Устройство приема, способ приема и программа

Изобретение относится к технике связи и может использоваться в системах широковещательной передачи. Технический результат состоит в повышении надежности приема за счет улучшения характеристик приема при известной информация о частотной полосе, в которой не передают данные. Для этого устройство приема принимает волну широковещательной передачи сигнала OFDM, передаваемого из устройства передачи на станции широковещательной передачи, которая не показана. Модуль интерпретации параметра передачи получает информацию о полосе, указывающей частотную полосу "без сигнала", содержащуюся в передаваемой управляющей информации. Модуль режекторного фильтра взаимных помех выполняет фильтрацию при обнаружении, по меньшей мере, сигнала с уровнем выше заданного уровня, на основе информации о частотной полосе из модуля интерпретации параметра передачи. 3 н. и 9 з.п. ф-лы, 15 ил.

 

Область техники, к которой относится изобретение

Настоящая технология относится к устройству приема, способу приема и программе для них, более конкретно к устройству приема, способу приема и программе для них, которые позволяют улучшить характеристики приема, когда известна информация о частотном диапазоне, в котором не происходит передача данных.

Уровень техники

В качестве технологии для уменьшения сигналов помех часто используется фильтрация. Например, в случае, когда сигналы взаимных помех представляют собой сигналы соседних каналов, расположенных рядом с каналом приема, можно использовать полосовой фильтр или фильтр низких частот для уменьшения сигналов соседних каналов. В результате, может быть подавлено влияние сигналов соседних каналов, утечка которых происходит в частотный диапазон приема.

Кроме того, в случае, когда сигналы взаимных помех представляют собой непрерывные волны (например, синусоидальные волны), присутствующие в определенном частотном диапазоне, или, например, сигналы для аналоговой передачи данных, присутствующие в том же канале, можно использовать режекторный фильтр. Однако следует уделять внимание применению фильтра, поскольку неправильное применение фильтра к требуемому сигналу, который должен быть принят, может привести к подавлению даже предназначенного для приема сигнала и привести к деградации рабочих характеристик.

В последнее время произошел существенный прогресс в развитии технологий при переводе на цифровую форму работы систем широковещательной передачи данных. В наземных системах телевизионной широковещательной передачи в Японии и в Европе используется технология модуляции, называемая системой OFDM (ортогональное мультиплексирование с частотным разделением), которая в меньшей степени подвержена взаимным помехам, связанным с многолучевым распространением.

Система OFDM также используется в системах широковещательной передачи для кабельной широковещательной передачи в Европе. Стандарт DVB-C2, который представляет собой второе поколение европейского стандарта цифровой кабельной широковещательной передачи, определяет, что данные не передают и сигналы передают с мощностью передачи равной нулю в определенной частотной полосе, таким образом, чтобы можно было предотвратить взаимные помехи с другими передачами данных (см., например, Непатентный документ 1).

Список литературы

Непатентный документ

Непатентный документ 1: Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital transmission system for cable systems (DVB-C2), DVB Document A 138.

Раскрытие изобретения

Задачи, решаемые изобретением

Когда известна информация, такая как полоса частот, в которой не передают данные, желательно соответствующим образом выполнять фильтрацию, используя информацию для улучшения рабочих характеристик приема.

Настоящая технология была выполнена с учетом этих обстоятельств и направлена на улучшение характеристик приема, когда известна информация о частотном диапазоне, в котором не передают данные.

Решение задачи

Устройство приема в соответствии с одним аспектом настоящей технологии включает в себя модуль получения, выполненный с возможностью получения информации о частотной полосе, указывающей частотную полосу "без сигнала", содержащуюся в передаваемой управляющей информации; и модуль фильтрации, выполненный с возможностью выполнения фильтрации при обнаружении по меньшей мере сигнала с уровнем выше заданного уровня на основе информации о частотной полосе.

Способ приема, в соответствии с одним аспектом настоящей технологии, включает в себя: получают информацию о частотной полосе, указывающую частотную полосу "без сигнала", содержащуюся в передаваемой управляющей информации; и на основе информации о частотной полосе выполняют фильтрацию при обнаружении по меньшей мере сигнала с уровнем выше заданного уровня.

Программа, в соответствии с одним аспектом настоящей технологии, вызывает выполнение компьютером функций: модуля получения, выполненного с возможностью получения информации о частотной полосе, указывающей частотную полосу "без сигнала", содержащуюся в передаваемой управляющей информации; и модуль фильтрации, выполненный с возможностью выполнения фильтрации при обнаружении по меньшей мере сигнала с уровнем выше заданного уровня на основе информации о частотной полосе.

В соответствии с одним аспектом настоящей технологии получают информацию о частотной полосе, указывающую частотную полосу "без сигнала", содержащуюся в передаваемой управляющей информации, и на основе полученной информации о частотной полосе выполняют фильтрацию при обнаружении по меньшей мере сигнала с уровнем выше заданного уровня.

Следует отметить, что программа может быть предусмотрена путем передачи через среду передачи данных или путем записи на носитель записи.

Устройство приема может представлять собой независимое устройство или может представлять собой внутренний блок устройства.

Результаты изобретения

В соответствии с одним аспектом настоящей технологии характеристики приема могут быть улучшены, когда известна информация о полосе частот, в которой не передают данные.

Краткое описание чертежей

На фиг.1 показана блок-схема, представляющая пример структуры варианта осуществления устройства приема, в котором применена настоящая технология.

На фиг.2 показана схема, представляющая пример сигнала DVB-C2.

На фиг.3 показана схема, представляющая структуру кадра С2.

На фиг.4 показана схема, представляющая структуру кадра С2, в котором присутствует узкая полоса режекции.

На фиг.5 показан график, представляющий пример частотного спектра сигнала DVB-C2, в котором присутствует узкая полоса режекции.

На фиг.6 показана схема, представляющая структуру кадра С2, в котором присутствует широкая полоса режекции.

На фиг.7 показана блок-схема последовательности операций для пояснения процесса установки адаптивного фильтра в полосе режекции.

На фиг.8 показана блок-схема последовательности операций для пояснения процесса приема.

На фиг.9 показана схема для пояснения фильтрации, выполняемой модулем фильтра подавления помех.

На фиг.10 показана схема для пояснения фильтрации, выполняемой модулем фильтра подавления помех.

На фиг.11 показана схема для пояснения второго процесса приема.

На фиг.12 показана схема для пояснения данного второго процесса приема.

На фиг.13 показана блок-схема последовательности операций для пояснения данного второго процесса приема.

На фиг.14 показан график для пояснения примера уровня сигнала для сравнения с пороговым уровнем.

На фиг.15 показана блок-схема, представляющая пример структуры варианта осуществления компьютера, в котором применена настоящая технология.

Режимы выполнения изобретения

Пример конструкции устройства приема

На фиг.1 показан пример структуры варианта осуществления устройства приема, в котором применяется настоящая технология.

Устройство 1 приема по фиг.1 представляет собой устройство приема OFDM, выполненное с возможностью принимать волну широковещательной передачи сигнала OFDM, передаваемого из устройства передачи станции широковещательной передачи, которая не показана.

Антенна 11 принимает передаваемую волну широковещательной передачи (сигнал RF) сигнала OFDM и выводит волну широковещательной передачи в тюнер 12.

