Способ определения и дифференцировки микроэмболов в мозговом кровотоке посредством ультразвуковой допплеровской системы

Изобретение относится к медицине, а именно к области функциональной диагностики, и может быть использовано в неврологии, сердечно-сосудистой хирургии, нейрохирургии. Передатчик ультразвуковой допплеровской системы излучает ультразвуковые высокочастотные сигналы, имеющие заданную частоту. Отраженные допплеровские сигналы регистрируют посредством блока приема. Осуществляют предварительную аналоговую обработку полученных сигналов, имеющих различную мощность и содержащих сигналы фонового кровотока и транзиторные сигналы высокой интенсивности. Преобразуют отраженные допплеровские сигналы в аналогово-цифровом преобразователе ультразвуковой допплеровской системы. Регистрируют сигналы фонового кровотока и вычисляют фоновую мощность допплеровских сигналов и текущую мощность допплеровских сигналов кровотока. Регистрируют транзиторные сигналы высокой интенсивности при превышении текущей мощности над фоновой мощностью на величину заданного порога детекции мощности. Для выявления сигнала микроэмбола отраженные допплеровские сигналы получают с двух глубин зондирования - основной глубины, на которой расположен исследуемый сосуд, и вспомогательной глубины. Для каждой глубины проводят регистрацию транзиторных сигналов высокой интенсивности. Маркируют текущий транзиторный сигнал высокой интенсивности как сигнал микроэмбола, если указанный сигнал зафиксирован только на основной глубине, а на вспомогательной он отсутствует и его длительность находится в заданных пределах. Во всех остальных случаях его маркируют как сигнал артефакта. Вычисляют длительность, минимальную и максимальную частоты сигнала микроэмбола и индекс частотной модуляции по формуле:

FMI=(Fmax-Fmin)/Thits,

где FMI - индекс частотной модуляции, Гц/сек;

Fmax - максимальная частота сигнала микроэмбола, Гц;

Fmin - минимальная частота сигнала микроэмбола, Гц;

Thits - длительность сигнала микроэмбола, сек.

Микроэмбол классифицируют как материальный, если индекс частотной модуляции меньше заданного минимального порога дифференцировки, как газовый, если индекс частотной модуляции больше заданного максимального порога дифференцировки, и как неопределенный, если индекс частотной модуляции находится между заданными максимальным и минимальным порогами дифференцировки. Способ обеспечивает высокую чувствительность в регистрации микроэмболов и высокую специфичность определения их состава за счет получения данных отраженных лучей с разных глубин от луча одной частоты. 3 пр.

 

Изобретение относится к медицине, а именно к области функциональной диагностики, и может быть применено в неврологии, сердечно-сосудистой хирургии, нейрохирургии, при проведении реанимационных мероприятий и нагрузочных функциональных тестов с целью верификации микроэмболов в церебральном сосудистом русле, определения их состава и расчета прогностической значимости как предиктора развития последующей острой церебральной ишемии.

Диагностика церебральной эмболии является сложной задачей, поскольку ни один из клинико-инструментальных признаков, связанных как с донорским источником, так и с реципиентной артерией, не является патогномоничным. Только ультразвуковая транскраниальная допплерография обладает уникальной возможностью прямой детекции движения эмболического материала по сосудам головного мозга.

В настоящее время разработаны и описаны методы обнаружения и определения микроэмболов в кровотоке, основанные на исследовании кровотока посредством ультразвуковой допплеровской системы. Ультразвуковая допплерография является единственным методом, позволяющим осуществить прямую детекцию церебральной эмболии. Поскольку церебральная макроэмболия является чрезвычайно редким событием, то при допплеровском исследовании речь идет о детекции церебральных микроэмболов. При прохождении микроэмбола через лоцируемый сосуд возникает так называемый микроэмболический сигнал или транзиторный сигнал высокой интенсивности. Наличие микроэмболических сигналов является предвестником макромикроэмболии и требует проведения профилактических мероприятий.

Одной из наиболее важных задач допплеровской детекции церебральной эмболии является необходимость обеспечения четкой автоматической дифференцировки истинных микроэмболических сигналов от артефактов.

Избежать появления артефактов, вызванных смещением датчика, работой диатермокоагулятора во время операции или другими причинами, практически невозможно.

