Погружное фильтрокомпенсирующее устройство

Изобретение относится к области электротехники и внутрискважинному оборудованию, а именно может быть использовано для компенсаций реактивной мощности погружных электродвигателей установок электроцентробежных насосов. Сущность изобретения: погружное фильтрокомпенсирующее устройство содержит герметичный корпус с расположенными в нем конденсаторами и систему автоматического управления, при этом указанный корпус выполнен с возможностью соединения с электродвигателем. Входы катушки индуктивности соединены с шинопроводами, выходы катушек индуктивности соединены с входами модулей тиристорных вентилей. Выходы модулей тиристорных вентилей соединены с входами конденсаторов, выходы конденсаторов соединены между собой по схеме «звезда». Для возможности регулирования вырабатываемой реактивной мощности в корпус установлен блок системы автоматического управления, включающий в себя трансформаторы тока, трехфазный трансформатор напряжения и систему автоматического управления, которая вычисляет реактивную мощность и выдает управляющий сигнал на включение тиристорных вентилей. Технический результат - уменьшение негативного влияния высших гармонических составляющих на конденсаторы. 3 ил.

 

Изобретение относится к области электротехники и внутрискважинному оборудованию, а именно может быть использовано для компенсаций реактивной мощности погружных электродвигателей (ПЭД) установок электроцентробежных насосов (УЭЦН).

В качестве электрического привода к установкам электроцентробежных насосов в основном используются погружные асинхронные трехфазные электродвигатели (АД). Коэффициент мощности установок с погружными электроцентробежными насосами, определяемый в основном cosφ ПЭД, находится в пределах 0,7-0,85 при номинальной нагрузке и может снижаться до 0,6-0,75 при недогрузках. Коэффициент мощности определяется по формуле (1) [1]:

где S - полная мощность, ВА; Р - активная мощность, Вт; QL - индуктивная мощность, ВАр; Qc - емкостная мощность, ВАр.

Из формулы (1) видно, что чем меньше разность QL-QC, тем больше коэффициент мощности и при QL-QC=0 cosφ=1.

При работе УЭЦН характер потребляемой мощности активно-индуктивный. Для увеличения коэффициента мощности компенсируют индуктивную составляющую.

В настоящее время для управления УЭЦН все чаще используются системы преобразователь частоты - асинхронный двигатель, которые генерируют в сеть высшие гармонические составляющие. Вследствие чего форма напряжения и тока искажается.

Высшие гармонические составляющие негативно влияют на работу батарей конденсаторов. Батареи конденсаторы, работающие при несинусоидальном напряжении, в ряде случаев быстро выходят из строя в результате вспучиваний и взрывов. Причиной разрушения конденсаторов является перегрузка токами высших гармоник, которая проявляется, как правило, при возникновении в сети резонансного режима на частоте одной из гармоник.

Известен внутрискважинный компенсатор реактивной мощности [RU 145053 U1 МПК H02J 3/18, опубл. 10.09.2014], содержащий корпус с расположенными в нем косинусными конденсаторами, при этом указанный корпус выполнен с возможностью соединения с электродвигателем, отличающийся тем, что компенсатор дополнительно содержит установленный в корпусе блок системы управления и шинопроводы, причем входы косинусных конденсаторов соединены с выходами силовых модулей блока системы управления, а выходы косинусных конденсаторов соединены с шинопроводами.

Недостатком данного изобретения является отсутствие входного фильтрующего устройства высших гармонических составляющих. Вследствие чего может возникнуть резонансный режим на частоте одной из гармоник и выход их строя батареи конденсаторов и самого устройства.

Задачей изобретения является создание погружного фильтрокомпенсирующего устройства, при осуществлении которого достигается технический результат, заключающийся в уменьшении негативного влияния высших гармонических составляющих на конденсаторы, тем самым увеличивается срок их службы.