Тюнер 12 включает в себя модуль 12а арифметической операции и гетеродин 12b.

Модуль 12а арифметической операции умножает сигнал RF из антенны 11 и сигнал из гетеродина 12b для преобразования частоты сигнала RF, для получения сигнала IF (промежуточной частоты) и выводит сигнал IF в модуль 13 режекторного фильтра взаимных помех. Гетеродин 12b генерирует синусоидальный сигнал заданной частоты и выводит этот сигнал в модуль 12а арифметической операции.

Модуль 13 режекторного фильтра взаимных помех принимает информацию полосы, обозначающую полосу, в которой сигнал OFDM представляет "сигнал отсутствует", подаваемый из модуля 20 интерпретации параметра передачи. Другими словами, сигнал, принимаемый в полосе, обозначенной информацией полосы, подаваемой из модуля 20 интерпретации параметра передачи, представляет собой сигнал взаимной помехи, который не желателен для приема, и информация полосы представляет собой информацию, обозначающую полосу частот, в которой сигнал взаимных помех может присутствовать. Модуль 13 режекторного фильтра взаимных помех выполняет фильтрацию для удаления сигнала взаимных помех в полосе частот на основе информации полосы, подаваемого из модуля 20 интерпретации параметра передачи. В частности, модуль 13 режекторного фильтра взаимных помех выполняет фильтрацию для полосы частот, указанной модулем 20 интерпретации параметра передачи, используя полосовой фильтр или режекторный фильтр, и выводит IF сигнал, получаемый в результате фильтрации, в модуль 14 AGC.

Модуль 14 AGC (автоматической регулировки усиления) выполняет управление усилением сигнала IF из модуля 13 режекторного фильтра взаимных помех таким образом, чтобы поддерживать постоянным уровень сигнала. Модуль 14 AGC выводит IF сигнал, получаемый в результате регулировки усиления, в A/D преобразователь 15.

A/D преобразователь 15 выполняет A/D преобразование сигнала IF из модуля 14 AGC и выводит цифровой IF сигнал в ортогональный демодулятор 16.

Ортогональный демодулятор 16 выполняет ортогональную демодуляцию сигнала IF из A/D преобразователя 15, используя несущую, имеющую заданную частоту, и выводит сигнал OFDM в основной полосе пропускания в демодулятор 17 OFDM. Сигнал OFDM в основной полосе пропускания, выводимый из ортогонального демодулятора 16, ниже будет называться сигналом в области времени OFDM. Сигнал в области времени OFDM представляет собой комплексный сигнал, имеющий компонент реальной оси (компонент I) и компонент мнимой оси (компонент Q), как результат ортогональной демодуляции.

Демодулятор 17 OFDM включает в себя синхронизатор 31, модуль 32 вычисления FFT и эквалайзер 33 OFDM.

Синхронизатор 31 синхронизирует символы OFDM, которые представляют собой модули передачи сигнала в системе OFDM. В частности, синхронизатор 31 определяет начальное положение интервала FFT, который представляет собой период сигнала, в течение которого выполняют FFT модулем 32 расчета FFT. В то время, как синхронизатор 31 может определять начальное положение интервала FFT на основе сигнала в области времени OFDM перед FFT, синхронизатор может определять начальное положение интервала FFT на основе выровненного сигнала, полученного в результате коррекции искажений в канале передачи после выравнивания, которое выполняют эквалайзером 33 OFDM. В этом случае, синхронный сигнал управления, определенный на основе выровненного сигнала, полученного в результате коррекции искажений в канале передачи, подают из эквалайзера 33 OFDM.

Модуль 32 расчета FFT устанавливает интервал, имеющий эффективную длину символа от начального положения интервала FFT, определенного синхронизатором 31, как интервал FFT, в сигнале в области времени OFDM из ортогонального демодулятора 16. Модуль 32 расчета FFT затем выделяет сигнал интервала FFT из сигнала в области времени OFDM и выполняет расчет FFT для выделенного сигнала. В результате расчета FFT модулем 32 расчета FFT могут быть получены данные, переданные по поднесущей, то есть сигнал OFDM, представляющий символ передачи в плоскости IQ. Сигнал OFDM, полученный в результате расчета FFT сигнала в области времени OFDM, представляет собой сигнал в области частоты, и сигнал OFDM, полученный в результате расчета FFT, ниже будет называться сигналом в области частоты OFDM, в соответствующих случаях.

Эквалайзер 33 OFDM выравнивает сигнал в области частоты OFDM, получаемый в результате расчета FFT, таким образом, что амплитуда и фаза принятого сигнала становятся равными амплитуде и фазе переданного сигнала, и выводит полученный в результате выровненный сигнал.

В системе OFDM, в которой используется технология модуляции на основе QAM, в качестве технологии модуляции для каждой поднесущей, амплитуда и фаза отличаются от амплитуды и фазы, когда сигнал передают в зависимости от несущей, вследствие влияния многолучевого распространения и т.п. во время передачи. Например, влияние многолучевого распространения вызвано отражением от гор и зданий, и SFN (одночастотными сетями).

В системе OFDM известный сигнал, имеющий заданную амплитуду и заданную фазу, дискретно вставляют, как пилотный сигнал, между символами передачи. На стороне приема частотную характеристику канала передачи получают на основе амплитуды и фазы пилотного сигнала и принятый сигнал выравнивают.

Модуль 18 коррекции ошибки выполняет обратное перемежение выровненного сигнала, подаваемого из эквалайзера 33 OFDM, и дополнительно выполняет обработку, такую как устранение выкалывания, декодирование Витерби, устранение сигнала расширения и декодирование RS для него. Модуль 18 коррекции ошибки выводит декодированные данные (транспортный поток), полученные в результате выполнения различной обработки, в расположенный после него внешний выходной модуль или выходной буфер.

Модуль 18 коррекции ошибки также выводит различные параметры передачи из декодированных данных, полученных в результате обработки, такой как устранение перемежения и коррекция ошибок, как информацию управления передачей, в модуль 20 интерпретации параметра передачи контроллера 19.

Контроллер 19 управляет соответствующими компонентами в устройстве 1 приема. Например, контроллер 19 устанавливает частоту приема, в соответствии с каналом приема, установленным модулем операций, который не показан. В частности, частоту колебаний гетеродина 12b устанавливают так, чтобы заданная частота, в соответствии с частотой приема, генерировалась гетеродином 12b.

Кроме того, контроллер 19 включает в себя модуль 20 интерпретации параметра передачи, который интерпретирует параметры передачи, подаваемые из модуля 18 коррекции ошибки, и передает необходимую информацию в компоненты устройства 1 приема, соответствующим образом.

Например, модуль 20 интерпретации параметра передачи получает информацию полосы, обозначающую полосу "без сигнала" среди полос частот, которые могут быть приняты устройством 1 приема. Модуль 20 интерпретации параметра передачи затем подает полученную информацию полосы в модуль 13 режекторного фильтра взаимных помех.

Когда полоса частот, в которой не передают сигнал, присутствует в принимаемом сигнале OFDM, и информация о полосе может быть получена, как параметр передачи, устройство 1 приема, имеющее такую структуру, как описано выше, может улучшать рабочие характеристики приема путем выполнения фильтрации для принятого сигнала OFDM на основе этой информации.