За последние два десятилетия был предложен ряд новых подходов, направленных на автоматическую дифференцировку микроэмболических сигналов (МЭС) и артефактов: оценка комплекса временных, частотных и энергетических параметров сигналов, оценка постэмболических спектральных паттернов и другие.

Одним из эффективных подходов к дифференцировке микроэмболических сигналов и артефактов является двухглубинный метод, суть которого состоит в одновременной локации двух различных сегментов одной церебральной артерии, что позволяет зарегистрировать прохождение эмбола последовательно на двух различных глубинах (сначала в проксимальном сегменте артерии, затем - в дистальном) с определенной временной задержкой, тогда как артефакт появляется одновременно в двух лоцируемых сегментах. Обычно используют инсонацию средней мозговой артерии с разницей глубин 10 мм при размере объема локации 5 мм. В этом случае получают временную задержку появления микроэмболических сигналов (МЭС) в двух объемах локации, которая позволяет автоматически отдифференцировать микроэмболические сигналы и артефакты (1 или 2 мс). Специфичность достигает почти 100%. Двуглубинный метод позволяет достоверно отдифференцировать газовые МЭС, вызывающие зашкаливание регистрирующего устройства, от истинных артефактов. В то же время показано, что в ряде случаев имеют место курьезные регистрации. Так, МЭС может не появиться в дистальном объеме локации. У части пациентов невозможно использовать данный алгоритм обнаружения эмболов, что объясняют особенностями строения средней мозговой артерии у этих пациентов. Данное ограничение снижает чувствительность метода.

Несмотря на достигнутые успехи в выделении из допплерографической записи микроэмболов, проблема дифференцировки выявленных микроэмболических сигналов остается актуальной и до конца не решенной.

"Золотого стандарта" дифференцировки состава микроэмболических сигналов в медицине не существует. Ранее в медицинском научном сообществе были опубликованы рекомендации по данной проблеме без убедительной доказательной базы. Существуют методы по дифференцировке состава микроэмболических частиц, подкрепленные экспериментальной и доказательной базой.

Одним из наиболее изученных и широко применяемых методов дифференцировки состава микроэмболического материала является двухчастотный метод. Он включает излучение ультразвуковых высокочастотных сигналов, имеющих заданную частоту, посредством передатчика ультразвуковой допплеровской системы, получение отраженныхдопплеровских сигналов посредством блока приема ультразвуковой допплеровской системы и предварительную аналоговую обработку этих сигналов, имеющих различную мощность и содержащих сигналы фонового кровотока и транзиторные сигналы высокой интенсивности, преобразование отраженных допплеровских сигналов в аналогово-цифровом преобразователе ультразвуковой допплеровской системы, регистрацию сигналов фонового кровотока и вычисление фоновой мощности допплеровских сигналов, вычисление текущей мощности допплеровских сигналов кровотока, регистрацию транзиторньгх сигналов высокой интенсивности, маркировку полученных транзиторных сигналов высокой интенсивности как артефакт или микроэмбол, дифференцировку микроэбола на материальный или газовый (см., напр., патент ЕА 014286 В1, опубл. 29.10.2010). Данное техническое решение, по мнению заявителя, является наиболее близким аналогом настоящего технического решения. Его особенность заключается в том, что дифференцировку микроэмбола на материальный или газовый осуществляют путем сравнения мощности сигнала микроэмбола, полученного с помощью ультразвукового высокочастотного сигнала, имеющего частоту 2,0 МГц, с мощностью сигнала микроэмбола, полученного с помощью ультразвукового высокочастотного сигнала, имеющего частоту 2,5 МГц. При выявлении разницы между сравниваемыми значениями мощности сигнала микроэмбола, равной менее 1,0 дБ, классифицируют выявленный микроэмбол как материальный.

К сожалению, на современном этапе развития ультразвуковой допплеровской техники функциональные возможности приборов не позволяют генерировать абсолютно идентичные ультразвуковые волны с одинаковыми физическими параметрами на разных частотах. Это обстоятельство не позволяет обеспечить на сегодняшний день высокую чувствительность и специфичность метода, необходимые для внедрения в широкую клиническую практику для определения количественного и качественного состава микроэмболического материала.

