Способ работы газотурбинной установки непрерывного действия

Изобретение может быть использовано в стационарных газотурбинных установках в камере сгорания топлива. Способ работы газотурбинной установки непрерывного действия заключается в сжатии поступающего воздуха в компрессоре, подаче сжатого воздуха и топлива в первую камеру сгорания, сжигании в первой камере сгорания топлива, расширении образовавшихся продуктов сгорания в первой турбине, использовании, по меньшей мере, части механической энергии, вырабатываемой первой турбиной для привода компрессора, последующей подаче расширившихся продуктов сгорания и топлива во вторую камеру сгорания и расширении образовавшихся продуктов сгорания во второй турбине для производства механической энергии. В качестве топлива, подаваемого во вторую камеру сгорания, используют неоксидированные наночастицы алюминия, радиус которых составляет не более 25 нанометров. На выходе второй турбины обеспечивают образование коронного разряда для обработки продуктов сгорания. Обработанные продукты сгорания направляют в электростатический фильтр для отделения частиц образовавшегося корунда, который является дополнительным продуктом, производимым газотурбинной установкой, и направляют, по меньшей мере, часть продуктов сгорания, прошедших через электростатический фильтр, в первую камеру сгорания, где их используют в качестве дополнительного топлива. Для защиты от оксидирования подачу наночастиц алюминия во вторую камеру сгорания осуществляют в среде азота. Технический результат заключается в повышении КПД установки. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к теплоэнергетике и может быть использовано в стационарных газотурбинных установках.

В энергетике, а также на предприятиях нефтегазовой отрасли важным направлением является увеличение экономичности газотурбинных энергетических установок и повышение их экологичности.

Известна газотурбинная установка (ГТУ) с камерой сгорания непрерывного действия (патент РФ №98538), которая позволяет снизить уровень дымления и эмиссию вредных веществ с продуктами сгорания топлива, исключить проскок пламени из камеры сгорания в горелку. Горелка включает системы подачи жидкого и газообразного топлива, состоящие каждая, из вспомогательного и основного контуров, снабженных коллекторами подачи топлива на входе и форсунками на выходе.

Недостатком известного технического решения является невозможность форсирования (увеличения мощности) ГТУ при сохранении приемлемых показателей по эмиссии вредных веществ, в частности выбросов окислов азота NOx.

Одним из перспективных способов увеличения мощности и экономичности газотурбинной установки, работающей на природном газе или жидкой фракции нефти, является подача наночастиц алюминия в камеру сгорания.

Известна парогазотурбинная установка на продуктах гидротермального окисления алюминия (патент РФ №129998), предназначенная для использования в составе автономных экологически безопасных энергоустановок на базе конверсированных газотурбинных двигателей небольшой и умеренной мощности. В основу положен способ производства водорода гидролизом мелкодисперсных порошков алюминия, осуществляемый в реакторе высокого давления с получением товарных гидроксидов алюминия (бемита). Для защиты мелкодисперсного порошка алюминия от оксидирования обеспечивают его хранение под слоем воды. КПД комбинированной парогазотурбинной установки достигает 35÷40% за счет использования теплоты сгорания алюминия в пароводородной турбине, теплоты сгорания водорода из пароводородной смеси и дополнительного использования энтальпии отработавшей в турбине пароводородной смеси и компримированного воздуха после компрессора, подогретых в рекуператоре уходящими газами газовой турбины.

Недостаток известной парогазотурбинной установки заключается в ограничении вырабатываемой мощности, невозможности использования углеводородного топлива. Кроме того, реализация способа предполагает использование большого количества воды, что ограничивает возможности использования.

Наиболее близким по технической сущности к заявленному способу является способ непрерывного преобразования энергии в газотурбинной установке (патент РФ №2085754), заключающийся в том, что для получения высокого КПД сжигание, по меньшей мере, частично осуществляют с топливом, полученным из исходного топлива за счет эндотермической реакции, причем обогрев реакционного объема для эндотермической реакции производят либо за счет сжатого воздуха для сжигания, нагретого отработанными газами, либо за счет самого горячего отработанного газа.

Недостатком известного способа является наличие паро-водяного цикла, что вызывает необходимость применения сложной технологической схемы для его реализации, а именно внешнего источника воды, парогенератора, парового котла, паропреобразователя, что усложняет схему установки, увеличивает тепловые потери при реализации способа.