Указанный технический результат достигается тем, что погружное фильтрокомпенсирующее устройство содержит герметичный корпус с расположенными внутри конденсаторами и систему автоматического управления, при этом указанный корпус выполнен с возможностью соединения с электродвигателем, фильтрокомпенсирующее устройство дополнительно содержит установленные в корпусе катушки индуктивности, причем входы катушек индуктивности соединены с шинопроводами, выходы катушек индуктивности соединены с входами модулей тиристорных вентилей, выходы модулей тиристорных вентилей соединены с входами конденсаторов, выходы конденсаторов соединены между собой по схеме звезда, блок системы автоматического управления включает в себя трансформаторы тока, трехфазный трансформатор напряжения и систему автоматического управления.

На фиг. 1 изображено погружное фильтрокомпенсирующее устройство, соединенное с погружным электродвигателем.

На фиг. 2 изображено фильтрокомпенсирующее устройство, разрез по А-А.

На фиг. 3 изображена однолинейная схема блока системы автоматического управления погружного фильтрокомпенсирующего устройства.

Погружное фильтрокомпенсирующее устройство 1 содержит герметичный цилиндрический корпус 2, выполненный из прочного материала, например стали. Корпус 1 жестко присоединен к погружному электродвигателю 3 (фиг. 1), например, при помощи муфты. Питание электрическим током погружного электродвигателя 3 и фильтрокомпенсирующего устройства 1 осуществляется по электрическим кабелям, которые выходят из корпуса 2. Внутри корпуса 2, установлены конденсаторы 4 (фиг. 2, 3), количество которых зависит от параметров фильтрокомпенсирующего устройства 1, например требуемой вырабатываемой реактивной мощности. Для уменьшения влияния высших гармонических составляющих на работу конденсаторов 4 в корпус 2 установлены катушки индуктивности 5 (фиг. 2, 3). Входы катушек индуктивностей 5 соединены с шинопроводами 8, а выходы - с входами модулей 6 тиристорных вентилей (фиг. 3). Выходы модулей 6 тиристорных вентилей соединены с входами конденсаторов 4. Выходы конденсаторов 4 соединены между собой по схеме звезда. Для возможности регулирования вырабатываемой реактивной мощности в корпус 2 установлен блок 7 системы автоматического управления (фиг. 2). Блок 7 системы автоматического управления состоит из трансформаторов тока 8, трехфазного трансформатора напряжения 9 и самой системы автоматического управления 10 (фиг. 3).

Погружное фильтрокомпенсирующее устройство 1 работает следующим образом.

При пуске погружного электродвигателя и дальнейшей его работе происходит потребление им реактивной мощности. Так как характер потребляемой им мощности активно-индуктивный, то для уменьшения токов, протекающих по питающему кабелю, необходимо компенсировать индуктивную составляющую.

На систему автоматического управления 10 подается сигнал с трансформаторов тока 8, трехфазного трансформатора напряжения 9. Затем САУ 10 производит вычисление реактивной мощности. После вычисления реактивной мощности система САУ 10 выдает управляющий сигнал на включение тиристорных вентилей, которые коммутируют необходимое число конденсаторов 4. Таким образом, происходит компенсация реактивной мощности.

Однако при наличии в сети высших гармонических составляющих есть риск выхода из строя конденсаторов 4, так как их сопротивление зависит от частоты подаваемого тока и напряжения и определяется по формуле (2):

где ω - угловая частота, протекающего тока, рад/с; С - емкость конденсатора, Ф.

Из формулы (2) видно, что чем больше частота, тем меньше сопротивление конденсатора. Поэтому при наличии в сети высших гармонических составляющих конденсатор становится хорошим проводником, что может привести к возрастанию тока, вспучиванию и взрыву конденсатора.

Для уменьшения влияния высших гармонических составляющих на работу конденсаторов 4 на входе устанавливаются катушки индуктивности 5. Сопротивление катушек индуктивности определяется по формуле (3):

где L - индуктивность катушки, Гн.

Из формулы (3) видно, что чем больше частота, тем больше сопротивление катушки индуктивности. Поэтому катушки индуктивности 5 для высших гармонических составляющих будут плохим проводником, тем самым уменьшат их влияние на конденсаторы 4.

Список литературы

1. Л.А. Бессонов. Теоретические основы электротехники. Электрические цепи. Учебник. - 10-е изд. - М.: Гардарики, 2000. - 638 с.