Задачей, на решение которой направлено заявляемое изобретение, является создание такого способа определения микроэмболов в кровотоке, который обеспечил бы высокую чувствительность по регистрации микроэмболов и высокую специфичность их определения.

Поставленная задача в предложенном техническом решении решается за счет того, что в способе определения и дифференцировки микроэмболов в мозговом кровотоке посредством использования ультразвуковой доппплеровской системы, включающем излучение ультразвуковых высокочастотных сигналов, имеющих заданную частоту, посредствомпередатчика ультразвуковой допплеровской системы, получение отраженных допплеровских сигналов посредством блока приема ультразвуковой допплеровской системы и предварительную аналоговую обработку этих сигналов, имеющих различную мощность и содержащих сигналы фонового кровотока и транзиторные сигналы высокой интенсивности, преобразование отраженных допплеровских сигналов в аналогово-цифровом преобразователе ультразвуковой допплеровской системы, регистрацию сигналов фонового кровотока и вычисление фоновой мощности допплеровских сигналов, вычисление текущей мощности допплеровских сигналов кровотока; регистрацию транзиторных сигналов высокой интенсивности при превышении текущей мощности над фоновой мощностью на величину заданного порога детекции мощности, согласно техническому решению, для выявления сигнала микроэмбола отраженные допплеровские сигналы получают с двух глубин зондирования - основной глубины, на которой расположен исследуемый сосуд, и вспомогательной глубины, для каждой глубины проводят регистрацию транзиторных сигналов высокой интенсивности, маркируют текущий транзиторный сигнал высокой интенсивности как сигнал микроэмбола, если указанный сигнал зафиксирован только на основной глубине, а на вспомогательной он отсутствует и его длительность находится в заданных пределах; во всех остальных случаях его маркируют как сигнал артефакта, далее вычисляют длительность, минимальную и максимальную частоты сигнала микроэмбола и вычисляют индекс частотной модуляции по формуле:

FMI=(Fmax-Fmin)/Thits,

где FMI - индекс частотной модуляции, Гц/сек;

Fmax - максимальная частота сигнала микроэмбола, Гц;

Fmin - минимальная частота сигнала микроэмбола, Гц;

Thits - длительность сигнала микроэмбола, сек,

микроэмбол классифицируют как материальный, если индекс частотной модуляции меньше заданного минимального порога дифференцировки, как газовый, если индекс частотной модуляции больше заданного максимального порога дифференцировки, и как неопределенный, если индекс частотной модуляции находится между заданными максимальным и минимальным порогами дифференцировки.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является обеспечение высокой чувствительности по регистрации микроэмболов и высокой специфичности их определения в условиях применения доплеровского ультразвукового оборудования, применяемого на современном этапе развития за счет получения данных отраженных лучей с разных глубин от луча одной частоты.Способ определения и дифференцировки микроэмболов в мозговом кровотоке посредством ультразвуковой допплеровской системы осуществляют в следующей последовательности.

Посредством передатчика ультразвуковой допплеровской системы через кору головного мозга производят излучение ультразвуковых высокочастотных сигналов, имеющих заданную частоту.

Посредством блока приема ультразвуковой допплеровской системы получают отраженные допплеровские сигналы с двух глубин зондирования - основной глубины, на которой расположен исследуемый сосуд, и вспомогательной, так называемой референсной глубины, сигнал с которой используется при определении микроэмбола методом сравнения с сигналом с основной глубины. Производят предварительную аналоговую обработку сигналов, имеющих различную мощность и содержащих сигналы фонового кровотока и транзиторные сигналы высокой интенсивности (HITs), и преобразование отраженных допплеровских сигналов в аналогово-цифровом преобразователе ультразвуковой допплеровской системы.

Для каждой глубины проводят регистрацию фонового кровотока и вычисление фоновой мощности Pbg и текущей мощности Р допплеровских сигналов кровотока. Текущая мощность - это усредненная пиковая мощность сигнала. При превышении текущей мощности над фоновой мощностью на величину заданного порога детекции мощности (5-7 дБ) регистрируют транзиторный сигнал высокой интенсивности (HITs). При этом вычисления производят в соответствии с формулой:

где Pbg - фоновая мощность, мВт;

Р - текущая мощность, мВт;

Dp - порог детекции мощности, дБ.

