Двухступенчатый способ очистки поверхности от загрязнений нефтепродуктами

Изобретение относится к способам очистки поверхности от углеводородных загрязнений и может быть использовано в различных областях промышленности для механизированной мойки и зачистки оборудования и материалопроводов при подготовке к внутреннему осмотру, ремонту и/или смене содержимого. Способ включает первый этап, заключающийся в подаче рабочего тела в виде струи на обрабатываемую поверхность и удаление из зоны обработки продуктов промывки, и второй этап, заключающийся в ополаскивании отмытой поверхности вторым рабочим телом и удалении продуктов ополаскивания. Продукты промывки и ополаскивания с обоих этапов обработки отводят в сборник-сепаратор для их грубого разделения на углеводородный, водный и эмульсионный слои. Эмульсионный слой, содержащий прямую и обратную эмульсии, используют в качестве рабочего тела на первом этапе обработки. Водный слой используют в качестве рабочего тела на втором этапе обработки. Часть углеводородного слоя направляют на станцию обезвоживания для отделения от него воды и возврата ее на восполнение потерь водного слоя, а обезвоженные углеводороды реализуют как товарный продукт. Технический результат: эффективная отмывка поверхности от загрязнений при упрощении технологии и сокращении общих затрат. 1 ил.

 

Изобретение относится к способам очистки поверхности от углеводородных загрязнений, таких как нефть, нефтепродукты, смазки, масла, технические и бытовые жиры, и может быть использовано в различных областях промышленности для механизированной мойки и зачистки оборудования и материалопроводов.

Традиционный способ очистки аппаратов и материалопроводов - пропарка, она сопровождается загрязнением атмосферы, сбросом «замасленного» парового конденсата, вредными условиями труда мойщиков, большими затратами рабочего времени и энергоресурсов (А.А. Евдокимов, А.Ф. Богданов, В.М. Смолянов. Высокоэффективная технология очистки котлов железнодорожных цистерн. В сб. «Повышение надежности и совершенствование методов ремонта подвижного состава», СПб ПГУПС, 2002).

Наиболее эффективный метод удаления основной массы загрязнений - это промывка органическими растворителями. Чаще других применяются универсальные растворители: ацетон, керосин, уайтспирит, являющиеся легковоспламеняющимися жидкостями (Б.Г. Петрик, П.В. Чулков, С.И. Калашников. Справочник: Растворители и составы для очистки машин и механизмов, М.: Химия, 1989). Основные операции в этих способах: промывка очищаемой поверхности, откачка образующейся смеси растворителя с углеводородными загрязнениями и сброс насыщенного отработанного раствора на очистные сооружения. Однако после удаления загрязнений необходимо, как правило, очистить обработанную поверхность от остатков растворителя. Для этого смоченную растворителем поверхность сушат, например, горячим воздухом, который необходимо перед выбросом очистить, чтобы не загрязнять атмосферу. В другом варианте поверхность споласкивают, например, водой, загрязненную часть которой потребуется затем очищать, а пленку, смачивающую поверхность, испарить в процессе сушки. Следует учесть, что отработанный растворитель по мере насыщения углеводородными загрязнениями необходимо тоже очищать, чтобы не терять его, а использовать повторно. С учетом необходимости реализации вспомогательных процессов: регенерации растворителя, ополаскивания и сушки поверхности, очистки воды - рассматриваемый метод в целом представляется наиболее сложным и энергоемким. К другим недостаткам использования ЛВЖ в качестве жидких органических растворителей относятся: взрыво- и пожароопасность, вредное и даже опасное влияние на людей и живую природу при попадании в атмосферу, почву или водоем.

К другой группе способов очистки поверхности от углеводородных загрязнений относятся те, в которых используются вода и/или водные растворы. Авторы этих способов предлагают не растворять, а эмульгировать углеводородные загрязнения. Присутствие воды действительно позволяет решить ряд вопросов. Во-первых, равновесная паровая фаза над водоуглеводородной смесью содержит более половины водяного пара, играющего роль флегматизатора, и поэтому невзрывоопасна. Во-вторых, большая теплоемкость и малая вязкость воды позволяют решить одну из основных задач: прогреть и удалить из зоны обработки высоковязкие, осмоленные и засохшие загрязнения, препятствующие чистовой обработке поверхности. Основной недостаток известных методов обработки с использованием воды заключается в том, что они не решают проблемы улавливания и последующей переработки, образующиеся при обработке водяных паров.