В соответствии с этим, процесс приема, выполняемый устройством 1 приема, будет описан со ссылкой на стандарт DVB-C2, который представляет собой второе поколение европейского стандарта цифровой кабельной широковещательной передачи, как пример случая, в котором полоса частот, в которой сигнал не передают, присутствует в принятом сигнале OFDM, и информация о ней может быть получена, как параметр передачи.

Сигнал в соответствии с DVB-C2

Вначале будет описан сигнал, в соответствии с DVB-C2 (ниже также называется сигналом DVB-C2).

На фиг.2 показана схема, представляющая пример сигнала DVB-C2. На горизонтальной оси на фиг.2 представлена частота. Один сигнал, в соответствии с DVB-C2, называется системой С2 и включает в себя символы преамбулы и символы данных. В соответствии со стандартом, одна система С2 представляет собой сигнал с максимальной полосой пропускания приблизительно 3,5 ГГц.

Символ преамбулы представляет собой символ, используемый для передачи информации L1 (данные части 2 передачи сигнала L1), которая представляет собой информацию управления передачей. Информацию о полосе частот, в которой не передают сигнал, передают, как часть информации L1. Ту же информацию многократно передают в 3408 циклах несущей (3408 циклов поднесущей в OFDM), используя символы преамбулы. Следует отметить, что 3408 несущих соответствуют полосе частот 7,61 МГц.

Символ данных представляет собой символ, используемый для передачи TS (транспортного потока), такого как данные программы. Символы данных разделяют на блоки, называемые срезами данных. Например, данные разных программ, соответственно, передают в срезах 1 данных (DS1) и срезах 2 данных (DS2). Параметры, относящиеся к срезам данных, такие как количество срезов данных, также содержатся в информации L1.

Полосы частот, показанные черным на фиг.2, представляют собой полосы частот, используемые для широковещательной передачи FM, широковещательной полицейской радиопередачи, широковещательной военной радиопередачи и т.п., которые не используются для передачи в системе С2. Таким образом, полосы частот, показанные черным, представляют собой полосы "без сигнала" в передаваемом сигнале, выводимом устройством передачи в системе С2, и называются полосами режекции.

Полосы режекции включают в себя узкие полосы режекции с полосой пропускания, меньшей чем 48 поднесущих, и широкие полосы режекции с полосой пропускания больше чем 47 поднесущих (равной или больше чем 48 поднесущих).

Информация о полосах режекции, такая как количество полос режекции и полоса пропускания соответствующих полос режекции содержится, как параметры передачи в информации L1, которая представляет собой информацию управления передачей.

Структура фрейма С2

На фиг.3 показана схема, представляющая структуру фрейма С2. Фрейм С2 включает в себя, по меньшей мере, один символ преамбулы и множество символов данных. По горизонтальной оси на фиг.3 представлена частота, и по вертикальной оси на ней представлено время (символ).

Символ преамбулы многократно передают в 3408 циклах поднесущих в течение одного - восьми символов, как показано в направлении времени. Блоки символов преамбулы, обозначенные одинаковыми номерами ссылочных позиций на фиг.3, представляют символы преамбулы, используемые для передачи одной и той же информации L1.

Кроме того, после символа преамбулы передают символы данных в течение 448 символов, если рассматривать в направлении времени. В примере на фиг.3, каждые данные срезов данных от 0 до 3 передают, используя 448 символов данных.

Узкополосая режекция

На фиг.4 показана структура фрейма С2, когда присутствует узкая полоса режекции.

Полоса пропускания узкой полосы режекции меньше чем 48 поднесущих, и определено, что присутствует одна узкая полоса режекции на 3408 поднесущих. Полосы режекции символов данных не содержат данные, и информация L1 символов преамбулы в полосах режекции может быть получена (восстановлена) в результате коррекции ошибки.

На фиг.5 показан пример спектра частот сигнала DVB-C2, в котором присутствует узкая полоса режекции.

Как показано на фиг.5, в полосах, используемых другими радиосигналами, то есть в полосах, где мощность (уровни мощности) других радиосигналов высокая, мощность сигнала DVB-C2 низкая. Все сигналы, которые не являются сигналом DVB-C2, представляют собой сигналы взаимных помех для устройства 1 приема.

Широкополосая режекция

На фиг.6 показана схема, представляющая структуру фрейма С2, когда существует широкая полоса режекции.

Полоса пропускания широкой полосы режекции больше чем 47 поднесущих, широкая полоса режекции расположена между двумя срезами данных. Кроме того, широкие полосы режекции расположены с интервалом 3408 поднесущих или больше. Таким образом, полосы режекции не содержат ни информацию L1 символов преамбулы, ни данные символов данных.

В DVB-C2, как описано выше, нет необходимости обеспечивать защитные интервалы между каналами, и относительно узкая полоса между вырезами также может использоваться для передачи данных, что позволяет эффективно использовать полосы частот. Устройство 1 приема принимает наборы полосы частот приема с максимальной полосой пропускания 7,61 МГц, соответствующей 3408 поднесущим, принимает сигналы в пределах этого диапазона, декодирует информацию L1, и после этого декодирует данные программы на основе декодированной информации L1.

Процесс установки адаптивного фильтра в полосе режекции

Процесс установки адаптивного фильтра в полосе режекции, выполняемый устройством 1 приема, будет описан со ссылкой на блок-схему последовательности операций на фиг.7. Этот процесс представляет собой процесс для установки фильтра модуля 13 режекторного фильтра взаимных помех на основе информации о полосах режекции, содержащихся в информации L1.

Вначале, на этапе S1, контроллер 19 устанавливает частоту приема, в соответствии с принимаемым каналом, установленным модулем операций, который не показан. В результате, устанавливают центр частоты и полосу пропускания приема в соответствии с каналом приема.

На этапе S2, тюнер 12 преобразует частоту RF сигнала, принимаемого антенной 11, для получения сигнала IF (промежуточной частоты) и выводит сигнал IF. Сигнал IF, выводимый из тюнера 12, поступает в модуль 14 AGC через модуль 13 режекторного фильтра взаимных помех.

На этапе S3, модуль AGC 14 выполняет AGC для поданного IF сигнала. В частности, модуль 14 AGC выполняет регулировку усиления таким образом, что уровень сигнала для сигнала IF, поддерживается постоянным, и выводит сигнал IF, получаемый в результате этой регулировки, в A/D преобразователь 15.

На этапе S4, A/D преобразователь 15 выполняет A/D преобразование IF сигнала из модуля 14 AGC и выводит цифровой сигнал IF в ортогональный демодулятор 16.

На этапе S5, ортогональный демодулятор 16 выполняет ортогональную демодуляцию сигнала IF из A/D преобразователя 15, используя несущую, имеющую заданную частоту, и выводит сигнал OFDM в области времени в демодулятор 17 OFDM.

На этапе S6, синхронизатор 31 демодулятора 17 OFDM синхронизирует символ OFDM. В частности, синхронизатор 31 определяет начальное положение интервала FFT, который представляет собой период сигнала, в течение которого выполняют расчет FFT с помощью модуля 32 расчета FFT. Информацию об определенном начальном положении интервала FFT передают в расположенный далее модуль 32 расчета FFT.