Следующим этапом вычисляют длительность, минимальную и максимальную, частоты каждого транзиторного сигнала.

Далее, используя полученные с обеих глубин данные, маркируют текущий транзиторный сигнал высокой интенсивности. Если указанный сигнал зафиксирован только на основной глубине, а на вспомогательной он отсутствует, при этом его длительность находится в заданных пределах (0,030-0,5 с), его маркируют как сигнал микроэмбола. Во всех остальных случаях его маркируют как сигнал артефакта.Потом производят дифференцировку микроэбола на материальный или газовый. Для дифференцировки микроэмболов у промаркированного сигнала микроэмбола вычисляют индекс частотной модуляции по формуле:

где FMI - индекс частотной модуляции, Гц/сек;

Fmax - максимальная частота сигнала микроэмбола, Гц;

Fmin - минимальная частота сигнала микроэмбола, Гц;

Thits - длительность сигнала микроэмбола, сек.

Микроэмбол классифицируют как материальный, если индекс частотной модуляции меньше заданного минимального порога дифференцировки (FMI менее 1000 Гц/сек). Микроэмбол классифицируют как газовый, если индекс частотной модуляции больше заданного максимального порога дифференцировки (FMI более 3000 Гц/сек). Как неопределенный микроэмбол классифицируют, если индекс частотной модуляции находится между заданными максимальным и минимальным порогами дифференцировки.

Указанные выше числовые значения минимального и максимального порогов дифференцировки были определены опытным путем на основании анализа полученных значений индекса FMI для небольшой группы пациентов Национального медико-хирургического Центра им. Н.И. Пирогова, а также анализа данных от созданных фантомов, имитирующих движение крови человека. Эти значения могут быть скорректированы после проведения сбора, анализа и последующей статистической обработки данных для разных групп верифицированных пациентов.

Примеры конкретного применения способа

Пример 1

Больной А., 64 года. Поступил в нейрососудистое отделение с диагнозом: ишемический инсульт в бассейне левой внутренней сонной артерии. Для верификации патогенетического подтипа ишемического инсульта в отделении пациенту проводились все стандартные ультразвуковые обследования сердечно-сосудистой системы, включая билатеральный транскраниальный допплеровский мониторинг средней мозговой артерии с детекцией МЭС. При проведении дуплексного сканирования брахиоцефальных артерий в левой внутренней сонной артерии визуализирована осложненная изъязвлением атеросклеротическая бляшка, стенозирующая просвет сосуда до 70%. За 60 мин допплеровского мониторинга было получено слева 2 МЭС материального происхождения(FMI меньше 100). На основании полученных данных был объективизирован атеротромбоэмболический подтип ишемического инсульта. Пациенту назначена антитромботическая терапия. В связи с наличием материальных МЭС в церебральном сосудистом русле риск повторного развития инсульта был оценен как очень высокий, в связи с чем была проведена вторичная хирургическая профилактика.

Пример 2

Больной Б., 35 лет. Поступил в нейрососудистое отделение с предварительным диагнозом: ишемический инсульт в вертебрально-базиллярном бассейне неустановленной этиологии. Проведение трансторакальной эхокардиографии позволило предположить наличие у пациента открытого овального окна и парадоксальной кардиоэмболии. Была проведена проба с билатеральным транскраниальным допплеровским мониторингом средней мозговой артерии с контрастным усилением микропузырьками воздуха и зарегистрировано 124 МЭС газового происхождения (FMI от 10000 Гц/сек до 78000 Гц/сек), что подтвердило наличие у пациента правого-левого шунта среднего размера. Проведена ультразвуковая визуализация вен верхних и нижних конечностей. Назначена антитромботическая терапия.

Пример 3

Больной С., 56 лет. Поступил в кардиохирургическое отделение с диагнозом: ишемическая болезнь сердца. Больному проводилась операция аорто-коронарное шунтирование в условиях искусственного кровообращения с билатеральным допплеровским мониторингом церебральной гемодинамики. На голову пациента был зафиксирован специальный шлем и два допплеровских датчика, излучающих частоту 2 Мг для локации средней мозговой артерии, регистрации скоростных показателей кровотока и выделения микроэмболических частиц в потоке крови.