Известен способ очистки поверхности от углеводородных (масложировых) загрязнений, основанный на использовании двух жидкостей (патент РФ №2019318, МПК В08В 3/08, дата приоритета 28.07.1992, опубл. в 1994 г.). Отмывку поверхности изделий по этому способу проводят моющим раствором и извлекают отмытые загрязнения из моющего раствора с помощью экстрагента - вспомогательной жидкости, которая не образует устойчивой эмульсии с моющим раствором, но при этом способна селективно извлекать из него масложировые загрязнения. По мере насыщения экстрагента углеводородными загрязнениями его (экстракт) направляют на перегонку. Экстрагент отгоняют (регенерируют) и возвращают в рецикл для повторного использования. Чтобы смыть вязкие загрязнения моющим раствором процесс должен протекать при температуре >70°C, а чтобы их экстрагировать, раствор следует охлаждать до ~30°C. Таким образом, только в основном циркуляционном контуре всю массу моющего раствора необходимо быстро нагревать от ~25 до 75°C, подавать на мойку, далее охлаждать от 75 до ~25°C, направлять на экстракцию, а затем отделять от экстракта и снова нагревать, чтобы использовать повторно. Для регенерации экстрагента во втором циркуляционном контуре потребуется значительно усложнить технологическую схему, добавить еще несколько аппаратов и увеличить и без того рекордный расход энергоресурсов. Все это значительно увеличивает капитальные и эксплуатационные затраты на очистку и позволяет характеризовать способ, как бесперспективный.

Известен также способ очистки поверхности от нефтепродуктов (АС СССР №944685, МПК В08В 3/08, опубл. в 1982 г.). По этому способу очистку поверхности осуществляют водным раствором технических моющих средств (ТМС) на основе поверхностно-активных веществ (ПАВ) и электролитов. Такой раствор образует устойчивую эмульсию с углеводородными загрязнениями. Для регенерации моющего раствора эмульсию разделяют элекгрофлотацией, после чего органическую фазу удаляют, а водный раствор возвращают в рецикл для повторного использования. Названные процессы составляют основной контур, в котором циркулирует вся масса моющего раствора. Указанный способ обработки позволяет обеспечить требуемую степень очистки поверхности и использовать моющий раствор повторно. Однако разделение устойчивой эмульсии весьма сложная задача, решение которой, как правило, сопровождается появлением новых нерешенных проблем. Так, при электрофлотации значительно ускоряется коррозионный износ оборудования, пассивируются электроды, возникает проблема газоразделения, вентиляции помещения. Для предварительной электрокоагуляции необходимы затраты материалов и электроэнергии. Оборудование установки потребуется изготовить из кислотостойкого материала. Кроме того, для обработки всей массы моющего раствора потребуются габаритные аппараты большой пропускной способности. В частности, для улавливания водяных паров, содержащих не только углеводороды, но и водород, потребуется значительно увеличить поверхность теплообмена конденсаторов.

Известен способ промывки цистерн и извлечение остаточной жидкости, который включает отсасывание и/или откачку остаточной жидкости, подачу моющего раствора в цистерну, разделение смеси нефть-вода с подачей инертного газа (флотация) для отделения нефтяного компонента (патент РФ №2099156, МПК B08B 9/08, дата приоритета 23.09.1993 г., опубликован 17.06.1993 г.). Недостатки этого способа: необратимые потери дорогого инертного газа, проведение каждой из операций на отдельном транспортном средстве, большие габаритные размеры аппаратов, например конденсатора паров, сильно разбавленных воздухом.

Известны способы очистки поверхности от загрязнений нефтью с помощью коагулянта и различных депрессантов, в качестве которых используют присадки, содержащие полимеры и углеводородный растворитель (патент РФ №2109583, МПК B08B 9/08, дата приоритета 12.03.1997, опубликован 27.04.1998 г.) или водную смесь углеводородов и солей, содержащих азот, фосфор и калий, с последующей обработкой поверхности горячей водой или острым паром (патент РФ №2104103, МПК В09С 1/10, дата приоритета от 21.05.1996 г., опубликован в 1998 г.). К недостаткам этих способов, кроме отмеченных ранее, следует отнести большой расход реагентов и тепла (t>95°C) и сложность реализации процессов.

Известен двухступенчатый способ очистки поверхности от углеводородных загрязнений, включающий (на первой ступени) отмывку поверхности подогреваемым водным раствором ТМС, в состав которого входит неионогенное ПАВ на основе алкокисисилата жирного спирта 2-4 мас. % и кальцинированная сода - остальное, а на второй ступени ополаскивание отмытой поверхности чистой водой для удаления остатков соды и других компонентов моющего раствора (патент РФ №2200637, МПК B08B 3/08, дата приоритета 23.04.2001 г., опубликован в 2003 г.). Существенная особенность этого способа - применение тонкослойного отстойника для эффективного разделения фаз и поддержания определенного состава моющего раствора с концентрацией ТМС 1,5-4 мас. %. Указанный способ успешно применяется для внутренней мойки оборудования, загрязненный моющий раствор в тонкослойном отстойнике разделяется достаточно полно и очищенный водный раствор целиком направляется на повторное использование, сброс загрязненных стоков отсутствует. Тем не менее, рассматриваемый способ имеет ряд существенных недостатков. Для обеспечения требуемой полноты разделения всей массы загрязненного моющего раствора требуется сепарационное оборудование большой пропускной способности, а для поддержания хорошей моющей и деэмульгирующей способности раствора - неоправданно большие расходы ТМС и ПАВ. Не решены вопросы улавливания нефтесодержащих паров.

