определение начала кадра, 3 - грубая оценка частоты по пилотной последовательности, 4 - устранение частотного сдвига, оцененного по пилотной последовательности в цифровом виде, 5 - оценка канала распространения радиоволн по пилотным поднесущим для каждого OFDM символа, участвующего в оценке, 6 - эквалайзирование, 7 - восстановление спектральных отсчетов каждого OFDM символа, участвующего в оценке частоты, к первоначальному виду, заданному в передатчике, 8 - изменение информационной составляющей каждого OFDM символа, участвующего в оценке частоты, 9 - оценка фазового набега между соседними символами из N принятых, 10 - усреднение фазового набега, 11 - расчет результирующего частотного сдвига.

Подробное описание способа

Приемником принимается и оцифровывается кадр, структура которого приведена на фиг. 2. Производится временная синхронизация с началом кадра по пилотному сигналу. Временная синхронизация может быть произведена по положению максимума взаимной корреляционной функции между принятым пилотным символом и опорным сигналом [3]. Далее производится грубая оценка частотного сдвига по принятому пилотному сигналу, структура которого приведена на фиг 3. Принятый пилотный сигнал может быть записан в следующем виде: , где: Xn - модулированная последовательность, N - размер преобразования Фурье. Обозначим первую половину пилотного сигнала как P1=Pk(1:N/2), а вторую половину как Р2=Pk(N/2+1:N), причем Р1=Р2. Производим расчет ВКФ первой и второй половины пилотного сигнала:

,

где: ifft - операция обратного преобразования Фурье, fft - операция прямого преобразования Фурье, * - знак комплексного сопряжения.

Расчет разности фаз производится по формуле:

где: Im - мнимая часть, Re - реальная часть.

Грубый расчет ухода по частоте рассчитывается по формуле:

,

где: Т - длительность пилотной последовательности.

Далее производится операция устранения частотного сдвига (по грубой оценке) для каждого символа в кадре. Пусть кадр содержит N OFDM символов, тогда компенсация частотного сдвига для каждого OFDM символа в кадре производится согласно выражению:

,

где: yj(k)-j-й OFDM символ в кадре (j∈(1…N)), k - порядковый номер отсчета сигнала, i - мнимая единица, , fd - частота дискретизации.

Далее следует точная оценка сдвига частоты. Она может быть произведена по всем информационным символам, содержащимся в кадре, при условии что биты в них могут быть безошибочно демодулированы (отношение сигнал/шум достаточно для демодуляции). Если кадр содержит OFDM символы, в которых используются высокие индексы модуляции (например QAM 256, QAM 512), и грубой оценки частоты недостаточно для их безошибочной демодуляции, то они не могут быть использованы для точной оценки частотного сдвига. Они могут быть демодулированы после точной оценки частотного сдвига и его устранения. Для точной оценки требуется дополнительная цифровая обработка. При выполнении всех дальнейших операций циклические префиксы не используются. Циклический префикс каждого OFDM символа отбрасывается, и вся дальнейшая обработка производится без него. Для оценки смещения частоты по информационным символам требуется, чтобы они были одинаковы для расчета ВКФ между соседними символами. OFDM символы, передаваемые в кадре, отличаются, поскольку они содержат случайные пользовательские данные. Кроме того, в OFDM системах связи каждый OFDM символ содержит циклический префикс, который также затрудняет расчет разности фаз между символами. В связи с этим для точной оценки частотного сдвига необходимо с помощью цифровой обработки изменить битовую последовательность в используемых OFDM символах, при этом не повлиять на частотный сдвиг, и привести ее к одному виду для каждого OFDM символа. Для этого производится оценка передаточной функции беспроводного канала связи по пилотным поднесущим, для этих OFDM символов. Операция оценки беспроводного канала РРВ по пилотным поднесущим раскрыта в [4]. Спектр принятого OFDM символа можно записать в виде: Yj(k)=S(k)×Н(k)+n(k), где: S(k) - спектр переданного сигнала, Н(k) - передаточная функция канала РРВ, n(k) - шум.