За время подключения пациента к аппарату искусственного кровообращения было зафиксировано 129 МЭС; из них только 6 относились к твердым микроэмболическим частицам (FMI не более 1000 Гц/сек). Остальные МЭС были классифицированы как газовые (FMI в пределах 4000-45000 Гц/сек). Послеоперационный и восстановительный периоды протекали без осложнений.

Проведенные клинические испытания данного способа показали, что специфичность данного способа составляет 95%, а его чувствительность - 100%.

Способ определения и дифференцировки микроэмболов в мозговом кровотоке посредством использования ультразвуковой допплеровской системы, включающий излучение ультразвуковых высокочастотных сигналов, имеющих заданную частоту, посредством передатчика ультразвуковой допплеровской системы, получение отраженных допплеровских сигналов посредством блока приема ультразвуковой допплеровской системы и предварительную аналоговую обработку этих сигналов, имеющих различную мощность и содержащих сигналы фонового кровотока и транзиторные сигналы высокой интенсивности, преобразование отраженных допплеровских сигналов в аналогово-цифровом преобразователе ультразвуковой допплеровской системы, регистрацию сигналов фонового кровотока и вычисление фоновой мощности допплеровских сигналов, вычисление текущей мощности допплеровских сигналов кровотока; регистрацию транзиторных сигналов высокой интенсивности при превышении текущей мощности над фоновой мощностью на величину заданного порога детекции мощности, отличающийся тем, что для выявления сигнала микроэмбола отраженные допплеровские сигналы получают с двух глубин зондирования -основной глубины, на которой расположен исследуемый сосуд, и вспомогательной глубины, для каждой глубины проводят регистрацию транзиторных сигналов высокой интенсивности, маркируют текущий транзиторный сигнал высокой интенсивности как сигнал микроэмбола, если указанный сигнал зафиксирован только на основной глубине, а на вспомогательной он отсутствует и его длительность находится в заданных пределах; во всех остальных случаях его маркируют как сигнал артефакта, далее вычисляют длительность, минимальную и максимальную частоты сигнала микроэмбола и вычисляют индекс частотной модуляции по формуле:
FMI=(Fmax-Fmin)/Thits,
где FMI - индекс частотной модуляции, Гц/сек;
Fmax - максимальная частота сигнала микроэмбола, Гц;
Fmin - минимальная частота сигнала микроэмбола, Гц;
Thits - длительность сигнала микроэмбола, сек,
микроэмбол классифицируют как материальный, если индекс частотной модуляции меньше заданного минимального порога дифференцировки, как газовый, если индекс частотной модуляции больше заданного максимального порога дифференцировки, и как неопределенный, если индекс частотной модуляции находится между заданными максимальным и минимальным порогами дифференцировки.



 

Похожие патенты:

Изобретение относится к медицине, а именно к функциональной диагностике. Выполняют измерение скорости кровотока методом допплерографии.

Изобретение относится к медицине, в частности к онкологии, и может быть использовано для ранней диагностики перитонеального рецидива рака яичников после оптимальных циторедуктивных операций.

Изобретение относится к медицине, а в частности к гепатологии и ультразвуковой диагностике, и может быть использовано для диагностики портальной гипертензии при хронических диффузных заболеваниях печени.

Изобретение относится к медицине, а именно к акушерству и гинекологии, и может быть использовано для прогнозирования риска развития прогрессирующего дистресса гипотрофичного плода.

Изобретение относится к медицине, а именно к кардиологии, и может быть использовано для диагностики скрытой диастолической сердечной недостаточности. Проводят эхокардиографическое исследование с допплерографией, применяют пробу с изометрической нагрузкой.

Изобретение относится к медицине, а именно к акушерству, и может быть использовано в целях прогнозирования риска развития патологии эмбриона и экстраэмбриональных структур у беременных с тромбофилией.

Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии, и может быть использовано для определения функционирования бедренно-тибиальной реконструкции после шунтирующих операций.