Наиболее близок к заявляемому изобретению и принят в качестве прототипа «Способ очистки поверхности от углеводородных загрязнений» (патент РФ №2262396, МПК B08B 3/02, дата приоритета 09.02.2004 г., опубликован 20.10.2005 г.). Указанный способ заключается в двухступенчатой струйной очистке:

- (первый этап) для быстрого разогрева и удаления основной массы углеводородных загрязнений в качестве рабочего тела используют многофазную, многокомпонентную смесь, образовавшуюся в результате предыдущей зачистки, где в качестве дисперсионной среды присутствует вода, потери которой с паром, отделяемым обводненным углеводородным слоем и удаляемым количеством обводненного шлама восполняют;

- (второй этап) чистовую обработку осуществляют циркулирующим и предварительно очищаемым от захваченных загрязнений моющим агентом, в качестве которого используют воду либо водный раствор поверхностно-активных веществ, часть моющего агента по мере снижения его качества направляют на восполнение потерь воды в рабочем теле (первого этапа), а взамен добавляют соответствующее количество свежеприготовленного водного раствора или чистой воды;

- отделенную на первом этапе часть обводненного углеводородного слоя в отдельном отстойнике разделяют на водный и углеводородный слои, водный слой возвращают в рецикл на подпитку рабочего тела (первого этапа), а отсепарированный углеводородный слой направляют на утилизацию.

Другие признаки прототипа касаются приготовления и поддержания требуемых кондиций моющего раствора для второго этапа обработки, а также выведения и промывки извлеченных при промывке шламов. Все эти вопросы в настоящей заявке мы не рассматриваем по следующим причинам:

1. В транспортируемых и используемых товарных нефтепродуктах механические примеси практически полностью отсутствуют (то же касается и товарных масло- и жиропродуктов), поэтому необходимость отделения и переработки шламов в подавляющем большинстве случаев отпадает.

2. Техническая вода, используемая для приготовления моющих растворов, содержит достаточное количество солей, что препятствует стабилизации водно-углеводородных эмульсий, образующихся при отмывке.

При очевидных преимуществах прототипа, он имеет существенные недостатки: довольно сложная технологическая схема и неоправданно большие энергозатраты, связанные с расходом реагентов и циркуляцией довольно большого количества воды не только на втором этапе обработки, но и на первом, где, в соответствии с формулой, необходимо наличие в рабочем теле водной дисперсионной среды.

Но вода, как компонент рабочего тела на первом этапе обработки, необходима только для флегматизации продуктов промывки, способных воспламениться. Для этого совсем не обязательно, чтобы в рабочем теле воды было больше, чем углеводородов. Известно, что даже в отсепарированных высоковязких нефтепродуктах содержится более 40% воды, не считая эмульгированной. Такого содержания воды вполне достаточно, чтобы исключить вероятность воспламенения паров при температуре использования рабочего тела. А поскольку на первом этапе обработки мы добиваемся удаления основной массы углеводородных загрязнений, вполне целесообразно использовать для этой цели также эмульсию воды в углеводородах. Почему? Во-первых, это не менее эффективно, поскольку неполярный растворитель легче разрушает загрязнения даже затвердевшие, и при достаточном напоре струи его расход на промывку можно уменьшить, а присутствие воды весьма существенно снижает вязкость углеводородов, что позволяет использовать для струйной отмывки даже обводненные мазуты. Во-вторых, это более экономично, поскольку общий расход воды на обработку снижается в 3-5 раз (сравните составы прямой и обратной эмульсий). В результате - существенное снижение суммарных энергозатрат.

На стадии чистовой обработки (второй этап) использовать чистую воду и моющие растворы специально подобранного состава тоже необязательно, если обеспечить достаточный напор струи и попадание ее на каждый из участков отмываемой поверхности. Присутствие в воде небольшого количества эмульгированных углеводородов никак не отражается на качестве очистки, поскольку при высокой скорости струйной обработки одновременно исключаются и контакт частиц дисперсной фазы с отмываемой поверхностью, и расслоение эмульсии.

Технической задачей, на решение которой направлено предлагаемое изобретение, является упрощение технологической схемы очистки и снижение общих затрат на обработку.

Сущность заявляемого решения заключается в том, что двухступенчатый способ очистки поверхности от углеводородных загрязнений включает:

первый этап, заключающийся в подаче рабочего тела в виде струи на обрабатываемую поверхность и удалении из зоны обработки продуктов промывки,

второй этап, заключающийся в ополаскивании отмытой поверхности вторым рабочим телом и удалении продуктов промывки.

Продукты промывки с обоих этапов обработки отводят в сборник-сепаратор для их грубого разделения на три слоя: углеводородный, водный и эмульсионный, где представлены оба типа эмульсий (прямая и обратная), обезвоживание части углеводородного слоя с возвратом извлеченной воды в рецикл для восполнения потерь и возврат, хотя бы части двух других слоев на повторное использование.