Погружное фильтрокомпенсирующее устройство, содержащее герметичный корпус с расположенными внутри конденсаторами и систему автоматического управления, при этом указанный корпус выполнен с возможностью соединения с электродвигателем, отличающееся тем, что фильтрокомпенсирующее устройство дополнительно содержит установленные в корпусе катушки индуктивности, причем входы катушек индуктивности соединены с шинопроводами, выходы катушек индуктивности соединены с входами модулей тиристорных вентилей, выходы модулей тиристорных вентилей соединены с входами конденсаторов, выходы конденсаторов соединены между собой по схеме «звезда», блок системы автоматического управления включает в себя трансформаторы тока, трехфазный трансформатор напряжения и систему автоматического управления.



 

Похожие патенты:

Изобретение относится к области преобразовательной техники и может найти применение в мощных высоковольтных устройствах плавного пуска. Техническим результатом предложенного изобретения является значительное повышение надежности при одновременном снижении затрат на его производство.

Использование: для компенсации реактивной мощности печи с погруженной дугой. Технический результат - повышение эффективности управления.

Использование: в области электротехники. Техническим результатом является улучшение качества тока за счет повышения быстродействия процессов компенсации реактивной мощности в условиях переменных нагрузок и отказов отдельных элементов, уменьшения перегрузок реактивных элементов и элементов коммутации и повышение надежности функционирования.

Использование: в области электротехники. Технический результат - повышение надежности и плавности регулирования.

Изобретение относится к области электротехники и может быть использовано для регулирования напряжения и реактивной мощности блоков генерации электростанций. Техническим результатом является повышение надежности энергоблока, величины активной мощности, выдаваемой в сеть синхронным генератором энергоблока, и повышение быстродействия при регулировании напряжения и реактивной мощности энергоблока.

Использование: в области электротехники. Технический результат - повышение надежности.

Изобретение относится к области электротехники, в том числе к преобразователю (10) для трехфазного напряжения с тремя электрически включенными в треугольник последовательными соединениями (R1, R2, R3), каждое из которых содержит по меньшей мере два последовательно включенных переключающих модуля (SM), и управляющим устройством (30), соединенным с переключающими модулями (SM), которое может управлять переключающими модулями (SM) таким образом, что в последовательных соединениях (R1, R2, R3) протекают токи ветвей с основной частотой трехфазного напряжения и с по меньшей мере одной дополнительной гармоникой тока, причем дополнительная гармоника тока рассчитана таким образом, что она протекает в последовательных соединениях (R1, R2, R3) преобразователя (10) по контуру и остается в преобразователе.

Использование: в области электротехники. Технический результат - повышение точности компенсации потери напряжения.

Изобретение относится к области электротехники и может быть использовано в электроподвижном составе переменного тока с зонно-фазным регулированием напряжения. Технический результат заключается в повышении коэффициента мощности за счет улучшения синусоидальности формы первичного тока электровоза.

Изобретение относится к линиям электроснабжения для транспортных средств. Способ регулирования заключается в том, что фильтрокомпенсирующую установку (ФКУ) включают или отключают в зависимости от значения измеряемого фактического коэффициента реактивной мощности t g ϕ факт в часы больших суточных нагрузок электрической сети и отключают ФКУ в часы малых нагрузок при генерируемой реактивной мощности: t g ϕ г .факт = 0 .

Использование: в области электротехники. Технический результат - повышение коэффициента мощности км электровоза до экстремально высоких значений. Устройство для компенсации реактивной мощности содержит многообмоточный трансформатор напряжения, связанный с нагрузкой из выпрямительно-инверторного преобразователя и двигателя, компенсатор, включающий два источника реактивной мощности, выполненные как LC-цепь, датчик тока, датчик напряжения, блок синхронизирующих импульсов, выпрямитель, инвертор, вольтодобавочный трансформатор, блок вычисления активной мощности, блок вычисления полной мощности и блок экстремального регулирования, содержащий блок линии задержки, блок задатчика зоны нечувствительности, первый и второй элементы сравнения, сигнум-реле и блок управления инвертором. Нагрузка подключена параллельно трансформатору напряжения, который через датчик тока соединен с сетью, вход датчика напряжения соединен параллельно сети, а его выход - с входом блока синхронизирующих импульсов. Источники реактивной мощности через вторичные обмотки вольтодобавочного трансформатора, а также инвертор через выпрямитель подсоединены к вторичным обмоткам трансформатора напряжения. Выходы датчика тока и блока синхронизирующих импульсов подключены к входам блоков вычисления активной и полной мощности, выходы которых связаны с входами блока вычисления коэффициента мощности. Выход блока вычисления коэффициента мощности соединен с входом блока экстремального регулирования, выход которого подключен к первому входу инвертора, выход инвертора подключен к вольтодобавочному трансформатору. 1 ил.