Изобретение относится к медицине и может быть использовано в хирургии и нефрологии для диагностики риска острого повреждения почек (ОПП). В режиме цветного допплеровского картирования проводят исследование сосудов почек.
Изобретение относится к медицине, в частности к гинекологии, и может быть использовано для определения типа строения фолликулярного аппарата яичников у девственниц пубертатного периода с синдромом поликистозных яичников без сопутствующей обменно-эндокринной патологии.

Изобретение относится к медицине, а именно к нефрологии, и может быть использовано для исследования гемодинамических нарушений в почечной артерии при нефроптозе. Проводят ультразвуковую диагностику (УЗДГ) почечной артерии обеих почек сначала в ортостазе, затем в клиностазе.

Изобретение относится к области медицины, а именно к нейрохирургии. Проводят непрерывный мониторинг церебральной и системной гемодинамики, регистрируя линейную скорость кровотока в обеих средних мозговых артериях и системное артериальное давление в течение не менее 4 мин. Затем оценивают состояние ауторегуляции мозгового кровотока с помощью кросс-спектрального анализа указанных временных рядов. Рассчитывают фазовый сдвиг между спонтанными колебаниями линейной скорости кровотока и системного артериального давления в диапазоне волн Майера. При значениях фазового сдвига менее 0.5 радиан определяют функционально значимый стеноз. Способ позволяет неинвазивно в физиологических условиях оценивать изменение церебральной гемодинамики при данной патологии. 8 ил., 2 пр.

Группа изобретений относится к медицинской технике, а именно к средствам позиционирования допплеровского ультразвукового преобразователя. Способ содержит этапы, на которых обнаруживают сигнал колебания давления от надутой манжеты, расположенной на артерии пациента, ультразвуковой пульсовый сигнал от доплеровского ультразвукового преобразователя, расположенного вдоль артерии, извлекают первый сигнал из сигнала колебания давления и ультразвукового пульсового сигнала, причем первый сигнал указывает на степень синхронизации между сигналом колебания давления и ультразвуковым пульсовым сигналом, и выводят сигнал индикации для того, чтобы указывать на то, что доплеровский ультразвуковой преобразователь находится в требуемом положении, когда первый сигнал отвечает предварительно определенному условию. Способ осуществляется посредством устройства, содержащего первый детектор для обнаружения сигнала колебания давления от надутой манжеты, второй детектор для обнаружения ультразвукового пульсового сигнала от доплеровского ультразвукового преобразователя, расположенного вдоль артерии, процессор и интерфейс. Система измерения потока крови содержит манжету, доплеровский ультразвуковой преобразователь, расположенный вдоль артерии, и устройство позиционирования доплеровского ультразвукового преобразователя. Использование изобретений позволяет повышать точность позиционирования. 3 н. и 12 з.п. ф-лы, 4 ил.

Изобретение относится к медицинской технике, а именно к ультразвуковым средствам измерения регуртирующего потока. Способ включает этапы, на которых принимают указание выбора местоположения первого отверстия в сердце, передают ультразвуковые волны к нему, получают ультразвуковые эхо-сигналы, обрабатывают эхо-сигналы для получения количественного выражения для потока через первое отверстие. Затем принимают указание выбора местоположения второго отверстия в сердце, передают ультразвуковые волны к нему, получают ультразвуковые эхо-сигналы, обрабатывают эхо-сигналы для получения количественного выражения для расхода потока или объемного расхода через второе отверстие и векторно объединяют количественные выражения для расхода потока или объемного расхода через первое и второе местоположения отверстий. Система содержит ультразвуковой датчик с матрицей преобразователей для передачи ультразвуковой энергии и приема ультразвукового эхо-сигнала из местоположений первого и второго отверстий в сердце, процессор изображений, реагирующий на получаемый эхо-сигнал, доплеровский процессор, процессор для количественного определения потока, выполненный с возможностью получения измерения поля скоростей потока вблизи каждого из местоположений и векторного объединения количественных выражений для расхода потока или объемного расхода, и устройство отображения. Использование изобретения позволяет повысить точность определения местоположения регуртитационного отверстия клапана. 2 н. и 13 з.п. ф-лы, 6 ил.
Изобретение относится к медицине, неврологии и лучевой диагностике и может быть использовано для прогнозирования исхода ишемического инсульта головного мозга. При нарушении сознания на 3-и сутки от начала заболевания по шкале комы Глазго 8 баллов и менее осуществляют КТ-перфузию с количественным определением кровотока в стволе головного мозга на уровне большого затылочного отверстия и цветовое дуплексное сканирование интракраниальных отделов позвоночных артерий. При сочетании следующих показателей: снижении кровотока в стволе головного мозга ниже 30 мл на 100 г мозгового вещества в минуту по данным КТ-перфузии, диастолической скорости кровотока равной 0, индексе резистентности Пурсело равном 1,0, индексе пульсативности Гослинга более 1,8 по данным цветового дуплексного сканирования прогнозируют неблагоприятный исход. Способ обеспечивает высокую точность прогнозирования исхода данной патологии. 2 пр.