Сбор продуктов промывки на первом и втором этапах осуществляется в один сборник-сепаратор, где непрерывно происходит их грубое разделение на углеводородный, водный и эмульсионный слои. На первом этапе обработки в качестве рабочего тела используют эмульсионный слой, где представлены оба типа эмульсии (прямая и обратная). Чистовую обработку (второй этап) осуществляют водным слоем продуктов предыдущей зачистки.

По крайней мере, часть продуктов предыдущей зачистки в виде углеводородного слоя направляют на станцию обезвоживания (например, по патенту РФ №2327504, БИ №18, 2008, приоритет от 31.08.2006), где из него отделяют воду (например, по патенту РФ №2315803, БИ №3, 2008, приоритет от 07.11.2005) и возвращают ее на восполнение потерь водного слоя, используемого для чистовой обработки, а обезвоженные углеводороды реализуют, как товарный продукт.

Предлагаемый способ позволяет, сохраняя качество очистки поверхности, существенно упростить технологическую схему (за счет исключения аппаратуры, предназначенной для специальной подготовки рабочих тел и промывки извлеченного шлама), а также значительно сократить затраты энергоресурсов на обработку. Действительно, возврат на повторное использование воды, отсепарированной в процессе обезвоживания углеводородного слоя, позволяет почти полностью прекратить потребление природной воды, расходуемой ранее на приготовление рабочих тел.

Сущность предлагаемого изобретения поясняется чертежом, где на Фиг. представлена принципиальная схема, поясняющая сущность предлагаемого способа.

На схеме показаны:

1 - обрабатываемая емкость; 2 и 3 - моечные машинки; 4 - сборник-сепаратор продуктов промывки; 5 и 6 - напорные насосы; 7 - подогреватель рабочего тела 1; 8 - подогреватель рабочего тела 2; 9 - конденсатор паров; 10 - воздушка; 11 - станция обезвоживания углеводородов, например, по патенту РФ №2327504 (БИ №18, 2008, приоритет от 31.08.2006).

Очистка внутренней поверхности обрабатываемой емкости 1 протекает следующим образом. На первом этапе обработки через сопла моечной машинки 2, вращающейся или колеблющейся по специальной программе, из средней части сборника-сепаратора 4 насосом 5 подают рабочее тело I, представляющее собой подогретый в подогревателе 7 эмульсионный слой, образовавшийся в результате расслоения продуктов предыдущей промывки. Продукты промывки возвращаются в сборник-сепаратор 4, где происходит их грубое разделение на три слоя: верхний (углеводородный), нижний (водный) и эмульсионный, включающий оба типа эмульсии (прямую и обратную).

Когда основная масса углеводородных загрязнений из емкости 1 удалена, приступают ко второму этапу обработки - чистовой мойке (ополаскивание). Для этого через сопла другой моечной машинки 3 насосом 6 из нижней части сборника-сепаратора 4 подают рабочее тело II, представляющее собой подогретый в подогревателе 8 водный слой, образовавшийся в результате расслоения продуктов предыдущей промывки. При этом обеспечивается необходимый напор, а вращение моечной машинки 3 осуществляется по специальной программе, обеспечивающей попадание струи на каждый из участков отмываемой поверхности. Продукты чистовой промывки возвращаются тоже в сборник-сепаратор 4 для грубого разделения.

Часть верхнего слоя (обводненные углеводороды) отправляется на станцию обезвоживания 11, соответствующую, например, патенту РФ №2327504, где из него отделяют воду, например, в соответствие с патентом РФ №2315803 (БИ №3, 2008), и возвращают ее на восполнение потерь водного слоя в сборник 3, замыкая рецикл. А обезвоженные углеводороды реализуют, как товарный продукт.

Обработка по описанной схеме имеет ряд преимуществ:

1. Для сбора и грубого разделения продуктов промывки с первой и второй стадий используется один сборник-сепаратор, что значительно упрощает технологическую схему и сокращает число единиц используемого оборудования.

2. Чистовая обработка водным слоем, не требующим дополнительной подготовки, позволяет избежать дополнительных затрат, связанных с приготовлением и последующей регенерацией компонентов моющих растворов, а также значительно сократить производственные объемы.

Отдельные признаки способа в части реализуемости были проверены на двух универсальных мобильных промывочных станциях (УМПС), эксплуатировавшихся в вагонном депо на ст. Псков и ст. Морозовская. Так, время обработки цистерн из-под высоковязких нефтепродуктов (мазуты, парафины, высокосернистые сорта нефти и др.) по двухступенчатой схеме обработки на ст. Морозовская сократилось от 60-90 до 30-40 мин, как следствие, увеличилась пропускная способность УМПС и уменьшились удельные энергозатраты. При этом качество очистки стенок цистерн не снизилось.

Заявленные технические решения были проверены в лаборатории и на пилотных установках (Евдокимов А.А. Очистка нефтеналивного и нефтетранспортного оборудования. Проблемы и решения. // Экология и промышленность России. №2, 2010, с. 7-9; Иоффе О.Б., Евдокимов А.А. Результаты испытаний пилотной установки обезвоживания вязких нефтепродуктов. // Экология и промышленность России. №2, 2010, с. 22-25).