На этапе S7, модуль 32 расчета FFT выполняет расчет FFT для сигнала OFDM в области времени. Более конкретно, модуль 32 расчета FFT устанавливает интервал FFT на основе начального положения интервала FFT, определенного синхронизатором 31, и выделяет сигнал интервала FFT из сигнала в области времени OFDM. Модуль 32 расчета FFT затем выполняет расчет FFT для выделенного сигнала OFDM в области времени.

На этапе S8, эквалайзер 33 OFDM выравнивает сигнал OFDM в области частоты, полученный в результате расчета FFT, таким образом, что амплитуда и фаза принятого сигнала становятся равными амплитуде и фазе переданного сигнала.

На этапе S9 модуль 18 коррекции ошибки выполняет обратное перемежение выровненного сигнала, подаваемого из эквалайзера 33 OFDM, и далее выполняет для него обработку, такую как устранение выкалывания, декодирование Витерби, удаление расширенного сигнала и декодирование RS. Модуль 18 коррекции ошибки затем выделяет информацию L1, которая представляет собой информацию управления передачей из декодированных данных, полученных путем выполнения различной обработки, и подает информацию L1 в модуль 20 интерпретации параметра передачи контроллера 19.

На этапе S10 модуль 20 интерпретации параметра передачи интерпретирует (анализирует) информацию L1 и определяет, присутствует или нет полоса режекции в принимаемом сигнале DVB-C2.

Если на этапе S10 определяют, что присутствует полоса режекции, обработка переходит на этап S11, где модуль 20 интерпретации параметра передачи определяет, является или нет полоса режекции широкой полосой режекции.

Если на этапе S11 определяют, что полоса режекции представляет собой широкую полосу режекции, обработка переходит на этап S12, где модуль 20 интерпретации параметра передачи устанавливает полосовой фильтр для полосы частот приема в модуле 13 режекторного фильтра взаимных помех. После управления, выполняемого модулем 20 интерпретации параметра передачи, модуль 13 режекторного фильтра взаимных помех работает, как полосовой фильтр, который позволяет пропускать через него сигнал в полосе частот приема.

Если на этапе S11 определяют, что полоса режекции не является широкой полосой режекции, то есть полоса режекции представляет собой узкую полосу режекции, обработка переходит на этап S13, где модуль 20 интерпретации параметра передачи устанавливает режекторный фильтр (фильтр ограничения полосы) для полосы режекции в модуле 13 режекторного фильтра взаимных помех. После управления, выполняемого модулем 20 интерпретации параметра передачи, модуль 13 режекторного фильтра взаимных помех работает, как режекторный фильтр, который подавляет сигнал в полосе режекции.

Когда заданный фильтр устанавливают в модуле 13 режекторного фильтра взаимных помех, как результат обработки на этапе S12 или S13, процесс прекращается.

Если на этапе S10 определяют, что полоса режекции не существует, процесс также прекращается. Даже если определяют, что полоса режекции не существует, полосовой фильтр для полосы частот приема может быть установлен в модуле 13 режекторного фильтра взаимных помех, как в случае, когда широкая полоса режекции присутствует.

Процесс приема

Процесс приема, выполняемый устройством 1 приема после процесса на фиг.7, будет описан со ссылкой на блок-схему последовательности операций на фиг.8.

Вначале, на этапе S31, тюнер 12 преобразует частоту RF сигнала, принятого антенной 11, для получения сигнала IF и выводит сигнал IF.

На этапе S32 модуль 13 режекторного фильтра взаимных помех выполняет фильтрацию сигнала IF из тюнера 12 на основе установки фильтра, получаемой из процесса установки адаптивного фильтра полосы режекции по фиг.7.

На фиг.9 показана схема, представляющая фильтрацию, выполняемую модулем 13 режекторного фильтра взаимных помех в случае, когда широкая полоса режекции существует в сигнале DVB-C2, и полосовой фильтр установлен в модуле 13 режекторного фильтра взаимных помех.

Трапецеидальные и треугольные формы колебаний на фиг.9 схематично представляют спектры частот сигнала DVB-C2, и сигналы взаимных помех, показанные на фиг.5 (то же относится к фиг.10, которая будет описана ниже).

Как показано на фиг.9, даже когда широкая полоса режекции существует рядом с полосой частот приема, модуль 13 режекторного фильтра взаимных помех может выводить сигнал DVB-C2 в модуль 14 AGC в состоянии, в котором сигналы взаимных помех подавлены, поскольку модуль 13 режекторного фильтра взаимных помех работает, как полосовой фильтр, который пропускает сигнал DVB-C2 в полосе частот приема. Следует отметить, что низкочастотный фильтр или высокочастотный фильтр могут использоваться вместо полосового фильтра, в зависимости от взаимосвязи между полосой режекции и полосой частот приема, до тех пор, пока фильтр имеет характеристику, которая подавляет сигнал в полосе режекции и позволяет пропускать сигнал DVB-C2 в полосе частот приема.

На фиг.10 показана схема, представляющая фильтрацию, выполняемую модулем 13 режекторного фильтра взаимных помех в случае, когда узкая полоса режекции присутствует в сигнале DVB-C2, и режекторный фильтр установлен в модуле 13 режекторного фильтра взаимных помех.

Как показано на фиг.10, даже когда узкая полоса режекции присутствует в полосе частот приема, модуль 13 режекторного фильтра взаимных помех может выводить сигнал DVB-C2 в модуль 14 AGC в состоянии, в котором сигналы взаимных помех подавлены, поскольку модуль 13 режекторного фильтра взаимных помех работает, как режекторный фильтр, который подавляет сигналы в полосе режекции, в пределах полосы частот приема.

Снова обращаясь к фиг.8, на этапе S33, модуль 14 AGC выполняет AGC для сигнала IF, полученного в результате фильтрации.

На этапе S34, A/D преобразователь 15 выполняет A/D преобразование для сигнала IF из модуля 14 AGC и выводит цифровой сигнал IF в ортогональный демодулятор 16.

На этапе S35 ортогональный демодулятор 16 выполняет ортогональную демодуляцию для сигнала IF из A/D преобразователя 15, используя несущую, имеющую заданную частоту, и выводит сигнал OFDM в области времени в демодулятор 17 OFDM.

На этапе S36 синхронизатор 31 демодулятора 17 OFDM синхронизирует символ OFDM.

На этапе S37 модуль 32 расчета FFT выполняет расчет FFT для сигнала OFDM в области времени для интервала FFT.

На этапе S38 эквалайзер 33 OFDM выравнивает сигнал OFDM в области частоты, получаемый в результате расчета FFT.

На этапе S39, модуль 18 коррекции ошибки выполняет устранение перемежения выровненного сигнала, подаваемого из эквалайзера 33 OFDM, и далее выполняет для него обработку, такую как устранение выкалывания, декодирование Витерби, удаление сигнала расширения и декодирование RS. Модуль 18 коррекции ошибки затем выводит транспортный поток, полученный в результате выполнения различной обработки, транспортный поток представляет собой данные программы, соответствующие каналу приема, во внешний выходной модуль или в выходной буфер, расположенный после него, и прекращает обработку.

Как описано выше, в процессе приема, выполняемом устройством 1 приема, модуль 13 режекторного фильтра взаимных помех всегда выполняет фильтрацию в соответствии с установками фильтра, получаемыми с результате обработки установки адаптивного фильтра полосы режекции.