Группа изобретений относится к области медицины. Устройство офтальмологической линзы с энергообеспечением и с системой контроля васкуляризации сетчатки содержит: несущую вставку, содержащую переднюю и заднюю криволинейные дугообразные поверхности, причем передняя криволинейная и задняя криволинейные дугообразные поверхности формируют полость, способную содержать источник энергии, имеющий размеры в соответствии с площадью внутри полости, причем источник энергии электрически соединен и способен обеспечивать энергией микропьезоэлектрический элемент с электронной схемой обратной связи и контроллером, причем контроллер содержит вычислительный процессор, осуществляющий цифровую связь с цифровым устройством хранения данных, и причем в цифровом устройстве хранения данных хранится программный код; передатчик, находящийся в логической связи с процессором, а также в логической связи с сетью передачи данных, причем программное обеспечение выполняется по запросу и позволяет процессору: принимать данные, описывающие выявленный участок пульсирующего сосуда, который формирует часть васкуляризации сетчатки глаза; воздействовать на микропьезоэлектрический элемент для подачи выходного сигнала по меньшей мере на один выявленный участок пульсирующего сосуда; принимать данные от электронной схемы обратной связи, описывающие изменение выходного сигнала, поданного по меньшей мере на один выявленный участок пульсирующего сосуда; визуализировать выявленный участок пульсирующего сосуда с использованием данных, принимаемых от электронной схемы обратной связи; и отслеживать изменения васкуляризации сетчатки за счет сравнения визуализированного выявленного участка с предыдущим изображением с течением времени. Применение данной группы изобретений позволит повысить точность анализа васкуляризации сетчатки. 3 н. и 20 з.п. ф-лы, 8 ил.
Изобретение относится к медицине, а именно к хирургии, и может быть использовано для хирургического лечения болевого синдрома при медиальном остеоартрозе коленного сустава. Осуществляют коагуляцию новообразованных патологических сосудов в коленном суставе под ультразвуковым контролем в режиме цветовой допплерографии. Выявляют область неоангиогенеза и наиболее крупный питающий сосуд выявленной зоны. Под контролем УЗ-датчика проводят пункционную иглу к питающему сосуду в области неоангиогенеза. В просвет иглы вводят торцовый световод и подводят его к сосуду. Осуществляют воздействие лазерным излучением с длиной волны 1560 нм, мощностью излучения 9 Вт в постоянном режиме до облитерации новообразованных сосудов. Контролируют продолжительность вмешательства по УЗ-картине прекращения кровотока в зоне интереса. Способ обеспечивает купирование болевого синдрома при минимальном повреждении окружающих тканей за счет точного позиционирования рабочего конца иглы в зоне лазерного воздействия, обеспечивающего целенаправленное воздействие на центральный сосуд очага неоангиогенеза. 1 пр.

Изобретение относится к медицинской технике, а именно к ультразвуковым диагностическим системам. Диагностическая ультразвуковая система для измерения регургитирующего потока содержит ультразвуковой зонд, процессор изображений, фильтр пульсаций стенок сосудов, чувствительный к принятым отраженным сигналам, имеющий характеристику отклика, простирающуюся от нуля до пределов Найквиста, составляющих ±1, при этом характеристика отклика имеет только один максимум в диапазоне от 1/2 до 2/3 Найквиста, причем характеристика отклика постепенно увеличивается от нуля до максимума, система также содержит допплеровский процессор, процессор количественной оценки потока и устройство отображения. Изобретение позволяет повысить точность измерения. 9 з.п. ф-лы, 6 ил.