Задача изобретения заключается в упрощении способа работы газотурбинной установки при одновременном обеспечении высокого КПД и упрощении технологической схемы.

Технический результат заключается в повышении КПД. Дополнительным техническим результатом является расширение функциональных возможностей, заключающееся в получении дополнительного полезного продукта - корунда.

Поставленная задача решается тем, что в способе работы газотурбинной установки непрерывного действия, заключающемся в сжатии поступающего воздуха в компрессоре, подаче сжатого воздуха и топлива в первую камеру сгорания, сжигании в первой камере сгорания топлива, расширении образовавшихся продуктов сгорания в первой турбине, использовании, по меньшей мере, части механической энергии, вырабатываемой первой турбиной для привода компрессора, подаче расширившихся продуктов сгорания и топлива во вторую камеру сгорания и расширении образовавшихся продуктов сгорания во второй турбине для производства механической энергии, согласно изобретению в качестве топлива, подаваемого во вторую камеру сгорания, используют неоксидированные наночастицы алюминия, радиус которых составляет не более 25 нанометров, на выходе второй турбины обеспечивают образование коронного разряда для обработки продуктов сгорания, обработанные продукты сгорания направляют в электростатический фильтр для отделения частиц образовавшегося корунда, который является дополнительным продуктом, производимым газотурбинной установкой, и направляют, по меньшей мере, часть продуктов сгорания, прошедших через электростатический фильтр, в первую камеру сгорания, где их используют в качестве дополнительного топлива.

Для защиты от оксидирования целесообразно подачу наночастиц алюминия во вторую камеру сгорания осуществлять в среде азота.

Использование наночастиц алюминия в качестве топлива позволяет повысить температуру горения во второй камере сгорания и повысить тем самым теоретическое значение КПД всей установки. Упрощение способа работы газотурбинной установки обеспечивается тем, что окисление топлива - наночастиц алюминия - осуществляется парами воды, образующимися в процессе горения в первой камере сгорания. Дополнительная подача воды не требуется.

Кроме того, помимо основной задачи - сжигания углеводородного топлива с высоким КПД для выработки электроэнергии, обеспечивается наработка мелкозернистого корунда.

Изобретение поясняется подробным описанием способа со ссылкой на чертежи, где на фиг. 1 приведена блок-схема газотурбинной энергетической установки (ГТЭУ), реализующей заявленный способ, а на фиг. 2 - конструктивная схема ГТЭУ.

На схемах использованы следующие обозначения:

1 - воздух, используемый в ГТЭУ;

2 - компрессор;

3 - внутренний корпус ГТЭУ;

4 - внешний газовый тракт;

5 - первая камера сгорания;

6 - первая турбина;

7 - канал подачи углеводородного топлива;

8 - вторая камера сгорания;

9 - канал подачи наночастиц алюминия;

10 - продукты вторичного горения;

11 - разрядная ячейка;

12 - вторая турбина;

13 - электростатический фильтр;

14 - сопло.

Способ работы ГТЭУ заключается в сжатии поступающего воздуха 1 в компрессоре 2. Сжатый воздух и углеводородное топливо по каналу 7 подаются в первую камеру сгорания 5. Продукты сгорания направляются в первую турбину 6, установленную на одном валу с компрессором 2. Далее, расширившиеся продукты сгорания подаются во вторую камеру сгорания 8, где они используются в качестве окислителя. В качестве топлива в камере сгорания 8 используют неоксидированные наночастицы алюминия, радиус которых составляет не более 25 нанометров. Продукты сгорания после камеры сгорания 8 расширяют во второй турбине 12 для производства механической энергии. На выходе второй турбины 12 обеспечивают образование коронного разряда для обработки продуктов сгорания. Коронный разряд создают в разрядной ячейке 11. Далее обработанные продукты сгорания 10 направляют в электростатический фильтр 13 для отделения частиц образовавшегося корунда, который является дополнительным продуктом, производимым газотурбинной установкой. Часть продуктов сгорания 10, прошедших через электростатический фильтр 13 в первую камеру сгорания 5, где продукты сгорания 10, содержащие мелкодисперсные частицы алюминия, используют в качестве дополнительного топлива.