Таким образом, заявляемый способ, решая основную задачу (отмывка поверхности от загрязнений), позволяет значительно упростить технологическую схему и существенно сократить общие затраты на обработку.

Двухступенчатый способ очистки поверхности от загрязнений нефтепродуктами, включающий первый этап, заключающийся в подаче рабочего тела в виде струи на обрабатываемую поверхность и удаление из зоны обработки продуктов промывки, второй этап, заключающийся в ополаскивании отмытой поверхности вторым рабочим телом и удалении продуктов ополаскивания, отличающийся тем, что продукты промывки и ополаскивания с обоих этапов обработки отводят в сборник-сепаратор для их грубого разделения на углеводородный, водный и эмульсионный слои, при этом эмульсионный слой, содержащий прямую и обратную эмульсии, используют в качестве рабочего тела на первом этапе обработки, водный слой используют в качестве рабочего тела на втором этапе обработки, а часть углеводородного слоя направляют на станцию обезвоживания для отделения от него воды и возврата ее на восполнение потерь водного слоя, а обезвоженные углеводороды реализуют как товарный продукт.



 

Похожие патенты:

Изобретение относится к моечной технике и может найти применение при промывке полых изделий, в частности топливных баков летательных аппаратов. В кавитационной форсунке последовательно блоку завихрителя струи включены первичный и вторичный контуры сжатия.

Изобретение относится к промышленной системе очистки. Система очистки содержит одну или несколько камер (1) очистки и транспортировочное устройство (2), выполненное с возможностью перемещения, вращения или изменения наклона для загрузки и разгрузки и снабженное подъемным устройством (28) с захватывающим механизмом (20) для очищаемого материала «G».

Изобретение относится к форсуночной головке для уборочного аппарата для очистки поверхности. Форсуночная головка (30) для уборочного аппарата (10), с впускным элементом (32), который имеет впускной канал (62) для находящейся под давлением чистящей жидкости, и с держателем (36) форсунок, на котором расположена по меньшей мере одна чистящая форсунка (52, 54).

Изобретение относится к уборочному аппарату высокого давления, содержащему выполненный с возможностью нагрева теплообменник (30) для подогрева отдаваемой уборочным аппаратом (10) высокого давления жидкости, двигатель (18) с задающим приводную ось (24) приводным валом (26), насосный агрегат (20) для увеличения давления жидкости, имеющую корпус (32) воздуходувки воздуходувку (14) для создания потока воздуха для горения, а также топливный насос (22) для подачи топлива для теплообменника (30), причем насосный агрегат (20), воздуходувка (14) и топливный насос (22) расположены вдоль приводной оси (24) и выполнены с возможностью приведения в действие от приводного вала (26), и причем уборочный аппарат (10) высокого давления содержит по меньшей мере одно фиксирующее устройство (56, 58) для фиксации топливного насоса (22) на корпусе (32) воздуходувки на его обращенной от двигателя (18) стороне.

Изобретение относится к сфере машиностроения, технического обслуживания и ремонта машин и деталей благодаря высокой интенсивности кавитационного насыщения струи жидкости.

Изобретение относится к уборочному аппарату высокого давления, содержащему корпус (24), который имеет кожух (26) и заднюю стенку (28) корпуса. Кожух (26) выполнен с возможностью поворота из открытого положения, в котором корпус (24) открыт, в закрытое положение, в котором корпус (24) закрыт.

Изобретение относится к выполненному с возможностью передвижения уборочному аппарату (10) высокого давления с передвижным основанием (12), на верхней стороне которого расположена приемная часть (25), которая образует приемное устройство (23) двигателя, в которое вставлен двигатель (22) для приведения в действие насоса.

Изобретение относится к системам УФ-обеззараживания сточных и питьевых вод. Система УФ-обеззараживания содержит УФ-излучатели, размещенные в симметричных относительно продольной оси (3) трубчатых оболочках (42), устройство для бесконтактной очистки трубчатых оболочек (42), включающее по меньшей мере одно очищающее кольцо (1), охватывающее трубчатую оболочку (42), и по меньшей мере один привод (35, 46) перемещения очищающего кольца (1) в направлении оси (3).

Предлагается моечный аппарат для турбовинтовых двигателей, в частности для турбовинтовых двигателей летательных аппаратов, содержащий по меньшей мере один гидравлический насос (6, 7), который всасывает раствор для очистки, который содержится в одном или нескольких внешних баках для того, чтобы распылять этот раствор из подающего выпуска (12) с заданным давлением и предписанным расходом.

Группа изобретений относится к технологии очистки поверхностей и к составу компонентов. Способ очистки твердых поверхностей от загрязнений заключается в нагнетании жидкости под давлением через сопло, при этом в качестве жидкости используют воду с физико-химически модифицированными свойствами, обеспечиваемыми путем добавления в нее высокомолекулярного линейного полимера, в качестве которого используют полиоксиэтилен с молекулярной массой 105-107.