Зная полученную оценку , произведем оценку спектра переданного сигнала согласно выражению: .

Далее производится операция восстановления спектра для каждого сигнала, участвующего в оценке частоты, к первоначальному виду, заданному в передатчике, по минимальному расстоянию между принятым отсчетом спектра и соответствующим ему, регламентированным стандартом, по которому работает система связи. Спектр OFDM символа после восстановления обозначим Sνj(k). Примеры сигнального созвездия до и после операции восстановления представлены соответственно на фиг. 4.

Далее выбирается один из сигналов, например первый Sν1(k) (j=1), и производится расчет отношения между выбранным сигналом и всеми остальными, участвующими в оценке частотного сдвига, отношение сигналов запишем в виде: PFj(k)=Sν1(k)/Sνj(k). После чего производится умножение спектра каждого OFDM символа, участвующего в оценке Yj(k), на рассчитанное отношение сигналов PFj: Yνj=Yj·PFj. Теперь все OFDM символы, участвующие в оценке частотного сдвига, имеют одинаковое информационное наполнение, при этом сохранился фазовый набег, обусловленный рассинхронизацией опорных генераторов.

Для оценки разности фаз между соседними символами производится расчет ВКФ: Rνm(k)=ifft(Yνj(k)×Yνj+1(k)*), m∈(1…N-1), * - знак комплексного сопряжения. Расчет разности фаз производится по формуле:

,

где: Im - мнимая часть, Re - реальная часть,

Рассчитанные значения разности фаз усредняются:

,

Уточненная оценка частотного сдвига рассчитывается по формуле:

,

Тссимвцп, Тсимв - длительность одного OFDM символа, Тцп - длительность циклического префикса.

Результирующая оценка частотного сдвига рассчитывается по формуле:

.

Предлагаемый способ позволяет повысить точность оценки сдвига несущей частоты за счет использования не только пилотной последовательности, но и информационных OFDM символов. Преимущество данного способа заключается в том, что для точной оценки частотного сдвига не требуются длинные пилотные последовательности, содержащие несколько символов, которые при этом занимают частотно-временной ресурс, что приводит к снижению скорости передачи данных.

Источники информации

1. Пат. РФ №2459354, МПК Н04В 001/69, H04W 008/20. Способ оценки сдвига несущей частоты в восходящем канале для беспроводных телекоммуникационных систем. Опубл. 20.08.2012.

2. Пат. США №2004/0081205, кл. H04L 27/26, Maximum likelihood synchronization for a communications system using a pilot symbol.

3. Пат. РФ №2367972, МПК G01S 5/06. Способ оценки точности определения местоположения источника радиоизлучения пассивной разностно-дальномерной системой. Опубл. 20.09.2009.

4. Рогожников Е.В., Абенов P.P., Вершинин А.С., Ворошилин Е.П. Исследование методов эквалайзирования для систем связи с использованием OFDM-сигналов // Вестник СибГУТИ. 2013. №1 (21). С. 50-56.

Способ оценки сдвига частоты для систем связи, использующих OFDM сигналы, включающий прием пилотной последовательности, определение начала пилотного сигнала (временная синхронизация), расчет взаимной корреляционной функции между первой и второй частями пилотного сигнала, расчет разности фаз межу первой и второй частями пилот-сигнала как арктангенса отношения мнимой части пилот-сигнала к действительной для максимального значения рассчитанной ВКФ, расчет частотного сдвига как разности фаз между первой и второй частями пилотной последовательности, деленной на длительность одной части пилотной последовательности и 2π, отличающийся тем, что дополнительно вводятся: операция устранения частотного сдвига в цифровом виде для каждого OFDM символа, содержащегося в кадре, операция уточненной оценки частотного сдвига по N символам, следующим за пилотным символом, при условии что в уточненной оценке могут участвовать только те OFDM символы, которые могут быть безошибочно демодулированы, после грубой оценки частотного сдвига операция оценки передаточной функции канала связи по пилотным поднесущим, эквалайзирование, операция восстановления спектра каждого OFDM символа к первоначальному виду, заданному в передатчике, по минимальному расстоянию между полученным отсчетом спектра и соответствующим ему, регламентированным стандартом, по которому работает система связи, расчет отношения спектра одного из OFDM символов, участвующего в уточненной оценке частотного сдвига, к каждому из OFDM символов, участвующему в уточненной оценке частотного сдвига, умножение спектра каждого принятого OFDM символа (в первоначальном виде, без обработки), участвующего в уточненной оценке частотного сдвига, на рассчитанное отношение, расчет разности фаз между соседними OFDM символами, участвующими в уточненной оценке частотного сдвига, усреднение рассчитанных значений разности фаз, расчет уточненной оценки частотного сдвига как отношения усредненной оценки разности фаз на 2π и на длительность одного OFDM символа, расчет результирующей оценки частотного сдвига как суммы грубой и уточненной оценки.