Наночастицы алюминия должны быть неоксидированными, для чего предлагается их вырабатывать и хранить в жидком азоте непосредственно вблизи таких ГТЭУ, чтобы сократить длительность их хранения в неоксидированном состоянии и сократить расходы по их транспортировке к ГТЭУ.

Подача наночастиц алюминия в камеру сгорания 8, расположенную за первой турбиной 6, является одним из перспективных способов увеличения мощности и экономичности газотурбинной установки, работающей на природном газе или жидкой фракции нефти. Сжигание наночастиц алюминия в продуктах горения углеводородного топлива перед второй турбиной 12 осуществляется с последующим частичным замещением первичного топлива синтез-газом, выработанным при окислении алюминия, таким образом обеспечивается частичная замкнутость процесса, когда продукты горения алюминия, а именно синтез-газ, подаются вместе с основным углеводородным топливом в камеру сгорания и, следовательно, сокращают его расход.

Попутным ценным продуктом работы таких ГТЭУ могут стать нанометровые частицы (40-50 нм) корунда Аl2O3, полученные из вторичных продуктов горения с помощью организации коронного разряда за второй турбиной 12 и осаждения этих частиц на электростатическом фильтре 13. Ценность использования нанометровых частиц корунда в различных полировальных и других устройствах определяется их размером, достижимым только в определенных условиях, создаваемых на предлагаемой установке.

Преимущество предлагаемой ГТЭУ заключается также в обеспечении двухтопливности установки. Сжигание углеводородов в ГТЭУ решает проблему утилизации попутных нефтяных газов, а на продуктах их горения можно реализовать гидротермальное окисление алюминия.

Для увеличения энергоемкости топлива ограничивается радиус частиц алюминия - менее 25 нм, что приводит к полному их сгоранию с большим тепловыделением. Необходимо уточнить, что наночастицы алюминия должны быть не оксидированы. Для защиты от окисления можно использовать метод хранения в жидком азоте, который вырабатывается непосредственно из воздуха вблизи ГТЭУ.

Еще одним отличием является принципиально другой окислитель алюминия - не воздух, как в аналогах, а пары воды и углекислого газа, являющиеся продуктами горения углеводородного топлива. Наконец, существует еще одно отличие нашего изобретения от аналогов - частичная замкнутость процесса, когда продукты горения алюминия, а именно синтез-газ, подаются вместе с основным углеводородным топливом в камеру сгорания и, таким образом, сокращают его расход.

Таким образом, для реализации способа предлагается двухтопливная ГТЭУ со второй камерой сгорания 8 и частично замкнутым циклом, работающая в непрерывном режиме, при котором во вторую камеру сгорания 8 впрыскиваются неоксидированные наночастицы алюминия определенного размера. Причем в камере сгорания 5 перед первой турбиной 6 на начальном этапе используется в качестве первичного топлива только природный газ или жидкая фракция нефти, а на основном режиме первичное топливо частично замещается синтез-газом (Н2-СО), полученным во второй камере 8 при окислении неоксидированных частиц алюминия нанометрового размера с радиусом, не превышающим 25 нм, в продуктах сгорания первичного топлива в воздухе (пары воды Н2O и углекислый газ СO2).