Использование: в области электротехники. Технический результат - повышение эффективности обмена мощностью между сетью энергоснабжения и нагрузкой. Устройство (8) аккумулирования энергии для электрической нагрузки (4), обменивающейся электрической мощностью с сетью (2) энергоснабжения, с двумя выводами (6а, b), служащими для параллельного подключения к нагрузке (4) и сети (2) энергоснабжения, содержит подключенный между выводами (6а, b), сохраняющий напряжение инвертор (10). Инвертор (10) содержит накопитель (12) энергии, который выполнен с возможностью накопления количества энергии (E1+E2+E3), которое многократно превышает количество энергии, необходимое для регулярного режима работы инвертора (10). Электродуговая печь, которая в качестве нагрузки (4) питается от сети (2) энергоснабжения, содержит устройство (8) аккумулирования энергии. 2 н. и 13 з.п. ф-лы, 5 ил.

Изобретение относится к области металлургии и может быть использовано при изготовлении стали в электродуговых печах с регулированием показателей фликера. В способе создают посредством запоминающего устройства банк данных по фликеру, в котором сохраняются временные динамики моментального фликера (MF) в зависимости от характеристик состояния и рабочих характеристик, выполняют посредством регистрирующего устройства измерение временной динамики MF во время начальной фазы расплавления и определяют имеющие к ней отношение характеристики состояния и рабочие характеристики, выполняют посредством вычислительного устройства сравнение измеренных временных динамик MF во время начальной фазы расплавления с сохраненными временными динамиками фаз расплавления общих динамик банка данных по фликеру с учетом характеристик состояния и рабочих характеристик, выполняют посредством вычислительного устройства выбор временной общей динамики с максимальным совпадением MF, а также характеристик состояния и рабочих характеристик в качестве спрогнозированной общей динамики фликера, выполняют посредством управляющего устройства упреждающее динамическое согласование дальнейшего управления процессом производства стали при сравнении спрогнозированной общей динамики с заранее заданными предельными показателями для фликера. Изобретение позволяет регулировать показатели фликера, которые следует ожидать и с высокой степенью вероятности могут определяться, исходя из характеристик состояния и рабочих характеристик, которые регистрируют во время первых минут в фазе расплавления. Таким путем фликер может эффективно уменьшаться и удерживаться ниже заранее заданных предельных показателей. 2 н. и 24 з.п. ф-лы, 4 ил.

Использование: в области электротехники. Технический результат - повышение точности настройки дугогасящих реакторов (ДГР), достоверности результата измерений и расширение области применения. Согласно способу для формирования возмущений в контуре нулевой последовательности (КНП) используют серию импульсов чередующейся полярности с периодом следования в серии, близким или равным периоду собственных колебаний контура. Оцифровывают входные аналоговые значения напряжения несимметрии и тока реактора, используя расчетное значение частоты дискретизации Fd, свободную составляющую получают методом вычитания входного и задержанного на время Т сигнала с учетом изменений промышленной частоты на интервале Т. Определяют собственную частоту колебаний контура нулевой последовательности, сравнивают с частотой промышленной сети, находят значение расстройки и при выходе ее значения за пределы, заданные уставками, воздействуют на изменение индуктивного тока ДГР. 3 з.п. ф-лы, 4 ил.