 

Похожие патенты:

Изобретение относится к радиотехнике и может быть использовано в передатчиках сигналов глобальных навигационных спутниковых систем. Достигаемый технический результат - обеспечение возможности работы с псевдошумовыми фазомодулированными сигналами при одновременном повышении точности определения аппаратной задержки выходного сигнала передатчика.

Изобретение относится к области радиотехники и может быть использовано в приемниках глобальных навигационных спутниковых систем, использующих широкополосные сигналы, манипулированные по фазе псевдослучайной последовательностью.

Изобретение относится к области геофизических и технологических исследований скважин в процессе бурения. Техническим результатом является расширение функциональных возможностей для передачи информации с любым каналом связи.

Изобретение относится к средствам передачи данных для аудиосигнала посредством аудиоинтерфейса. Технический результат заключается в обеспечении возможности передачи восходящего канала для звукового сигнала.

Изобретение относится к области радиотехники и может быть использовано в радиотелеметрических системах для получения информации с подвижных объектов. Достигаемый технический результат - увеличение подавления паразитного побочного излучения соседнего канала передатчика.

Изобретение относится к области шумоподавления в принимаемом многоканальном FM-радиосигнале и может использоваться, в частности в стереофоническом FM-радиоприемнике.

Изобретение относится к радиотехнике и может быть в радиотехнических устройствах для обнаружения источников радиоизлучения (ИРИ) в условиях шума неизвестной интенсивности.

Изобретение относится к области радиотехники и может быть использовано в приемниках глобальных навигационных спутниковых систем, использующих широкополосные сигналы, манипулированные по фазе псевдослучайной последовательностью.
Изобретение относится к технике беспроводной связи и может использоваться для обеспечения пассажирского поезда беспроводной адресной аварийной сигнализацией и внутренней связью.

Изобретение относится к области радиотехники и может быть использовано в широкополосных СВЧ радиоприемных устройствах, входящих в состав аппаратуры радиопротиводействия и радионаблюдения.

Изобретение относится к вычислительной технике и может быть использовано в автоматизированных когерентно-импульсных системах для выделения сигналов движущихся целей на фоне пассивных помех. Достигаемый технический результат - осуществление режектирования пассивных помех с априорно неизвестными спектрально-корреляционными свойствами при выделении сигналов движущихся целей. Адаптивный вычислитель для режектирования помех содержит автокомпенсатор, первый и второй блоки задержки, основной и дополнительный блоки измерения коэффициента корреляции, блок вычисления весовых коэффициентов, основной и дополнительный весовые блоки, основной сумматор, синхрогенератор, цифровую линию задержки. 1 з.п. ф-лы, 18 ил.