Реакция окисления стехиометрической смеси алюминия с водой 2Аl+3Н2O=>Аl2О3+3Н2 идет с выделением значительного количества тепла Q=481 кДж/моль, и при этом образуется большое количество водорода (~10% по массе от затраченного алюминия). Реакция окисления стехиометрической смеси алюминия с углекислым газом 2Аl+3СO2=>Аl2О3+3СО идет с выделением чуть меньшего (по сравнению с предыдущей реакцией) количества тепла Q=357 кДж/моль, и при этом образуется большое количество угарного газа (~ в 2 раза больше по массе от затраченного алюминия). Водород и угарный газ после турбины 12 подаются в первую камеру сгорания 5 и сжигаются, частично замещая (до 50% по концентрации) первичное топливо. Выделяемое в результате сгорания наночастиц алюминия в смеси Н2O и СO2 тепло можно конвертировать в дополнительную мощность, снимаемую на второй турбине 12. В результате контакта неоксидированного алюминия с парами воды и углекислым газом частицы покрываются оксидной пленкой, образующейся очень быстро. Реакция окисления поверхности частиц происходит с таким большим тепловыделением, что при определенных размерах неоксидированных частиц алюминия (радиус менее 25 нм) частица не будет успевать отдавать тепло во внешнее пространство и алюминий внутри частицы будет вскипать и, расширяясь, разрушать оксидный слой. При этом алюминий будет атомизироваться, и вступать в реакции с Н2O и СO2 в газовой или жидкой фазе. В этом случае, в отличие от горения частиц микрометрового размера, алюминий практически полностью сгорает в парах воды и углекислом газе. При этом в продуктах сгорания жидкие частицы Аl2O3 образуются через механизм гомогенной нуклеации и, как показали расчеты, за время пребывания смеси во второй камере сгорания (20-40 мкс) их размер не успевает значительно возрасти. Основная масса жидких частиц Аl2O3 будет иметь размер 40-50 нм. Такие частицы обладают малыми временами тепловой и динамической релаксации (~10-7-10-6 с) и не приводят к заметным потерям, обусловленным различными скоростями и температурами газофазного и жидкофазного континуумов (потери на двухфазность). В то же время при горении частиц алюминия микрометрового размера реализуется не кинетический, а диффузионный (существенно более медленный) режим горения и частицы в этом случае выгорают не полностью (остаются мельчайшие частички с размером 5-15 нм). В этом случае образование жидкой фазы Аl2O3 в продуктах сгорания происходит за счет гетерогенной конденсации и образующиеся частицы достигают микронных размеров (1-20 мкм). Такие частицы обладают очень большими временами тепловой и динамической релаксации, что приводит к большим потерям на двухфазность (невозможно всю выделившуюся в процессе горения энергию преобразовать в кинетическую энергию потока).

Поэтому предлагается производить вблизи ГТЭУ и подавать по топливным магистралям неоксидированные наночастицы алюминия с радиусом менее 25 нм в азоте в массовом соотношении наноАl:N2~1:1. Действительно, азот препятствует оксидированию частиц алюминия при хранении, и в то же время производство азота из атмосферного воздуха - хорошо отработанная и относительно дешевая технология. С другой стороны, разбавление должно быть малым, чтобы энергоэффективность ГТЭУ снижалась при использовании азота не слишком сильно, т.к. азот - газ, не поддерживающий горение. Такое малое по массе разбавление жидким азотом возможно из-за практически полного отсутствия седиментации неоксидированных наночастиц алюминия в азоте.

Для того чтобы при остывании жидкие нанометровые (40-50 нм) частицы Аl2O3 перешли в твердое состояние и при этом не увеличились в размерах (т.к. наиболее ценен мелкодисперсный корунд), необходимо расширить газ в турбине второй ступени, тем самым понизив интенсивность коагуляции, которая пропорциональна квадрату концентрации частиц. После второй турбины, когда скорость потока и его температура упадут, твердые нанометровые заряженные частицы корунда, предварительно зарядив их в коронном разряде, можно осадить на электростатических фильтрах для дальнейшего использования в качестве ценного продукта.

Конструктивная схема ГТЭУ приведена на фиг. 2.

