Способ прогнозирования риска развития рака яичников

Изобретение относится к области медицины, в частности к медицинской генетике и онкогинекологии, и предназначено для прогнозирования риска развития рака яичников. Осуществляют выделение ДНК из лимфоцитов периферической венозной крови и комплексную детекцию мутаций c.5266dupC (BRCA1), c.181T>G (BRCA1), del5395 (CHEK2) и p.R145W (CHEK2) у одного пациента. Обнаружение одной из указанных мутаций свидетельствует о повышенном риске развития рака яичников. Изобретение обеспечивает упрощение способа определения мутаций c.5266dupC, c.181T>G (BRCA1), del5395 и p.R145W (CHEK2) и сокращение времени исследования до 1 дня. 4 ил., 5 пр.

 

Изобретение относится к медицине, а именно, к медицинской генетике и онкогинекологии, может быть использовано для прогнозирования риска развития рака яичников.

Рак яичников (РЯ) - злокачественное новообразование яичников. РЯ является ведущей причиной смертности от гинекологических раков у женщин, поскольку часто заболевание диагностируется на поздних стадиях развития (III или IV). Сложность диагностирования связана с бессимптомным течением болезни на ранних стадиях, а также тем, что РЯ является сложным гетерогенным заболеванием с несколькими гистологическими формами. В России ежегодно регистрируют более 12000 случаев патологии около половины, из которых заканчиваются смертельным исходом. В последнее десятилетие отмечается тенденция роста заболеваемости женщин в возрасте до 30 лет.

Известен способ прогнозирования риска возникновения РЯ, заключающийся в том, что пациенту проводят анализ экспрессии гена TUSC3 в биологическом образце (предпочтительно образец ткани) с последующим сравнением экспрессии данного маркера в образцах от здоровых доноров. При низком уровне экспрессии гена TUSC3 у обследуемого индивида прогнозируют риск развития заболевания по определенной формуле (Patent Application Publication №US 2009/0298068 A1, 2009). Недостатками этого метода являются его трудоемкость и необходимость дорогостоящих реактивов. Кроме того в данном способе не учитываются популяционные особенности регионов.

Известен способ прогнозирования риска развития РЯ, заключающийся в выявлении генетических вариантов в гене BRCA2 для определения предрасположенности к BRCA2-ассоциированным злокачественным новообразованиям, в частности к РМЖ и РЯ. Кроме того, описываемый способ позволяет прогнозировать течение заболеваний и определять ответ и эффективность лечения у пациентов (United States Patent №US 8,476,020 B1, 2013). Однако, данный способ не учитывает молекулярно-генетические особенности популяций. Так, например, для населения Волго-Уральского региона не характерно носительство мутаций в данном гене.

В целом, главным недостатком известных способов прогнозирования риска развития РЯ является то, что они не учитывают существенные различия в спектре и частоте мутаций между разными популяциями и регионами.

Наиболее близким аналогом является диссертационное исследование Прокофьевой Д.С.(Прокофьева Д.С.Изучение генетических факторов риска развития рака яичников. 2013, с. 190). В данной работе выявлены информативные маркеры риска развития РЯ (мутации c.5266dupC, c.181T>G в гене BRCA1 и del5395, p.R145W в гене CHEK2). Основными недостатками аналога являются трудоемкость и длительность анализа вследствие применения метода фенольно-хлороформной экстракции ДНК (занимающего 2 дня), а также детекции мутации c.5266dupC в гене BRCA1 с использованием метода полиморфизма длин рестрикционных фрагментов (занимающего также 2 дня).

Техническая задача - разработка способа прогнозирования риска развития рака яичников с помощью комплексной детекции мутаций c.5266dupC (BRCA1), c.181T>G (BRCA1), del5395 (CHEK2) и p.R145W (CHEK2) в течение 1 дня, что позволит достигнуть высокой точности прогноза риска развития РЯ и проводить у носителей мутаций профилактику онкологических заболеваний.

Технический результат изобретения - упрощение способа определения мутаций c.5266dupC, c.181T>G (BRCA1), del5395 и p.R145W (CHEK2).