Область использования: изобретение относится к защите электрических линий от аварий, а именно к автоматической компенсации емкостных токов замыкания на землю в сетях 6-10 кВ с нейтралью, заземленной через регулируемый дугогасящий реактор, а также в сетях с комбинированным заземлением нейтрали с аналогичным дугогасящим реактором, при этом изобретение может быть использовано для автоматической настройки индуктивности дугогасящего реактора фазовым методом в резонанс с емкостью распределительной сети и для компенсации естественной несимметрии сети в штатном режиме работы сети. Сущность изобретения: способ обеспечивает возможность компенсации естественной несимметрии сети путем контролируемого снижения ее до величины, при которой напряжение смещения нейтрали находится в пределах значений, допустимых при отключенном источнике искусственного смещения нейтрали. Для компенсации естественной несимметрии сети используют регулируемый ток фазы (или суммарных ток двух фаз) трехфазной сети переменного тока напряжением 380 В 50 Гц, используемой для собственных нужд. Изменяют напряжение смещения нейтрали при отключенном источнике искусственного смещения нейтрали путем введения через управляющую обмотку реактора в контур нулевой последовательности тока фазы, регулируемого по фазе и амплитуде. Значения 3Uo контролируют на сигнальной обмотке реактора. Достигаемый технический результат: создание универсального способа, позволяющего выполнять компенсацию токов естественной несимметрии сети в широком диапазоне их изменения; возможность текущего регулирования токов естественной несимметрии сети без отключения от сети дугогасящего реактора; повышение точности и достоверности результатов компенсации; повышение стабильности напряжения смещения нейтрали и обеспечение устойчивого характера работы автоматики в устройствах для автоматической компенсации емкостного тока замыкания на землю, использующих фазовый или амплитудный принцип настройки дугогасящего реактора. 1 з.п. ф-лы, 1 ил.

Область использования: изобретение относится к защите электрических линий от аварий, а именно к автоматической компенсации емкостных токов замыкания на землю в сетях 6-10 кВ с нейтралью, заземленной через регулируемый дугогасящий реактор, а также в сетях с комбинированным заземлением нейтрали с аналогичным дугогасящим реактором, при этом изобретение может быть использовано для автоматической настройки индуктивности дугогасящего реактора фазовым методом в резонанс с емкостью распределительной сети и для компенсации естественной несимметрии сети в штатном режиме работы сети. Сущность изобретения: компенсационно-симметрирующее устройство содержит регулируемый дугогасящий реактор 1, подключенный к нейтрали трехфазной сети и устройство 2 компенсации естественной несимметрии сети. Дугогасящий реактор 1 выполнен с управляющей 3 и сигнальной 4 обмотками. Выход устройства 2 подключен к управляющей обмотке 3 дугогасящего реактора 1, а вход - к нулевому проводу и к фазам «А», «В», «С» сети 5 380 В 50 Гц, используемой для собственных нужд. При отключенном источнике искусственного смещения нейтрали через регулятор тока в устройстве 2 в контур нулевой последовательности через управляющую обмотку реактора вводят ток фазы или суммарный ток двух фаз. Регуляторы тока в устройстве 2 выполнены идентичными. Достигаемый технический результат: создание универсального устройства, позволяющего выполнять без доработки устройства компенсацию токов естественной несимметрии сети в широком диапазоне их изменения; возможность текущего регулирования токов естественной несимметрии сети без отключения от сети дугогасящего реактора; повышение точности и достоверности результатов компенсации; повышение стабильности напряжения смещения нейтрали и обеспечение устойчивого характера работы автоматики в устройствах для автоматической компенсации емкостного тока замыкания на землю, использующих фазовый или амплитудный принцип настройки дугогасящего реактора. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области электротехники и может быть использовано для автоматической настройки компенсации емкостных токов замыкания на землю в электрических сетях 6-35 кВ. Технический результат заключается в повышении точности настройки дугогасящих реакторов (ДГР), управляемых подмагничиванием, В способе автоматической настройки компенсации ДГР, управляемого подмагничиванием с погрешностью (расстройкой компенсации) в пределах 1% первой гармоники тока однофазного замыкания на землю, формируют в контуре нулевой последовательности сети переходный процесс с помощью импульсного источника опорного тока большой скважности, измеряют напряжения на сигнальной обмотке реактора и выделяют свободную составляющую переходного процесса, на основании параметров которого вычисляют емкость сети по нулевой последовательности и, соответственно, необходимый ток компенсации, к напряжению, измеренному на сигнальной обмотке реактора, применяют вейвлет-преобразование, и определяют временные зависимости вейвлет-коэффициентов, выбирают коэффициент с максимальной амплитудой, соответствующей частоте свободных колебаний контура нулевой последовательности, при этом при попадании максимального вейвлет-коэффициента в диапазон частот 35-70 Гц осуществляют управление подмагничиванием ДГР, изменяющее его индуктивность до тех пор, пока частота собственных колебаний контура не выйдет за пределы указанного диапазона, по найденной частоте определяют емкость сети и необходимый ток компенсации. 2 ил.