Изобретение относится к вычислительной технике и может быть использовано в адаптивных устройствах режектирования многочастотных пассивных помех. Достигаемый технический результат - повышение точности адаптивной компенсации текущего значения доплеровской фазы многочастотных пассивных помех. Адаптивный компенсатор фазы пассивных помех содержит блок оценивания фазы, блок задерживания, первый и второй блоки комплексного умножения, блок комплексного сопряжения, блок задержки, синхрогенератор, первый и второй умножители, первый, второй, третий и четвертый функциональные преобразователи, первый и второй блоки памяти, комплексный сумматор, дополнительный вычислитель фазы, дополнительный блок оценивания фазы, первый и второй дополнительные блоки комплексного умножения, дополнительный блок комплексного сопряжения, дополнительный блок задержки и дополнительный блок задерживания. 9 ил.

Изобретение относится к супергетеродинному приемнику сложных фазоманипулированных сигналов с двойным преобразованием частоты. Технический результат заключается в повышении избирательности, помехоустойчивости и достоверности приема сложных фазоманипулированных сигналов. Приемник содержит последовательно включенные антенну, входную цепь и усилитель радиочастоты, последовательно включенные первый гетеродин, первый смеситель и первый усилитель первой промежуточной частоты, последовательно включенные второй гетеродин, второй смеситель, усилитель второй промежуточной частоты, демодулятор и выходную цепь, выход которой является выходом приемника, два узкополосных фильтра, три фазоинвертора, четыре сумматора, два фазовращателя на 90°, перемножитель, амплитудный детектор, ключ, третий смеситель и второй усилитель первой промежуточной частоты. 4 ил.

Изобретение относится к радиосвязи и может быть использовано для выделения сигналов с симметричными спектрами в условиях подавления их узкополосными помехами. Технический результат - расширение области его применения за счет исключения из процедуры формирования спектра восстанавливаемой копии полезного сигнала операций сложения, вычитания и деления с компонентами комплексного спектра. В способе компенсации узкополосных помех последовательно усиливают аддитивную совокупность полезного сигнала и помех, фильтруют ее в полосе сигнала, дискретизируют и вычисляют комплексный спектр Фурье от полученных временных отсчетов. Затем вычисляют модуль значений комплексного спектра Фурье и его компоненты разделяют на две части относительно компонента, соответствующего частоте несущего колебания. После чего формируют две последовательности, состоящие из модулей спектральных компонентов, причем компонент, соответствующий частоте несущего колебания, не включают ни в одну из последовательностей. Затем вычисляют суммарные величины модулей спектральных компонентов каждой из последовательностей и из последовательности с меньшим суммарным значением формируют зеркальную к ней последовательность. Спектр восстанавливаемой копии полезного сигнала формируют из выбранной последовательности и ее зеркальной копии. А результирующую временную копию полезного сигнала получают путем обратного преобразования Фурье. 5 ил.

Изобретение может быть использовано при изготовлении радиоэлектронных устройств (РЭУ). Усилительный блок (УБ) содержит, по меньшей мере, одну печатную плату (ПП), на которой установлен, по меньшей мере, один мощный полупроводниковый элемент (МПЭ), содержащий теплоотводящее основание (ТО), по меньшей мере, один кристалл, расположенный на ТО, и выводы для передачи высокочастотного сигнала, электрически соединенные с плоскими проводниками, расположенными на поверхности ПП, с образованием согласованных участков передачи сигнала, и теплоотводящую опору, на которой установлено ТО. В теплоотводящей опоре выполнено глухое отверстие, в котором ТО закреплено посредством слоя теплопроводящего материала, полностью заполняющего зазор между дном отверстия и дном ТО и, по меньшей мере, частично заполняющего зазор между стенками отверстия и стенками ТО. ПП имеет толщину, позволяющую осуществить ее упругую деформацию. Стороны ПП, соответствующие выводам для передачи высокочастотного сигнала, выходят за пределы теплоотводящей опоры. Технический результат - обеспечение возможности интенсивного отведения тепла от МПЭ, а также возможности эксплуатации РЭУ, в состав которого входит УБ, в широком температурном диапазоне. 3 з.п. ф-лы, 10 ил.