Указанный технический результат достигается тем, что способ прогнозирования риска развития рака яичников включает в себя выделение ДНК из лимфоцитов периферической венозной крови наборами реагентов для выделения геномной ДНК из цельной крови, такими как GeneJET™ Mini, и комплексную детекцию мутаций c.5266dupC (BRCA1), c.181T>G (BRCA1), del5395 (CHEK2) и p.R145W (CHEK2) у одного пациента. При этом скрининг мутаций c.5266dupC в гене BRCA1 и p.R145W в гене CHEK2 проводят с помощью анализа кривых плавления с высокой разрешающей способностью (HRM), поиск мутации c.181T>G в гене BRCA1 выполняют с помощью аллель-специфичной ПЦР с последующим разделением в 2% агарозном геле и анализом при ультрафиолетовом освещении на трансиллюминаторе. Выявление мутации del5395 осуществляют по средствам мультиплексной ПЦР, с последующим разделением ПЦР-продуктов в 2% агарозном геле и анализом при ультрафиолетовом освещении на трансиллюминаторе. Ранее мутацию p.R145W (CHEK2) выявляли только у больных раком молочной железы, нами впервые было идентифицировано данное изменение у пациентов с раком яичников, проживающих в Республике Башкортостан.

Способ осуществляется следующим образом.

ДНК выделяют из лимфоцитов периферической крови. Непосредственный этап выделения ДНК проводят с помощью наборов реагентов для выделения геномной ДНК из цельной крови, согласно протоколу производителя. Полученную ДНК используют в качестве матрицы при проведения дальнейшего молекулярно-генетического анализа.

Детекцию мутации c.5266dupC в гене BRCA1 проводят с помощью HRM анализа. Специфические последовательности олигонуклеотидных праймеров представлены в работе Bogdanova N. (Bogdanova N. Genetic determinants of breast cancer susceptibility in the Byelorussian population. Dissertation dr. rer. nat. - 2008. - Vol. 193. - P. 1-193). Используются следующие последовательности олигонуклеотидов: (F) 5′-gggaatccaaattacacagc-3′, (R) 5′-ccaaagcgagcaagagaatctc-3′. Состав реакционной смеси для ПЦР общим объемом 17 µl включает в себя: 2 µl геномной ДНК (70 нг), 1.88 µl dNTPs, 4 µl MgCl2, 3,4 µl Q-solution, 1 µl смеси праймеров, 2.12 µl однократного буфера для Top-Tag полимеразы, 0.1 µl Top-Tag полимеразы, 0,8 µl EvaGreen и 1.7 µl воды высокой степени очистки. Режим амплификации: предварительная денатурация 7 минут при 95°С, затем 40 циклов со следующими параметрами - 95°С - 15 секунд, 60°С - 45 секунд, 72°С - 45 секунд. Плавление ПЦР-продукта проводят в диапазоне температур 55-95°С. Используют канал SYBR Green I, данные о кривых плавления анализируют в температурных пределах от 65°С до 95°С со скоростью линейного изменения 0,5°С в секунду.

На рисунке 1 представлен анализ кривых плавления с высокой разрешающей способностью: а) нормированный график кривых HRM анализа образцов с мутацией c.5266dupC (1) и без мутации (2); б) кривые плавления образцов с мутацией c.5266dupC (3) и в норме (4).

Скрининг мутации c.181T>G в гене BRCA1 проводят с помощью аллель-специфичной ПЦР. Специфичные последовательности нуклеотидных праймеров представлены в работе Bogdanova N. (Bogdanova N. Genetic determinants of breast cancer susceptibility in the Byelorussian population. Dissertation dr. rer. nat. - 2008. - Vol. 193. - P. 1-193). Используются следующие последовательности олигонуклеотидов: (F) 5′-ccagaagaaagggccttcactgg-3′, (R) 5′-cctgtataaggcagatgtcc-3′ (аллель специфичные для мутации c.181T>G); (F) 5′-ctcttaagggcagttgtgag-3′ и (R) 5′-ttcctactgtggttgcttcc-3′ (для амплификации внутреннего контроля). Состав реакционной смеси для ПЦР объемом 20 µl включает в себя: 2 µl геномной ДНК (70 нг), 1.5 µl dNTPs, 1.5 µl MgCl2, 2 µl каждого праймера, 2 µl однократного буфера для полимеразы с горячим стартом, 0.08 µl HotStar полимеразы и 4.92 µl воды высокой степени очистки. Режим амплификации: предварительная денатурация 15 минуты при 95°С, затем 35 циклов со следующими параметрами - 94°С - 1 минута, 62°С - 1 минута, 72°С - 1 минута. После 35-го цикла проводят инкубацию при 72°С в течение 5 минут. Полученные ПЦР-продукты подвергают электрофорезу в 2% агарозном геле. Перед нанесением на гель пробы смешивают в соотношении 1:5 с краской, содержащей 0,25% бромфенолового синего, 0,25% ксиленцианола, 15% фикола. Электрофорез проводят при постоянном напряжении 10 вольт/см2.

Детекцию результатов проводят путем визуализации в ультрафиолетовом свете на трансиллюминаторе. В результате ПЦР реакции амплифицируется продукт размером 221 п.н. В качестве внутреннего контроля синтезируют фрагмент гена MDC1 размером 353 п.н.