Поток воздуха 1 при Р=1 атм поступает в компрессор 2, где сжимается до необходимой степени сжатия (во внутреннем контуре давление Р=10 атм, температура 500-800 К). Полый внутренний корпус 3 отделяет внутренний газовый тракт установки (компрессор 2, первая камера сгорания 5, первая турбина 6, вторая камера сгорания 8, вторая турбина 12) от внешнего газового тракта 4 установки, по которому продукты 10 вторичного горения в качестве топлива поступают для частичной замены керосина (метана) через форсунки в первую камеру сгорания 5. В корпусе 3 проложены магистрали (канал 9) подачи алюминиевых наночастиц в сжиженном азоте, которые охлаждают теплонапряженные участки конструкции. После компрессора 2 расположена первая кольцевая камера сгорания 5, которая соединена с первой турбиной 6 газовым трактом. В камеру сгорания 5 по каналу 7 подаются, например, жидкий керосин и сжатый забортный воздух 1 по обычной схеме организации горения в ГТД. Камера сгорания 5 является также химическим реактором постоянного давления (~10 атм) для наработки углекислого газа и паров воды (первичных продуктов горения с температурой ~2300 К), использующихся для генерации механической энергии, снимаемой с первой турбины 6 в процессе расширения газов с падением температуры до 1200 К, и также использующихся во второй камере сгорания 8 в качестве окислителя для неоксидированных наночастиц алюминия. В камеру сгорания 8 через форсунки (не показаны) канала 9 подаются неоксидированные наночастицы алюминия в потоке испаряющегося азота. Пары воды и углекислый газ, вступая в реакцию окисления с наночастицами алюминия в камере сгорания 8, генерируют вторичные продукты горения 10 - молекулярный водород, угарный газ и оксид алюминия, их температура в зоне горения достигает ~2700 К. Продукты вторичного горения 10 (в том числе синтез-газ) подаются на вторую турбину 12, создают дополнительную механическую мощность, расширяются, а их температура падает до 1000 К. За турбиной 12 поперек потока расположен сетчатый жаростойкий отрицательный электрод коронного разряда (штриховая линия) разрядной ячейки 11, которые инжектируют отрицательные ионы в зону расширенного потока вторичных продуктов сгорания 10. Часть потока вторичных продуктов горения 10 выбрасывается в атмосферу через сопло 14, а часть разворачивается. При охлаждении до 1000 К вторичных продуктов горения 10 и после воздействия на них коронного разряда образуются заряженные твердые нанометровые частицы корунда (40-50 нм), которые, проходя сквозь электростатический фильтр 13 при развороте потока, осаждаются на их внешних стенках (штриховые линии на фиг. 2). Оставшийся синтез-газ, пары воды и углекислый газ после разворота и прохождения сквозь фильтр 13 подаются на вход в первую камеру сгорания 5 с целью частичного замещения ими первичного топлива, подаваемого по каналу 7.

Авторами рассчитана работоспособность вторичных продуктов горения при Р=10 атм. Вторичные продукты - это смесь Н2/СО/Аl2O3(ж)/N2=1/1/1/11, полученная при условии стехиометрического горения алюминия в первичных продуктах сгорания керосина в воздухе. Работоспособность вторичных продуктов сгорания определяется выражением R·ΔTe/µ, в котором R - газовая постоянная, ΔТе=2700 К - 1000 К = 1700 К - температура адиабатического горения за вычетом температуры вторичных продуктов сгорания после второй турбины, µ=31 г/моль - молекулярная масса вторичных продуктов сгорания. Работоспособность вторичных продуктов сгорания составила 460 кДж/кг, что примерно соответствует 140% от работоспособности продуктов сгорания керосина в воздухе при стехиометрии в условиях камеры сгорания 5 и турбины 6. При дожигании с впрыском наночастиц алюминия необходимо учитывать работоспособность и первичных и вторичных продуктов сгорания.

Добавляя на вход первой камеры сгорания 5 синтез-газ с азотом (вторичные продукты горения 10 за вычетом корунда) можно снизить расход керосина или другого углеводородного топлива. Стоит заметить, что содержание буферных газов СO2 и N2, а также паров воды в первой камере сгорания 5 при этом возрастет, что, при требовании сохранения постоянной мощности, снимаемой с турбин, несколько снизит выигрыш от экономии керосина, связанной с частичным его замещением синтез-газом.

В целом, снимаемая с турбин механическая мощность ГТЭУ за счет впрыска наночастиц алюминия возрастает в 2-3 раза по сравнению с обычной ГТУ, а экономия первичного топлива (керосина) при этом достигает 50%. Затраты на подготовку наночастиц алюминия в жидком азоте окупаются получением ценного продукта - наночастиц корунда.

1. Способ работы газотурбинной установки непрерывного действия, заключающийся в сжатии поступающего воздуха в компрессоре, подаче сжатого воздуха и топлива в первую камеру сгорания, сжигании в первой камере сгорания топлива, расширении образовавшихся продуктов сгорания в первой турбине, использовании, по меньшей мере, части механической энергии, вырабатываемой первой турбиной для привода компрессора, подаче расширившихся продуктов сгорания и топлива во вторую камеру сгорания и расширении образовавшихся продуктов сгорания во второй турбине для производства механической энергии, отличающийся тем, что в качестве топлива, подаваемого во вторую камеру сгорания, используют неоксидированные наночастицы алюминия, радиус которых составляет не более 25 нанометров, на выходе второй турбины обеспечивают образование коронного разряда для обработки продуктов сгорания, обработанные продукты сгорания направляют в электростатический фильтр для отделения частиц образовавшегося корунда, который является дополнительным продуктом, производимым газотурбинной установкой, и направляют, по меньшей мере, часть продуктов сгорания, прошедших через электростатический фильтр, в первую камеру сгорания, где их используют в качестве дополнительного топлива.