В результате, сигнал DVB-C2 в состоянии, в котором подавлены сигналы взаимных помех, может быть подан из модуля 14 AGC модуля 13 режекторного фильтра взаимных помех.

В то время, как модуль 13 режекторного фильтра взаимных помех расположен перед модулем 14 AGC в примере на фиг.1, модуль 13 режекторного фильтра взаимных помех требуется только расположить, например, по меньшей мере, перед модулем 32 расчета FFT и может быть перед синхронизатором 31 или модулем 32 расчета FFT. Сигнал DVB-C2, выводимый далее от положения, где расположен модуль 13 режекторного фильтра взаимных помех, находится в состоянии, в котором возможное нежелательное влияние сигналов взаимных помех на полосу частот приема (полосу требуемого сигнала) подавляется, в результате чего происходит улучшение характеристик приема устройства 1 приема.

Компоновка модуля 13 режекторного фильтра взаимных помех перед модулем 14 AGC позволяет подавлять девиацию амплитуды сигнала, предназначенного для вывода, в результате девиации в AGC, вызванной флуктуацией мощности сигнала взаимных помех.

Компоновка модуля 13 режекторного фильтра взаимных помех перед модулем 32 расчета FFT позволяет подавлять деградацию точности квантования, вызванную девиацией мощности сигнала, до определенного диапазона частот. Кроме того, это позволяет предотвратить распространение ошибок ограничения в FFT, из-за девиации мощности сигнала до определенной частоты, и подавлять влияние сигнала, предназначенного для приема.

Другой пример процесса приема

Далее будет описан другой пример процесса приема, выполняемого устройством 1 приема.

На фиг.11 показан пример, в котором узкая полоса режекции присутствует в полосе частот приема, и модуль 13 режекторного фильтра взаимных помех выполняет фильтрацию, как режекторный фильтр.

В отличие от примера, показанного на фиг.10, когда уровень сигнала для сигнала взаимных помехи низкий, как показано на фиг.11, влияние затухания сигнала DVB-C2 в результате фильтрации может быть большим, чем режекция взаимных помех, используя режеторный фильтр, и характеристики приема могут в целом ухудшиться.

На фиг.11 треугольники, показанные белом цветом на форме колебаний после фильтрации, соответствуют затуханию сигнала DVB-C2 в результате фильтрации.

В соответствии с этим, во втором процессе приема, который представляет собой другой пример процесса приема, выполняемого устройством 1 приема, выполняется процесс, показанный на фиг.12.

Модуль 13 режекторного фильтра взаимных помех детектирует уровень сигнала (пиковый уровень мощности) для сигнала взаимных помехи в полосе режекции. Если уровень сигнала для сигнала взаимных помех в полосе режекции выше, чем заданное, установленное заранее пороговое значение, модуль 13 режекторного фильтра взаимных помех затем выполняет фильтрацию, используя режекторный фильтр, который подавляет сигнал взаимных помех в полосе режекции, как описано выше.

Если уровень сигнала для сигнала взаимных помехи в полосе режекции равен или ниже, чем заданное пороговое значение, установленное заранее, модуль 13 режекторного фильтра взаимных помех не выполняет фильтрацию с помощью режекторного фильтра и выводит входной сигнал IF без какого-либо изменения в модуль 14 AGC. Следует отметить, что, в случае широкой полосы режекции, фильтрацию, используя полосовой фильтр, всегда выполняют аналогично первому процессу приема, описанному выше.

Процесс приема

На фиг.13 показана блок-схема последовательности операций для пояснения второго процесса приема, описанного со ссылкой на фиг.11 и 12. В процессе по фиг.13 предполагается, что режекторный фильтр для узкополосной режекции установлен в модуле 13 режекторного фильтра взаимных помех с помощью процесса установки адаптивного фильтра полосы режекции по фиг.7.

Вначале, на этапе S51, тюнер 12 преобразует частоту сигнала RF, принимаемого антенной 11, для получения сигнала IF и выводит сигнал IF.

На этапе S52, модуль 13 режекторного фильтра взаимных помех детектирует уровень сигнала (уровень пиковой мощности) для сигнала взаимных помех в полосе режекции.

На этапе S53, модуль 13 режекторного фильтра взаимных помех затем определяет, является ли уровень сигнала (уровень пиковой мощности) для сигнала взаимных помех в полосе режекции большим, чем заданное пороговое значение, установленное заранее.

Если на этапе S53 определяют, что уровень сигнала для сигнала взаимных помех в полосе режекции выше, чем заданное пороговое значение, установленное заранее, процесс переходит на этап S54, где модуль 13 режекторного фильтра взаимных помех выполняет фильтрацию, используя режекторный фильтр для сигнала IF из тюнера 12.

Если на этапе S53 определяют, что уровень сигнала для сигнала взаимных помех в полосе режекции равен или ниже, чем заданное, установленное заранее пороговое значение, обработку на этапе S54, описанную выше, пропускают.

Поскольку следующая обработка на этапах S55-S61 является такой же, как и на этапах S33-S39 фиг.8, описанных выше, ее описание здесь не повторяется.

Как описано выше, во втором процессе приема, выполняемом устройством 1 приема, в случае, когда режекторный фильтр установлен в модуле 13 режекторного фильтра взаимных помех, фильтрацию выполняют только, когда уровень сигнала (уровень пиковой мощности сигнала взаимных помех в полосе режекции выше, чем заданное пороговое значение, установленное заранее.

В результате, когда уровень сигнала взаимных помех высокий, эффект режекции взаимных помех, используя режекторный фильтр, будет больше, чем влияние затухания сигнала DVB-C2 в результате фильтрации. Когда уровень сигнала взаимных помех слишком низкий, с другой стороны, фильтрация, используя режекторный фильтр, не будет выполнена, поскольку влияние затухания DVB-C2, из-за фильтрации, будет больше, чем эффект режекции взаимных помех, используя режекторный фильтр. Поэтому возможно уменьшить деградацию характеристик приема и улучшить рабочие характеристики приема устройства 1 приема в целом.

Следует отметить, что во втором процессе приема, описанном выше, определяют, следует или нет выполнять фильтрацию, используя режекторный фильтр, в зависимости от того, превышает или нет пиковое значение уровня сигнала для сигнала взаимных помех в полосе режекции заданное пороговое значение, установленное заранее, как показано в позиции А на фиг.14.

Однако может быть определено, следует или нет выполнять фильтрацию, используя режекторный фильтр, в зависимости от того, превышает или нет общее количество уровней сигнала для сигналов взаимных помех в полосе режекции заданное пороговое значение, установленное заранее, как показано в позиции В на фиг.14.

Пример структуры компьютера

Последовательность обработки, описанная выше, может быть выполнена с использованием либо аппаратных средств, или программного обеспечения. Когда последовательность обработки, описанную выше, выполняют с помощью программного обеспечения, программы, составляющие программное обеспечение, устанавливают в компьютере. Следует отметить, что примеры компьютера включают в себя компьютер, встроенный в специализированные аппаратные средства, и персональный компьютер общего назначения, выполненный с возможностью выполнения различных функций путем установки в нем различных программ.