Изобретение относится к области электротехники и может быть применено на электрических подстанциях высокого и сверхвысокого напряжения, на которых для регулирования напряжения подводимых воздушных линий электропередачи (ВЛ) требуется компенсация реактивной мощности и стоит задача плавки гололеда на проводах и тросах ВЛ в сезон гололедообразования. Технический результат изобретения - сокращение оборудования и соответствующее снижение капитальных затрат. Устройство содержит электромагнитную, вентильную и коммутаторную части. Электромагнитная часть выполнена в виде трехфазного шунтирующего реактора-трансформатора (1) с вторичной (управляющей) обмоткой, расщепленной на трехфазные секции (2) и (3). Вентильная часть выполнена в виде трехфазных тиристорных выпрямительных мостов (4) и (5), подключенных к выходам секций (2) и (3) соответственно. Коммутаторная часть устройства включает два однополюсных разъединителя (6) и (7) и два двухполюсных разъединителя (8) и (9). Разъединители (6) и (7) предназначены для закорачивания выходов выпрямительных мостов (4) и (5) соответственно, а разъединители (8) и (9) - для подключения выпрямительных мостов (4) и (5) к проплавляемым проводам и/или тросам ВЛ1 и ВЛ2 соответственно. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области электротехники и может быть использовано в составе устройств автоматической настройки статических и плунжерных дугогасящих реакторов (ДГР) в электрических сетях с изолированной и компенсированной нейтралью, а также в сетях с комбинированным режимом заземления и в устройствах для работы в сетях с пониженной добротностью и параллельным соединением нескольких ДГР. Технический результат изобретения заключается в повышении точности настройки и достоверности результатов измерений во всем диапазоне регулирования ДГР. В способе выделения свободной составляющей в контуре нулевой последовательности электрической сети и устройстве автоматической настройки дугогасящего реактора на его основе для возбуждения затухающих колебаний в контуре нулевой последовательности (КНП) применяют серии импульсов чередующейся полярности, оцифровывают входные аналоговые значения сигналов возмущения, используя расчетное значение частоты дискретизации Fd, выделение свободной составляющей производят по специальному алгоритму в сумматоре-накопителе, определяют значение расстройки и при выходе ее значения за пределы, заданные уставками, воздействуют на изменение индуктивного или емкостного тока ДГР. 2 н. и 2 з.п. ф-лы, 6 ил.

Использование: в области электротехники для питания удаленных потребителей электрической энергии, например буровых установок в нефтегазодобывающем комплексе. Технический результат – повышение эффективности и надежности электроснабжения по ЛЭП переменного тока с большими величинами активного и индуктивного сопротивлений потребителей электрической энергии, расположенных на большом расстоянии от источника трехфазного переменного напряжения промышленной частоты с одновременным повышением энергетических показателей и качества электрической энергии в системе электроснабжения. Согласно изобретению в системе электроснабжения, содержащей питающую сеть, трехфазную ЛЭП, р-фазный компенсированный выпрямитель и удаленный потребитель, на входе ЛЭП включен электронный регулятор потока мощности, содержащий поперечный трансформатор, трехфазный мостовой выпрямитель, параллельно включенный конденсатор, трехфазный автономный инвертор напряжения с синусоидальной ШИМ, трехфазный продольный трансформатор с вторичной трехфазной обмоткой, включенной пофазно последовательно с трехфазной ЛЭП. Для снижения уровня высших гармоник напряжения на входе p-фазного компенсированного выпрямителя включен пассивный фильтр либо p-1 гармоники, либо p-1 и p+1 гармоник. 2 з.п. ф-лы, 2 ил.
Наверх