2. Способ по п. 1, отличающийся тем, что для защиты от оксидирования подачу наночастиц алюминия во вторую камеру сгорания осуществляют в среде азота.



 

Похожие патенты:

Двигательная установка гиперзвукового самолета содержит мотогондолу, воздухозаборник, корпус, компрессор, камеру сгорания, установленную за компрессором, газовую турбину, реактивное сопло и топливную систему, использующую водород, соединенную с камерой сгорания.

Газотурбинный двигатель содержит воздушный тракт, содержащий, в свою очередь, воздухозаборник и, по меньшей мере, одну ступень компрессора, камеру сгорания, газовую турбину, по меньшей мере один вал, соединяющий компрессор и газовую турбину, реактивное сопло и систему подачи топлива.

Трехкомпонентный воздушно-реактивный двигатель содержит воздухозаборник, корпус, по меньшей мере, два компрессора, камеру сгорания, по меньшей мере две газовые турбины, по меньшей мере два вала, соединяющих компрессоры и газовые турбины, реактивное сопло и систему подачи водородного топлива.

Газотурбинный двигатель содержит корпус, герметизирующую вход в корпус крышку, систему подачи электролита, выполненную в виде форсунки с кавитатором, размещенный в корпусе вал компрессора и турбины, электролизер-кавитатор, местное сужение канала с центральным телом.

Изобретение относится к газотурбинным двигателям и может быть применимо для сверхзвуковой военной авиации и гиперзвуковых самолетов. Водородный воздушно-реактивный двигатель содержит воздухозаборник, корпус, по меньшей мере, один компрессор, камеру сгорания с топливным коллектором, установленную за компрессором и соединенную с ним воздушным трактом, по меньшей мере, одну турбину и, по меньшей мере, один вал, соединяющий компрессор и турбину, реактивное сопло и систему подачи водорода к камере сгорания.

Способ уменьшения конденсационного следа газотурбинного двигателя заключается в том, что подают топливо со сверхнизким содержанием серы, с концентрацией серы меньше чем одна часть на миллион, в камеру сгорания газотурбинного двигателя для снижения количества содержащих серу побочных продуктов, образующихся в выхлопе газотурбинного двигателя.

Изобретение относится к турбореактивным двигателям, преимущественно двухконтурным, и пригодно для газотурбинных двигателей. .

Изобретение относится к области теплоэнергетики. .

Изобретение относится к энергетическим установкам и может быть использовано при создании наземных установок для получения электроэнергии и тепла с высокой эффективностью и при высоких экологических показателях, в том числе и при утилизации твердых бытовых и промышленных отходов (ТБО).

Изобретение относится к газотурбинным источникам электроэнергии, а именно к малоразмерным газотурбинным установкам - микротурбинам, и может применяться в энергетике, а также в автомобильном, железнодорожном, водном, воздушном транспорте в составе силовых установок с электроприводом.

Использование: для определения прочности покрытия из керамических наночастиц. Сущность изобретения заключается в том, что способ определения прочности покрытия из керамических наночастиц заключается в том, что подложку с нанесенным на ее поверхность покрытием из керамических наночастиц размещают в растровом электронном микроскопе, вакуумируют микроскоп до состояния глубокого вакуума, задают увеличение сканирования, достаточное для визуализации наночастиц, осуществляют сканирование покрытия по касательной к подложке электронным пучком максимально допустимой энергии при постепенном увеличении силы тока до отрыва наночастицы от покрытия, а о прочности покрытия судят по величине силы тока, при которой происходит отрыв наночастицы от покрытия.

Группа изобретений относится к изготовлению поликристаллического материала и изделий, содержащих этот материал для защиты от повреждений. Способ изготовления поликристаллического материала включает получение гранулированной структуры-предшественника, включающей железо, кремний и источник углерода или азота, нагрев структуры-предшественника, нанесение на основу слоя нагретой структуры-предшественника и охлажение слоя структуры-предшественника.