Изобретение относится к устройствам для очистки поверхностей и может быть использовано в качестве насадки для установки водно-струйной обработки поверхностей. Насадка локализующая содержит корпус куполообразной формы, кольцевую полость внутри корпуса, образованную пространством между внешней и внутренней стенками корпуса, систему подачи жидкости, источник нагнетания воздушного потока, систему всасывания жидкости. Система всасывания жидкости включает отводящий патрубок и источник разрежения. Кольцевая полость сообщается с источником нагнетания воздушного потока через патрубок подачи воздуха, размещенный на внешней поверхности корпуса. Технический результат: исключение попадания капель распыляемой жидкости за пределы контура корпуса насадки за счет воздушного потока, организованного по периферии между торцом насадки локализующей и очищаемой поверхностью, снижение зависимости эффективности локализации капель (ограничения разбрызгивания) от высоты торцевого зазора между насадкой и очищаемой поверхностью, достижение требуемой эффективности локализации при обработке поверхностей с большей кривизной или с большими неровностями. 1 з.п. ф-лы, 2 ил.

Изобретение относится к устройству для обработки, прежде всего для очистки/зачистки заготовок. Устройство (100) содержит форсуночный модуль (114), который имеет корпус (116) модуля с форсуночной камерой (120). Форсуночная камера (120) имеет по меньшей мере одно отверстие (146) форсунки для создания по меньшей мере одной направленной на заготовку (102) струи (148) жидкости высокого давления. Корпус (116) модуля содержит другую форсуночную камеру (124), которая имеет по меньшей мере одно отверстие (172) форсунки для создания по меньшей мере одной, по меньшей мере, участками проходящей вдоль струи (148) жидкости высокого давления и прилегающей к ней струи (184, 184') текучей среды низкого давления. В устройстве имеется устройство (128) для подачи находящейся под высоким давлением жидкости (130) в форсуночную камеру (120) для создания по меньшей мере одной струи (148) жидкости высокого давления. Устройство содержит устройство (154) для выборочной подачи находящейся под низким давлением жидкости (157) или газообразной текучей среды (155) в другую форсуночную камеру (124). Причем по меньшей мере одно отверстие (146) расположено в корпусе (116) модуля с возможностью перемещения. Технический результат: уменьшение силы трения, увеличение дальности действия струи, что повышает эффективность очистки. 2 н. и 14 з.п. ф-лы, 17 ил.

Изобретение относится к очистительной установке для изготавливаемых промышленным способом деталей. Очистительная установка содержит по меньшей мере две пространственно отделенные друг от друга рабочие камеры (4, 5, 23) для очистки деталей (2) и одну соседнюю, пространственно отделенную от них камеру (3) робота для приема робота для манипулирования деталями (2) в очистительной установке, расположенные на одной общей базовой плите (7). Для каждой рабочей камеры (4, 5, 23) предусмотрен собственный гидравлический контур для подачи технологической текучей среды в рабочую камеру (4, 5, 23). Рабочие камеры (4, 5, 23) и камера (3) робота образуют одну общую базовую площадь (9), и базовая плита (7) образует базовую площадь (8). Базовая площадь (8) базовой плиты (7) превышает общую базовую площадь (9) рабочих камер (4, 5, 23) и камеры (3) робота. В базовой плите (7) предусмотрены по меньшей мере две пространственно разделенные полости (10, 11, 20) для приема технологических текучих сред. Полости (10, 11, 20) по меньшей мере частично проходят под рабочими камерами (4, 5, 23) и по меньшей мере частично за пределами общей базовой площади (9) рабочих камер (4, 5, 23) и камеры (3) робота. На базовой плите (7) по меньшей мере над одной полостью (10, 11, 20) установлен по меньшей мере один гидравлический компонент гидравлического контура. Технический результат: компактность установки, доступность гидравлических компонентов для техобслуживания. 5 з.п. ф-лы, 5 ил.