На рисунке 2 представлено электрофоретическое разделение продуктов амплификации: 1, 2 - образцы без мутации c.181T>G; 3, 4 - образцы с мутаций c.181T>G; М - маркер молекулярного веса 1 Kb.

Поиск мутации del5395 в гене CHEK2 проводится с помощью аллель-специфичной дуплексной ПЦР. Последовательности двух пар специфичных праймеров, фланкирующих протяженную делецию из 5395 нуклеотидов, охватывающую 9 и 10 экзоны гена, представлены в работе Cybulski С.с соавт. (Cybulski С.et al. A deletion in CHEK2 of 5,395 bp predisposes to breast cancer in Poland. Breast cancer research and treatment. - 2007. - T. 102. - №. 1. -С.119-122). Используются следующие последовательности праймеров: (F) 5′-tgtaatgagctgagattgtgc-3′ и (R) 5′-cagaaatgagacaggaagtt-3′, фланкирующие точку разрыва в интроне 8; (F) 5′ctctgttgtgtacaagtgac-3′ и (R) 5′gtctcaaacttggctgcg-3′, фланкирующие точку разрыва в интроне 10. Состав реакционной смеси для ПЦР объемом 20 µl включает в себя: 2 µl геномной ДНК (70 нг), 1.5 µl dNTPs, 1.5 µl MgCl2, 2 µl каждого праймера, 2 µl однократного буфера для полимеразы с горячим стартом, 0.08 µl HotStar полимеразы и 4.92 µl воды высокой степени очистки. Режим амплификации: предварительная денатурация 10 минуты при 95°С, затем 9 циклов со следующими параметрами - 94°С - 25 секунд, 68°С - 25 секунд (понижение температуры на 1,4°С в каждом цикле (68°С первый цикл 55°С - 9-й цикл)), 72°С - 35 секунд. Затем 31 цикл со следующими параметрами - 94°С - 25 секунд, 55°С - 30 секунд, 72°С - 35 секунд. Полученные ПЦР-продукты подвергают электрофорезу в 2% агарозном геле. Перед нанесением на гель пробы смешивают в соотношении 1:5 с краской, содержащей 0,25% бромфенолового синего, 0,25% ксиленцианола, 15% фикола. Электрофорез проводят при постоянном напряжении 10 вольт/см2. Детекцию результатов проводят путем визуализации в ультрафиолетовом свете на трансиллюминаторе. В образцах, не содержащих мутации del5395, амплифицируются фрагменты размером 379 п.н. и 522 п.н. В случае наличия мутации амплифицируется дополнительный фрагмент размером 450 п.н.

На рисунке 3 представлено электрофоретическое разделение продуктов амплификации: 1 - образец с мутацией del5395; 2, 3 - образцы без мутации del5395.

Скрининг мутации p.R145W (с.433С>Т) в гене CHEK2 проводят с помощью анализа кривых плавления с высокой разрешающей способностью. Специфические последовательности олигонуклеотидных праймеров, фланкирующих область с возможным содержанием мутации с. 433С>Т и их оптимальные концентрации в реакционной смеси подобраны с помощью пакета биологических программ DNASTAR (Primer select 5.05 1993-2002). Используются следующие последовательности олигонуклеотидов: (F) 5′-ttgctttgatgaaccactgc-3′, (R) 5′-tgtttcagactttgaatagcagaga-3′. Состав реакционной смеси для ПЦР общим объемом 17 µl включает в себя: 2 µl геномной ДНК (70 нг), 1.88 µl dNTPs, 4 µl MgCl2, 3.4 µl Q-solution, 1 µl смеси праймеров, 2.12 µl однократного буфера для Top-Tag полимеразы, 0.1 µl Top-Tag полимеразы, 0.8 µl EvaGreen и 1.7 µl воды высокой степени очистки. Режим амплификации: предварительная денатурация 7 минуты при 95°С, затем 40 циклов со следующими параметрами - 95°С - 15 секунд, 57°С - 45 секунд, 72°С - 45 секунд. Плавление ПЦР-продукта проводят в диапазоне температур 55-95°С. Используют канал SYBR Green I, данные о кривых плавления анализируют в температурных пределах от 70°С до 85°С со скоростью линейного изменения 0,5°С в секунду.

На рисунке 4 представлен анализ кривых плавления с высокой разрешающей способностью: а) нормированный график кривых HRM образцов с мутацией с. 433С>Т (1) и без мутации (2); б) кривые плавления образцов с мутацией с. 433С>Т (3) в норме (4).