Изобретения относится к медицине, а именно к дерматовенерологии, и может быть использовано для дифференциальной диагностики специфических и неспецифических уретритов у мужчин. Используют эндоскопический зонд с использованием гелий-неонового лазера с длиной волны 0,63 мкм для лазерной доплеровской флоуметрии. Зонд устанавливают непосредственно в уретру до перехода переднего отдела в задний. Проводят анализ изменений микроциркуляции по графической записи и рассчитывают параметры по формуле И = M 3 σ ( A max α F max α − 1,3 A max L F F max L F + 1,7 A max H F F max H F ) − 4,9 A max C F F max C F , где И - индекс микроциркуляции, отражающий связь показателей микроциркуляции с амплитудно-частотным спектром, М - показатель микроциркуляции в перфузионных единицах, σ - среднеквадратичное отклонение, Amax - максимальная амплитуда в каждой группе колебаний амплитудно-частотного спектра, Fmax - максимальная частота в каждой группе колебаний, α - медленные ритмы 1-3 цикла в минуту, LF - медленные ритмы 4-12 циклов в минуту, HF - быстрые ритмы 12-36 циклов в минуту, CF - пульсовые колебания. При индексе микроциркуляции 6,0 ед. диагностируют уретриты, вызванные условно-патогенной флорой. При индексе микроциркуляции 2,7 ед. - уретриты, вызванные патогенными микроорганизмами. Способ обеспечивает упрощение дифференциальной диагностики уретритов за счет оценки состояния микроциркуляции в уретре в зависимости от этиологического агента, обеспечивает раннюю диагностику гемодинамических и микроциркуляторных нарушений, связанных с патологическим процессом в уретре. 2 табл., 2 пр.

Изобретение относится к медицине, неврологии, ультразвуковой диагностике и может быть использовано у пациентов с острыми нарушениями мозгового кровообращения (ОНМК) для дифференциальной диагностики артериального и венозного характера инсульта. Способ включает анализ значений оценочных шкал неврологического статуса пациента и инструментальных методов исследования. В качестве оценочной используют визуально-аналоговую шкалу, в качестве инструментального метода обследования – ультразвуковое. Вероятность венозного или артериального ишемического инсульта рассчитывают с использованием формулы: где X1 - значение интенсивности головной боли у пациента, определенное по визуально-аналоговой шкале, Х2 - ультразвуковой показатель артериовенозного соотношения мозгового кровотока, 0,856 и 0,192 - коэффициенты регрессии, 4,626 – константа. В случае значений Р больше 0, но менее 0,5 диагностируют артериальный ишемический инсульт. При Р равном или более 0,5 до 1,0 - венозный инсульт головного мозга. Способ обеспечивает раннюю дифференциальную диагностику характера поражения головного мозга в остром периоде инсульта. 1 табл., 3 пр.

Группа изобретений относится к медицинской технике, а именно к ультразвуковому исследованию кровеносных сосудов тела. Ультразвуковое устройство для анализа потока текучей среды тела для осуществления способа ультразвукового анализа содержит ультразвуковой зонд для исследования объема и схему управления, сконфигурированную с возможностью осуществления этапов, на которых если при исследовании внутри объема находят один или более сосудов, то выбирают для анализа потока текучей среды сосуд из числа сосудов, найденных внутри объема, формируют информацию, конкретно относящуюся к выбранному сосуду, далее определяют, совпадает ли выбранный сосуд с целевым сосудом, в случае если совпадает, то тогда предоставляют индикацию в отношении нормального состояния потока текучей среды в выбранном сосуде, в противном случае повторяют выбор, формирование и определение для следующего сосуда из числа найденных сосудов до тех пор, пока внутри объема не будет найден никакой другой следующий сосуд, причем упомянутые действия не зависят от отображения изображений ультразвукового сканирования и выполняются автоматически и без необходимости вмешательства пользователя. Считываемый компьютером носитель данных содержит компьютерную программу, причем инструкции компьютерной программы исполняются посредством процессора для осуществления действий способа. Данная группа изобретений позволяет расширить арсенал технических средств. 3 н. и 8 з.п. ф-лы, 3 ил.
Наверх