На фиг.15 показана блок-схема, представляющая пример структуры аппаратных средств компьютера, который выполняет описанную выше последовательность обработки в соответствии с программами.

В компьютере CPU (центральное процессорное устройство) 101, ROM (постоянное запоминающее устройство) 102 и RAM (оперативное запоминающее устройство) 103 соединены друг с другом через шину 104.

Интерфейс 105 ввода-вывода дополнительно соединен с шиной 104. Модуль 106 ввода, модуль 107 вывода, модуль 108 накопителя, модуль 109 передачи данных, привод 110 и тюнер 112 соединены с интерфейсом 105 ввода-вывода.

Модуль 106 ввода включает в себя клавиатуру, "мышь", микрофон и т.п. Модуль 107 вывода включает в себя дисплей, громкоговоритель и т.п. Модуль 108 накопителя может представлять собой жесткий диск, энергонезависимое запоминающее устройство и т.п. Модуль 109 передачи данных может представлять собой сетевой интерфейс и т.п. Привод 110 выполняет привод съемного носителя 111 записи, такого как магнитный диск, оптический диск, магнитооптический диск или полупроводниковое запоминающее устройство.

Тюнер 112 принимает волну широковещательной передачи сигнала OFDM через антенну, которая не показана, или модуль 109 передачи данных, и выводит IF сигнал в полосе частот приема аналогично тюнеру 12 по фиг.1.

В компьютере, имеющем описанную выше структуру, CPU 101 загружает программу, сохраняемую в модуле 108 сохранения, в RAM 103 через интерфейс 105 ввода-вывода и шину 104, и выполняет эту программу, например, таким образом, что выполняются описанные выше последовательности обработки.

В компьютере программы могут быть установлены в модуле 108 накопителя через интерфейс 105 ввода-вывода путем установки съемного носителя 111 записи на привод 110. В качестве альтернативы, программы могут быть приняты модулем 109 передачи данных по проводной линии или через беспроводный носитель передачи данных, такой как локальная вычислительная сеть, Интернет или цифровая широковещательная спутниковая передача, и установлены в модуле 108 сохранения. Также, в качестве альтернативы, программы могут быть установлены заранее в ROM 102 или в модуль 108 накопителя.

Программы, предназначенные для выполнения в компьютере, могут представлять собой программы для выполнения процессов в хронологическом порядке, в соответствии с последовательностью, описанной в этом описании, или программы для выполнения обработки параллельно или в необходимые моменты времени, например, в ответ на вызов.

Варианты осуществления настоящей технологии не ограничены описанными выше вариантами осуществления, но различные модификации могут быть выполнены для них, без выхода за пределы объема технологии.

В то время как примеры устройства 1 приема, которое принимает сигналы DVB-C2, были описаны в вариантах осуществления, описанных выше, настоящая технология может применяться для любого устройства приема, которое принимает сигнал, в случае, когда полоса частот, в которой сигнал не передают, становится известной, в результате получения переданной информации управления.

Настоящая технология также может иметь следующую структуру.

(1) Устройство приема, включающее в себя: модуль получения, выполненный с возможностью получения информации о полосе, указывающей частотную полосу "без сигнала", содержащуюся в передаваемой управляющей информации; и модуль фильтрации, выполненный с возможностью выполнения фильтрации на основе информации о частотной полосе при обнаружении по меньшей мере сигнала с уровнем выше заданного уровня.

(2) Устройство приема, описанное в (1), в котором модуль фильтрации всегда выполняет фильтрацию на основе информации о частотной полосе.

(3) Устройство приема, описанное в (1), в котором модуль фильтрации выполняет фильтрацию на основе информации о частотной полосе только при обнаружении сигнала с уровнем выше заданного уровня.

(4) Устройство приема, описанное в (1), в котором имеется по меньшей мере два типа полосы пропускания в частотной полосе, указываемой информацией о частотной полосе, причем указанные типы представляют собой узкую полосу, меньшую заданной полосы пропускания, и широкую полосу, равную или большую заданной полосы пропускания.

(5) Устройство приема, описанное в (4), в котором модуль фильтрации всегда выполняет фильтрацию, когда полоса пропускания для частотной полосы, указываемой информацией о частотной полосе, представляет собой информацию о широкой полосе пропускания.

(6) Устройство приема, описанное в (5), в котором модуль фильтрации всегда выполняет фильтрацию также, когда полоса пропускания для частотной полосы, указываемой информацией о частотной полосе, представляет собой информацию об узкой полосе пропускания.

(7) Устройство приема, описанное в любом из (1)-(6), в котором устройство приема принимает передаваемый сигнал OFDM в соответствии с DVB-C2, и управляющая информация представляет собой информацию L1 для DVB-C2.

(8) Устройство приема, описанное в любом из (1)-(7), в котором модуль фильтрации расположен перед модулем вычисления FFT, выполненным с возможностью преобразования сигнала OFDM во временной области в сигнал OFDM в частотной области.

(9) Устройство приема, описанное в (8), в котором модуль фильтрации расположен перед модулем вычисления FFT.

(10) Устройство приема, описанное в (8), в котором модуль фильтрации расположен перед модулем AGC, выполненным с возможностью выполнения регулировки усиления сигнала IF.

(11) Способ приема для устройства приема, включающий в себя этапы, на которых: получают информацию о частотной полосе, указывающую частотную полосу "без сигнала", содержащуюся в переданной управляющей информации; и выполняют фильтрацию на основе информации о частотной полосе при обнаружении по меньшей мере сигнала с уровнем выше заданного уровня.

(12) Программа, вызывающая выполнение компьютером функций: модуля получения, выполненного с возможностью получения информации о частотной полосе, указывающей частотную полосу "без сигнала", содержащуюся в передаваемой управляющей информации; и модуля фильтрации, выполненного с возможностью выполнения фильтрации на основе информации о частотной полосе, при обнаружении по меньшей мере сигнала с уровнем выше заданного уровня.

Список номеров ссылочных позиций

1 устройство приема, 13 модуль режекторного фильтра взаимных помех, 14 модуль AGC, 17 демодулятор OFDM, 18 модуль коррекции ошибок, 19 контроллер, 20 модуль интерпретации параметра передачи, 31 синхронизатор, 32 модуль расчета FFT, 33 эквалайзер OFDM

1. Устройство приема, содержащее:
модуль получения, выполненный с возможностью получения информации о частотной полосе, указывающей частотную полосу "без сигнала", содержащуюся в передаваемой управляющей информации; и
модуль фильтрации, выполненный с возможностью выполнения фильтрации на основе информации о частотной полосе при обнаружении, по меньшей мере, сигнала с уровнем выше заданного уровня.

2. Устройство приема по п. 1, в котором модуль фильтрации выполнен с возможностью всегда выполнять фильтрацию на основе информации о частотной полосе.

3. Устройство приема по п. 1, в котором модуль фильтрации выполнен с возможностью выполнять фильтрацию на основе информации о частотной полосе только при обнаружении сигнала с уровнем выше заданного уровня.

4. Устройство приема по п. 1, в котором имеется по меньшей мере два типа полосы пропускания для частотной полосы, указываемой информацией о частотной полосе, причем указанные типы представляют собой узкую полосу пропускания, меньшую заданной полосы пропускания, и широкую полосу пропускания, равную или большую заданной полосы пропускания.