Изобретение относится к технике связи и может быть использовано в цифровых системах передачи. Технический результат - повышение качества передачи информационных аналоговых сигналов и уменьшение скорости цифрового сигнала. Для этого в способе осуществляют разбиение информационного аналогового сигнала на n полос и формирование с помощью преобразования Гильберта из каждого полосового аналогового сигнала квазипостоянных и переменных аналоговых сигналов, связанных с параметрами мгновенной частоты и гильбертовской амплитудной огибающей полосового аналогового сигнала. Затем из переменных аналоговых сигналов на второй и третьей ступенях модуляционного разложения снова формируются квазипостоянные и переменные аналоговые сигналы, связанные с параметрами мгновенной частоты и гильбертовской амплитудной огибающей этих переменных аналоговых сигналов. Выделенные на первой, второй и третьей ступенях модуляционного разложения параметры после оцифровки передаются на приемную сторону, где по ним осуществляется восстановление аналогового сигнала. 2 н.п. ф-лы, 8 ил.

Использование: в области электротехники. Технический результат - обеспечение управления мощностью батареи при низких температурах. Контроллер содержит логическую схему для приема показателя температуры для электронного устройства, подключаемого к первой батарее, содержащей химический состав на основе ионов лития, и второй батареей, содержащей химический состав на основе литий трифторхлоробората; для активации электронного устройства используя первую батарею, когда показатель температуры выше, чем пороговое значение; и для воплощения процедуры управления питанием, когда показатель температуры ниже, чем пороговое значение, при этом процедура управления питанием содержит активацию электронного устройства используя вторую батарею. 4 н. и 18 з.п. ф-лы, 9 ил.

Изобретение относится к технике связи и может использоваться в оптической беспроводной системе связи через воздушную среду. Технический результат состоит в обеспечении на пересеченной местности. Для этого система оптической связи содержит разнесенные в пространстве источник направленного излучения, приемник излучения, устройство кодировки излучения, устройство дешифровки сигнала с приемника, при этом источник и приемник расположены на пересекающихся оптических осях, причем зона пересечения оптических осей сопряжена с внешним отражающим или светорассеивающим объектом. Источником излучения служит лазер с длиной волны излучения, выбранной в диапазоне 220-280 нм. 1 ил.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении пропускной способности передачи. Для этого система базовой станции включает в себя устройство (1) базовой станции, устройство (2) беспроводной передачи и устройство (3) пересылки данных, каждое из которых выполнено с возможностью установки вне помещения. Каждый из корпусов (12, 22 и 32) устройств (1-3) обеспечивает степень защиты от проникновения влаги и пыли, требуемую для установки вне помещения. Корпус (12) устройства (1) базовой станции вмещает электронное оборудование (11), функционирующее в качестве базовой станции. Корпус (22) устройства (2) беспроводной передачи вмещает электронное оборудование (21), функционирующее в качестве радиостанции для выполнения беспроводной передачи с другим устройством для соединения устройства (1) базовой станции с транзитной сетью мобильной связи. Корпус (32) устройства (3) пересылки данных вмещает электронное оборудование (31), функционирующее в качестве маршрутизатора или коммутатора для пересылки пакетов данных или кадров данных между устройством (1) базовой станции и устройством (2) беспроводной передачи. Это исключает потребность в сооружении здания/контейнера для установки системы базовой станции. 13 з.п. ф-лы, 3 ил.

Изобретение относится к системе связи, использующей связь машинного типа, и предназначено для повышения надежности приема целевого фрейма. Устройство связи, система связи и способ связи взаимодействуют для передачи сигнала от базовой станции, при этом сигнал включает в себя текущий фрейм и целевой фрейм. Модуль отсчета отсчитывает период фрейма, и модуль управления приемом обеспечивает переход модуля приема в состояние ожидания. Модуль управления приемом обеспечивает возврат модуля приема из состояния ожидания до достижения результатом отсчета, осуществляемого модулем отсчета, целевого фрейма. Модуль управления приемом также обеспечивает возврат модуля приема в состояние ожидания на период времени на основе разности между текущим фреймом и целевым фреймом. 5 н. и 16 з.п. ф-лы, 28 ил.
Наверх