Изобретение относится к ультразвуковой очистке авиационных фильтроэлементов и фильтропакетов топливных, масляных, гидравлических и пневматических систем летательных аппаратов, а также вискозиметров, стеклянной тары и мелких авиационных деталей и может быть использовано в различных областях промышленности. Устройство содержит технологические позиции очистки в растворе технического моющего средства, промывки водопроводной водой от раствора технического моющего средства, ополаскивания в растворе ополаскивания, сушки нагретым воздухом и блок ополаскивания, установленные в едином каркасе, и ванну, снабженную системой перелива и блоками вращения фильтроэлементов. Блок подготовки моющего раствора содержит баки с нагревателями и датчиками контроля уровня и температуры моющего раствора, снабженные системами подачи соответствующего моющего раствора из соответствующей магистрали, обратный клапан и узел регенерации моющего раствора, вход которого через фильтр соединен с баком упомянутого блока подготовки моющего раствора, а выход соединен через обратный клапан с ванной, позиции очистки и промывки содержат ультразвуковые преобразователи, установленные на излучающей мембране, являющейся дном ванны. Позиция сушки содержит вентилятор, соединенный с камерой сушки с датчиком температуры нагретого воздуха через нагреватель. На позициях очистки и промывки выход узла регенерации моющего раствора соединен через воздушный клапан с сетью сжатого воздуха для его импульсной подачи во внутреннюю полость фильтроэлементов. На позициях очистки, промывки и ополаскивания введена по крайней мере одна кассета для размещения фильтроэлементов, содержащая стойки с установленным на них трубопроводом, состыкованная с обратными клапанами и блоком вращения и выполненная с возможностью вращения в ней фильтроэлементов с обеспечением герметичного ввода моющего раствора, сжатого воздуха из обратного клапана во внутреннюю полость фильтроэлементов и прокачки из нее через фильтрующую сетку фильтроэлементов в ванну с моющим раствором. Устройство содержит одну ванну на позиции очистки, промывки и ополаскивания, соединенную с блоком подготовки моющего раствора, содержащим баки моющих растворов и раствора ополаскивания. Перед технологической позицией очистки введена технологическая позиция струйной очистки, осуществляющая очистку внутренней поверхности оборудования при незагруженной ванне и очистку фильтроэлементов и фильтр дисков повышенной загрязненности при их загрузке в ванну, содержащая систему струйной очистки. Система струйной очистки имеет струйные контуры, выполненные с возможностью доступа струй со 100% охватом внутренней поверхности оборудования. Устройство снабжено пультом управления со смонтированным в нем программным обеспечением, включающим обозначенные на пульте управления программы: «Очистка фильтра», «Очистка грязного фильтра» и «Очистка оборудования», и выполненным с возможностью автоматизированного процесса управления упомянутыми технологическими позициями через элементы управления. Элементы управления включают краны и клапан и выполнены с возможностью включения заданных потоков рабочих тел с требуемыми параметрами, заданной продолжительности, последовательности и автоматизации процесса очистки и с возможностью корректировки программ очистки и учета состояния фильтроэлементов и фильтродисков, их загрязненности и типа загрязнения путем настройки режима работы элементов управления. Технический результат: упрощение конструкции устройства, улучшение качества и сокращение времени очистки. 2 н. и 1 з.п. ф-лы, 2 ил.

Заявленное изобретение относится к узлу для распределения клеящего вещества. Узел для соединительной машины содержит множество валиков (R), которые вращаются, соприкасаясь друг с другом, для переноса тонкого слоя клеящего вещества из резервуара (Т) и головки выдачи на пленку, находящуюся в движении, и устройство для очистки валиков (R), выполненное с возможностью крепления к клеераспределительному узлу. Устройство содержит опорную конструкцию (2) с подвижным средством, по меньшей мере один резервуар (5, 6), вмещающий по меньшей мере одну чистящую текучую среду, и нагнетающее средство (8) для перемещения упомянутой текучей среды к распределительному средству (12). Узел дополнительно содержит систему (15) перемещения, расположенную рядом с внешним кожухом (С) узла, выполненную с возможностью перемещения распределительного средства (12) в направлении, параллельном оси валиков. Система перемещения выполнена с возможностью съемного соединения с распределительным средством. Распределительное средство (12) содержит распределительную головку (13), присоединенную ее впускным отверстием к нагнетающему средству (8). Распределительная головка присоединена к одной или более питающих трубок (17), оборудованных соплами для расположения вблизи поверхностей валиков. Технический результат: эффективность и точность распределения клеящего вещества, автоматическая, не требующая использования рабочей силы, очистка валиков, легкость монтажа. 9 з.п. ф-лы, 3 ил.

Изобретение относится к гидродинамическим методам очистки различных сложных поверхностей и может быть использовано для подводной очистки поверхности судов, свай, пирсов, причалов, подводных частей плавающих буровых установок и сооружений, эксплуатируемых в пресной и морской среде, от наслоений и обрастаний. Способ основан на воздействии n≥3 кавитирующими струями воды под давлением с расширением кавитирующих струй в направлении очищаемой поверхности под углом α=15-70° с созданием на ней совокупности локальных зон воздействия. Оси кавитирующих струй воды ориентируют по отношению к нормали к очищаемой поверхности под углом β=0-20° с формированием на очищаемой поверхности не перекрывающих друг друга круговых и эллиптических зон воздействия с соприкосновением краев локальных зон воздействия и обеспечением максимальной площади покрытия очищаемой поверхности упомянутыми локальными зонами воздействия. На очищаемую поверхность оказывают импульсное воздействие кавитирующими струями воды с изменением частоты следования импульсов до приведения в резонанс слоистых отложений на очищаемой поверхности. Технический результат: повышение эффективности и производительности процесса очистки за счет увеличения суммарной площади обрабатываемого участка. 6 з.п .ф-лы, 11 ил., 1 табл.