5. Устройство приема по п. 4, в котором модуль фильтрации выполнен с возможностью всегда выполнять фильтрацию, когда полоса пропускания для частотной полосы, указываемой информацией о частотной полосе, представляет собой информацию о широкой полосе пропускания.

6. Устройство приема по п. 5, в котором модуль фильтрации выполнен с возможностью всегда выполнять фильтрацию также, когда полоса пропускания для частотной полосы, указываемой информацией о частотной полосе, представляет собой информацию об узкой полосе пропускания.

7. Устройство приема по п. 1, характеризующееся тем, что выполнено с возможностью приема передаваемого сигнала OFDM в соответствии с DVB-C2, при этом управляющая информация представляет собой информацию L1 для DVB-C2.

8. Устройство приема по п. 1, в котором модуль фильтрации расположен до модуля вычисления FFT, выполненного с возможностью преобразования сигнала OFDM во временной области в сигнал OFDM в частотной области.

9. Устройство приема по п. 8, в котором модуль фильтрации расположен перед модулем вычисления FFT.

10. Устройство приема по п. 8, в котором модуль фильтрации расположен перед модулем AGC, выполненным с возможностью выполнения регулировки усиления сигнала IF.

11. Способ приема для устройства приема, содержащий этапы, на которых:
получают информацию о частотной полосе, указывающую частотную полосу "без сигнала", содержащуюся в переданной управляющей информации; и
выполняют фильтрацию на основе информации о частотной полосе при обнаружении, по меньшей мере, сигнала с уровнем выше заданного уровня.

12. Носитель записи, содержащий записанную на нем программу, вызывающую выполнение компьютером функций:
модуля получения, выполненного с возможностью получения информации о частотной полосе, указывающей частотную полосу "без сигнала", содержащуюся в передаваемой управляющей информации; и
модуля фильтрации, выполненного с возможностью выполнения фильтрации на основе информации о частотной полосе при обнаружении, по меньшей мере, сигнала с уровнем выше заданного уровня.



 

Похожие патенты:

Изобретение относится к технике связи и может использоваться в беспроводных системах связи. Технический результат состоит в повышении пропускной способности.

Изобретение относится к области радиотехники. Особенностью заявленного цифрового квадратурного устройства фазовой синхронизации и демодуляции является то, что оно дополнительно содержит каскадно соединенные перемножающее устройство, усредняющее устройство, генератор, управляемый напряжением, и формирователь тактовых импульсов, при этом выходы первого и второго каналов квадратурной обработки сигналов подключены соответственно к первому и второму входам перемножающего устройства, а выход формирователя тактовых импульсов соединен с тактовым входом аналого-цифрового преобразователя, выход первого канала квадратурной обработки сигналов является выходом демодулированного фазоманипулированного сигнала.

Изобретение относится к системе связи, использующей связь машинного типа, и предназначено для повышения надежности приема целевого фрейма. Устройство связи, система связи и способ связи взаимодействуют для передачи сигнала от базовой станции, при этом сигнал включает в себя текущий фрейм и целевой фрейм.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении пропускной способности передачи.

Изобретение относится к технике связи и может использоваться в оптической беспроводной системе связи через воздушную среду. Технический результат состоит в обеспечении на пересеченной местности.

Использование: в области электротехники. Технический результат - обеспечение управления мощностью батареи при низких температурах.

Изобретение относится к технике связи и может быть использовано в цифровых системах передачи. Технический результат - повышение качества передачи информационных аналоговых сигналов и уменьшение скорости цифрового сигнала.

Изобретение может быть использовано при изготовлении радиоэлектронных устройств (РЭУ). Усилительный блок (УБ) содержит, по меньшей мере, одну печатную плату (ПП), на которой установлен, по меньшей мере, один мощный полупроводниковый элемент (МПЭ), содержащий теплоотводящее основание (ТО), по меньшей мере, один кристалл, расположенный на ТО, и выводы для передачи высокочастотного сигнала, электрически соединенные с плоскими проводниками, расположенными на поверхности ПП, с образованием согласованных участков передачи сигнала, и теплоотводящую опору, на которой установлено ТО.

Изобретение относится к радиосвязи и может быть использовано для выделения сигналов с симметричными спектрами в условиях подавления их узкополосными помехами. Технический результат - расширение области его применения за счет исключения из процедуры формирования спектра восстанавливаемой копии полезного сигнала операций сложения, вычитания и деления с компонентами комплексного спектра.

Изобретение относится к супергетеродинному приемнику сложных фазоманипулированных сигналов с двойным преобразованием частоты. Технический результат заключается в повышении избирательности, помехоустойчивости и достоверности приема сложных фазоманипулированных сигналов.

Изобретение относится к области радиотехники, в частности к регенеративным и сверхрегенеративным усилителям радиосигналов. Техническим результатом способа является обеспечение требуемого усиления с исключением перехода усилительного элемента в режим генерации за счет перегрузки его входным сигналом либо одновременного усиления реализаций сигнала, принадлежащих разным временным интервалам. В способе выделяют аналоговый сигнал, усиливают его до требуемого значения, преобразуют сигнал в цифровую форму при помощи аналогово-цифрового преобразователя, каждую сформированную кодовую последовательность передают на один из идентичных каналов усиления и цифровой обработки, где ее запоминают, сравнивают с пороговым значением, если значение сигнала меньше порогового значения, то вычисляют, на сколько разрядов влево необходимо сдвинуть соответствующую кодовую последовательность в запоминающем устройстве, что эквивалентно усилению, сдвигают ее на необходимое количество разрядов, если значение сигнала больше или равно пороговому значению, то коммутируют на вход сумматора, где кодовые последовательности фрагментов сигнала объединяются и на выходе которого получают сигнал заданной амплитуды мощности. 7 ил.

Изобретение относится к радиотехнике и может быть использовано в наземных приемно-регистрирующих станциях телеметрической информации. Технический результат - повышение помехоустойчивости приема телеметрической информации. Для этого система символьной синхронизации радиотелеметрических средств работает в частотно-временной области и заключается в применении контура двухуровневой обработки входного сигнала. На первом уровне осуществляется поиск границ следования двоичных символов с использованием образов, полученных на основе расчета спектральной плотности мощности фрагмента анализируемого сигнала и вычислении коэффициента корреляции образов с эталонным спектральным образом, соответствующим границе двоичных символов. На втором уровне с использованием двухканальной вычитающей схемы демодулятора. Затем производится расчет спектрального образа и сравнение его со спектральным образом символа на основе вычисления коэффициента корреляции. В результате процессы демодуляции и поиска границ двоичных символов переносятся из временной области в частотно-временную область. 12 ил.