Использование: для получения ламеллярных наноструктур. Сущность изобретения заключается в том, что способ получения ламеллярных наноструктурных материалов путем контролируемой лиофильной сушки жидкой дисперсии наночастиц или субмикронных частиц характеризуется тем, что жидкую дисперсию наночастиц или субмикронных частиц очень быстро замораживают в закрытом пространстве до твердого состояния и в таком виде подвергают лиофилизации, при этом молекулы дисперсионной среды удаляют при скорости сублимации, определяемой по скорости уменьшения границы сублимации замороженной дисперсии в диапазоне от 10-2 до 102 мкм/с, при значении пониженного давления в диапазоне от 10 кПа до 1 Па и температуре от -130 до 0°C до полного их выведения путем сублимации, причем ориентацию вектора нормали преобладающей поверхности границы сублимации регулируют следующим образом: a) для получения прочно связанных ламеллярных агрегатов ориентацию вектора выбирают из диапазона 0-45° относительно направления вертикально вверх или b) для получения значительно более простых ламеллярных агрегатов ориентацию вектора выбирают из диапазона 135-180° относительно направления вертикально вверх.

Изобретение относится к наноструктурированным материалам с выраженной сегнетоэлектрической активностью и может быть применено в устройствах микро- и наноэлектроники.

Изобретение относится к области медицины, в частности к медицинской технике, предназначено для использования, при введении и удалении, углеродных наноструктурных композиционных имплантатов.

Изобретение относится к получению наноструктурного порошка вольфрамата циркония ZrW2O8. Ведут синтез прекурсора ZrW2O7(OH,Cl)2·2H2O из смеси растворов оксихлорида циркония, натрия вольфрамовокислого и соляной кислоты в дистиллированной воде, взятых при стехиометрическом соотношении элементов Zr : W=1:2, затем проводят термическое разложение полученного прекурсора в воздушной атмосфере при температуре 700-900 К в течение 0,75-1,5 часа при скорости нагрева до указанной температуры не выше 100 К/час.

Изобретение может быть использовано при изготовлении катодных материалов для литий-ионных аккумуляторов, красок, грунтовок, клеев, бетонов, целлюлозных материалов.

Группа изобретений относится к области фармацевтической промышленности, а именно к гипотонической композиции для быстрого и равномерного распределения терапевтического, профилактического, диагностического или нутрицевтического агента по мукозальной поверхности, содержащей частицы, проникающие через слизь, которые содержат терапевтический, профилактический, диагностический или нутрицевтический агент и полиалкиленоксидное покрытие, улучшающее проникновение через слизь, которое улучшает диффузию частиц через слизь, где покрытие имеет коэффициент плотности [Г]/[Г*]>3, где Г - это плотность полиэтиленгликоля, характеризующая число молекул полиэтиленгликоля на 100 нм2 поверхности частицы, а Г* - это полное покрытие поверхности частицы, характеризующее теоретическое число свободных молекул полиэтиленгликоля, требуемое для полного покрытия 100 нм2 поверхности частицы, а также к способу введения одного или более терапевтических, профилактических и/или диагностических агентов человеку или животному с помощью указанных композиций.

Изобретение относится к керамическим материалам, в частности к получению полых керамических волокон, используемых для изготовления капилляров, мембран, фильтров, разделителей в отсеках батарей и композиционных материалов.

Настоящее изобретение относится к новым соединениям общей формулы (1), которые используются в качестве основы тонкой полупроводниковой пленки в структуре солнечной батареи, к композиции, содержащей соединения формулы (1), и к применению новых соединений.

Использование: для использования в качестве многовариантного переключателя электрических цепей. Сущность изобретения заключается в том, что нанопереключатель содержит деформируемую жестко закрепленную на одном конце нанотрубку и два основных электрода для образования двух электропроводящих цепей с помощью электрического поля этих электродов, два электрода, выполняющих функцию управления с помощью своего электрического поля деформацией нанотрубки для создания четырех дополнительных электрических цепей, а также наличием четырех дополнительных основных электродов, деформирующих посредством своего электрического поля нанотрубку и в результате этого вступающих в контакт с ней для образования поочередно четырех дополнительных электропроводящих цепей. Технический результат: обеспечение возможности включения и разрыва любой из шести электропроводящих цепей. 3 з.п. ф-лы, 2 ил.
Наверх