Изобретение относится к способам гидродинамической очистки поверхностей химико-технологического оборудования от шламов, содержащих металлы платиновой группы (МПГ), и может быть использовано в металлургической и химической отраслях промышленностях, в частности в установках, в которых используются катализаторы из металлов платиновой группы, например в установках по производству азотной, синильной кислот, гидроксиламинсульфата и т.д. Способ включает гидродинамическую очистку поверхностей аппаратов. На обрабатываемый участок поверхности подают вращающиеся струи воды под давлением от 0,1-0,5 до 270-300 МПа, постепенно увеличивая давление от наименьшего его значения к наибольшему. При этом дополнительно производят повышение температуры воды от 1-5 до 70- 90°С, и струи воды перемещают по обрабатываемой поверхности со скоростью от 0,1 до 1 м/с. Технический результат: улучшение отделения шлама от рабочей поверхности оборудования, отсутствие использования химических реагентов, сокращение трудоемкости и сроков очистки, увеличение сбора шлама из агрегатов без их повреждения и, следовательно, улучшение эксплуатационных характеристик очищаемого оборудования. 4 з.п. ф-лы, 1 ил., 9 пр.

Изобретение относится к способам гидродинамической очистки поверхностей химико-технологического оборудования от шламов, содержащих металлы платиновой группы (МПГ), и может быть использовано в металлургической и химической отраслях промышленностях, в частности в установках, в которых используются катализаторы из металлов платиновой группы, например в установках по производству азотной, синильной кислот, гидроксиламинсульфата и т.д. Способ включает гидродинамическую очистку поверхностей аппаратов. На обрабатываемый участок поверхности подают вращающиеся струи воды под давлением от 0,1-0,5 до 270-300 МПа, постепенно увеличивая давление от наименьшего его значения к наибольшему. При этом дополнительно производят повышение температуры воды от 1-5 до 70- 90°С, и струи воды перемещают по обрабатываемой поверхности со скоростью от 0,1 до 1 м/с. Технический результат: улучшение отделения шлама от рабочей поверхности оборудования, отсутствие использования химических реагентов, сокращение трудоемкости и сроков очистки, увеличение сбора шлама из агрегатов без их повреждения и, следовательно, улучшение эксплуатационных характеристик очищаемого оборудования. 4 з.п. ф-лы, 1 ил., 9 пр.

Изобретение относится к технологиям очистки поверхностей, предметов, деталей от природных и техногенных загрязнений и предназначено для гидродинамической очистки. Насадка для гидродинамической очистки представляет собой проточный канал с профилем, образованным соосно расположенными и последовательно сопряженными друг с другом входным конфузором, резонансной камерой и диффузором. Конфузор и диффузор соединены резонансной камерой в виде переходного выступа. Отношение площади выходного сечения конфузора к площади сечения отверстия резонансной камеры, образующей переходной выступ, составляет 1,5-8,97. Диффузор может содержать устройство дополнительной подачи жидкости, газа или твердых частиц. Конфузор имеет, наиболее предпочтительно, коническую форму и угол конусности, наиболее предпочтительно 10-20°. Диффузор имеет, наиболее предпочтительно, коническую форму и угол конусности, наиболее предпочтительно 15-70°. Технический результат: высокопроизводительная устойчивая и достаточная для практических задач кавитация при возможно более малых давлениях и расходах для очистки поверхностей от техногенных и природных загрязнений как в жидкой, так и в воздушной среде. 2 н. и 9 з.п. ф-лы, прим. 3, 2 ил.

Изобретение относится к устройствам для мойки и зачистки полых изделий от отложений и может быть использовано на складах и базах горючего при эксплуатации вертикальных резервуаров. Технологический комплекс содержит моечную установку, гидропривод, вакуумную установку и оборудование мойки и зачистки. Гибкие шланги 4, 8 и 9 подключены к соответствующим блокам 38 и 41 подачи моющей и рабочей жидкостей. Гибкий шланг 12 подключен к всасывающей трубе 13, которая состоит из шарнирно сочлененных звеньев 13а, 13б и 13в. На торце звена 13в закреплен диффузор 14, за которым установлен скребок 40 с распылительным приспособлением 46. Все звенья всасывающей трубы снабжены одноосными колесными парами 22, 28 и 30. Звено 13а жестко закреплено на фланце люка-лаза резервуара и снабжено вакуумным элементом фиксации к днищу резервуара. Звенья всасывающей трубы 13 и механический скребок с диффузором соединены относительно друг друга с возможностью поворота в горизонтальной плоскости с помощью установленных на этих звеньях гидромотора 20 и гидроцилиндров 24 и 33, подключенных к блоку управления 41. На звене 13в установлена с возможностью поворота в вертикальной плоскости с помощью гидроцилиндра 42 штанга 43 с гребенками 44 и 45, снабженными форсунками. Гидроцилиндр 42 подключен к блоку 41 управления подачи рабочей жидкости. Технический результат: повышение эффективности и качества мойки и зачистки резервуаров при минимальном расходе моющей жидкости. 8 ил.
Наверх