Изобретение относится к приемнику радиочастотных сигналов. Технический результат изобретения заключается в упрощении схемы приемника и уменьшении потребления тока по сравнению с известными аналогами. Приемник (1), по меньшей мере, одного радиочастотного модулированного сигнала, поступающего с антенны (101), внешней по отношению к приемнику, содержит первый каскад (103) для малошумящего усиления радиочастотного модулированного сигнала и каскад (106) демодуляции вышеупомянутого сигнала. Приемник содержит фильтр (104) SAW, приспособленный для действия в качестве полосового фильтра около предварительно определенной частоты для сигнала, поступающего с первого каскада, логарифмический усилитель (105), приспособленный для усиления сигнала, поступающего с фильтра SAW, пиковый детектор (402) выходного сигнала логарифмического усилителя, средство (203), приспособленное для регулирования коэффициента усиления первого каскада (103) для усиления радиочастотного модулированного сигнала в зависимости от выходного сигнала (Vopeak) пикового детектора. 2 н. и 6 з.п. ф-лы, 9 ил.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении пропускной способности каналов передачи. Для этого радиоприемник включает в себя радиочастотную (РЧ) схемную плату, множество РЧ приемников, расположенных на РЧ схемной плате, и схему переключения, расположенную на РЧ схемной плате. Схема переключения включает в себя линии передачи и переключатели, соединяющие каждый РЧ приемник с одной выбранной антенной из множества антенн и схему согласования импедансов, обеспечивающую согласование импедансов одной выбранной антенны с РЧ приемником. Схема переключения выполнена с возможностью реализовывать множество выбираемых конфигураций переключателей, каждая конфигурация переключателей соединяет каждый РЧ приемник из множества РЧ приемников с выбранной антенной из множества антенн. Схемы согласования импедансов схемы переключения могут содержать заглушки линий передачи для согласования импедансов. Система радиоприемника с разнесением может быть выполнена с возможностью принимать РЧ сигнал, переданный беспроводной магнитно-резонансной (МР) приемной катушкой. 3 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к области цифровых систем приема и обработки сигналов и предназначено для оценки текущего значения отношения сигнал-шум. Способ включает следующие этапы: прием аддитивной смеси y(t)=s(t)+n(t) последовательности символов заданной длины с фазовой манипуляцией s(t) и АБГШ n(t), выделение квадратурных компонент комплексной огибающей принимаемого сигнала IY и QY в квадратурном смесителе, определение среднего квадрата синфазной компоненты , здесь и далее черта сверху означает расчет среднего по времени значения соответствующего параметра для заданной длительности выборки, определение среднего квадрата квадратурной компоненты , определение квадрата среднего модуля (абсолютного значения) синфазной компоненты , определение квадрата среднего значения квадратурной компоненты , определение текущего значения модуля (длины вектора) комплексной огибающей сигнала , определение оценки текущего отношения сигнал-шум. Технический результат заключается в повышение точности оценки отношения сигнал-шум. 2 н. и 23 з.п. ф-лы, 16 ил.

Изобретение относится к бортовой информационной системе с антенной мобильной радиосвязи (2) для регистрации, по меньшей мере одного релевантного для транспортного средства параметра. Техническим результатом является улучшение характеристики излучения и приема мобильной радиоантенны даже при монтаже упомянутой антенны во внутреннем пространстве транспортного средства. Упомянутый технический результат достигается тем, что заявленная бортовая информационная система содержит встраиваемый во внутреннее пространство транспортного средства корпус (1) и модуль мобильной радиосвязи. Мобильная радиоантенна (2) размещена в углублении (3) корпуса (1), а ее излучающая поверхность (4) расположена на расстоянии от корпуса (1). Предложенная система может использоваться, в частности, в транспортном средстве в качестве тахографа, преимущественно цифрового тахографа, и/или прибора для регистрации дорожного сбора. 3 н. и 33 з.п. ф-лы, 7 ил.

Изобретение относится к радиотехнике и может быть использовано в радиоприемных устройствах когерентно-импульсных радиолокационных систем для выделения сигналов движущихся целей на фоне пассивных помех при вобуляции периода повторения зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей. Указанный результат достигается тем, что адаптивный режектор пассивных помех содержит автокомпенсатор, первый и второй блоки задержки, основной блок измерения коэффициента корреляции, блок вычисления весовых коэффициентов, основной весовой блок, основной сумматор, синхрогенератор, дополнительный блок измерения коэффициента корреляции, цифровую линию задержки и дополнительный весовой блок, осуществляющие когерентную обработку исходных отсчетов. Частный вариант выполнения представленного адаптивного режектора пассивных помех содержит также третий блок задержки и дополнительный сумматор. 1 з.п. ф-лы, 18 ил.

Описано схемное устройство (1) для компенсации затухания (Ко, Ка, Ка1, Ка2), возникающего в антенном сигнальном соединении (2) между оконечным устройством (3) мобильной связи и антенной (4), с по меньшей мере одним усилителем (5а, 5b) антенного сигнала в антенном сигнальном соединении (2) и с блоком (8) управления для установки коэффициента усиления (V), на который антенный сигнал, проходящий через соответствующий усилитель (5а, 5b) антенного сигнала, усиливается или ослабляется. Схемное устройство (1) имеет блок (7) детектирования для определения мощности (Р) антенного сигнала в сигнальном тракте антенного сигнального соединения (2). Блок (8) управления выполнен с возможностью настройки коэффициента (V) усиления со скоростью изменения, более медленной по отношению к скорости регулирования контура регулирования мощности антенного сигнала между присоединенным оконечным устройством (3) мобильной связи и базовой станцией (4) сети мобильной связи, с которой оконечное устройство (3) мобильной связи находится в коммуникационном соединении, для регулирования мощности передачи оконечного устройства (3) мобильной связи, с которой антенный сигнал передается от оконечного устройства (3) мобильной связи, если определенная мощность (Р) антенного сигнала лежит в диапазоне заданного нижнего предельного значения (PG1) для определенной мощности (Р) антенного сигнала и заданного верхнего предельного значения (PG2) для определенной мощности (Р) антенного сигнала. Технический результат - улучшение качества передаваемого сигнала. 2 н. и 17 з.п. ф-лы, 3 ил.

Настоящее изобретение относится к области транспортной связи. Технический результат - упрощение инфраструктуры, архитектуры и коммуникационных связей транспортной коммуникационной системы с возможностью выбора режима работы дорожных приемо-передающих устройств. Для этого коммуникационный элемент интеллектуальной транспортной системы содержит, по меньшей мере, два дорожных приемо-передающих устройства, расположенных на расстоянии друг от друга вдоль одного маршрута следования, и одно дополнительное дорожное приемопередающее устройство, расположенное на соседнем маршруте следования. В каждое дорожное приемо-передающее устройство дополнительно введен, по меньшей мере, один интерфейс беспроводной высокоскоростной связи с подобными дорожными приемо-передающими устройствами с образованием сквозного канала связи между ними. 1 ил.

Изобретение относится к области дозиметрии. Техническим результатом является экономия энергии аккумулятора персонального дозиметра с функцией беспроводной связи. Дозиметры с функцией беспроводной связи после активизации устанавливают связь с сотовым телефоном или другим устройством для получения и ретрансляции данных (DCRD), имеющим приложение, обеспечивающее связь с дозиметрами. Указанный сотовый телефон или другое устройство DCRD представляет собой одиночное устройство или часть самоорганизующейся сети связи. Сотовый телефон или другое устройство DCRD, приняв первичные данные от дозиметра, ретранслирует эти данные на центральную станцию с использованием сети мобильной телефонной связи, сети Wi-Fi или другой сети связи. Центральная станция обрабатывает указанные данные, после чего результаты становятся доступными через Интернет или с использованием сотового телефона. 3 н. и 12 з.п. ф-лы, 6 ил.
Наверх