Проводили анализ данных клинико-генетических исследований 187 женщин с установленным диагнозом «рак яичников» в возрасте от 17 года до 76 лет из Республики Башкортостан. По этническому происхождению обследуемая группа была неоднородна: русские -108 (58%), татары - 53 (28%), украинцы - 13 (7%), башкиры - 7 (4%) и чуваши - 6 (3%). Этническая принадлежность обследуемых определялась до третьего поколения путем личного опроса каждого человека. Материал собран в отделении гинекологии Клинического онкологического диспансера Министерства Здравоохранения Республики Башкортостан, (г. Уфа) и онкологического отделения Городской клинической больницы №1 (n=85) (г. Стерлитамак). Забор крови осуществлялся на базе вышеуказанных лечебных учреждений после осмотра исследуемых групп.

Контрольную группу составили 339 женщина без онкологических заболеваний на момент забора крови из Республики Башкортостан. По этническому составу контрольная группа соответствовала группе больных РЯ: русские - 49%, татары - 35%, башкиры - 9%, чуваши - 6% и украинцы - 1%. Средний возраст женщин из контрольной группы составил 41 год (18-69 лет).

Проведенный поиск мутации c.5266dupC в гене BRCA1 среди больных раком яичников и здоровых доноров позволил выявить 6,4% (12/187) пациенток и 0,6% (2/339) здоровых женщин с данным нарушением. Подобное распределение свидетельствует о широком распространении дупликации c.5266dupC в Республики Башкортостан и высоком риске развития рака яичников у носительниц данного изменения (OR: 11.6; 95% CI 2.6-52.2; р=0.0003).

Все позитивные случаи были подтверждены с помощью прямого секвенирования. Наличие мутации del5395 в гене CHEK2 подтверждали с помощью long-rang ПЦР.

Мутация c.181T>G была обнаружена у 1,6% (3/187) больных раком яичников. Для носительниц мутации c.181T>G отмечается более ранний возраст начала заболевания. В контрольной группе данного нарушения не идентифицировано.

Мутации del5395 и p.R145W в гене CHEK2 выявлены с частотой 1% (2/187). Среди здоровых доноров носителей не обнаружено.

В целом, у больных раком яичников из Республики Башкортостан с высокой частотой встречается мутация в гене c.5266dupC BRCA1. Также для пациенток характерны мутации c.181T>G в гене BRCA1, del5395 и p.R145W гене CHEK2. Полученные высокие значения частот изученных мутаций среди больных раком яичников свидетельствуют о важности определения этих нарушений в результате ДНК-диагностики с целью прогнозирования риска развития рака яичников.

Примеры прогнозирования риска рака яичников.

Пример 1. Пациентка Е.А., 1951 г.р., русского этнического происхождения. Имела случаи заболевания раком яичников в семье. Клинический диагноз - рак яичников.

Для выявления предрасположенности к развитию РЯ у пациентки был произведен забор крови объемом 5 мл с последующим выделением ДНК из периферических лимфоцитов с помощью наборов реагентов для выделения геномной ДНК из цельной крови. Комплексный скрининг мутаций проводили следующим образом: мутации c.5266dupC (BRCA1) и p.R145W (CHEK2) детектировали с помощью HRM анализа; мутацию c.181T>G (BRCA1) - аллель-специфичной ПЦР; мутацию del5395 (CHEK2) - аллель-специфичной дуплексной ПЦР. В результате у пациентки выявлена мутация c.5266dupC в гене BRCA1.

Пример 2. Пациентка М.Г., 1932 г.р., русского этнического происхождения. Клинический диагноз - рак яичников.

Для выявления предрасположенности к развитию РЯ у пациентки был произведен забор крови объемом 5 мл с последующим выделением ДНК из периферических лимфоцитов с помощью наборов реагентов для выделения геномной ДНК из цельной крови. Комплексный скрининг мутаций проводили следующим образом: мутации c.5266dupC (BRCA1) и p.R145W (CHEK2) детектировали с помощью HRM анализа; мутацию c.181T>G (BRCA1) - аллель-специфичной ПЦР; мутацию del5395 (CHEK2) - аллель-специфичной дуплексной ПЦР. В результате у пациентки выявлена мутация del5395 в гене CHEK2.

Пример 3. Пациентка P.P., 1951 г. р., татарского этнического происхождения. Имела случай заболевания раком молочной железы в семье. Клинический диагноз - рак яичников.

Для выявления предрасположенности к развитию РЯ у пациентки был произведен забор крови объемом 5 мл с последующим выделением ДНК из периферических лимфоцитов с помощью наборов реагентов для выделения геномной ДНК из цельной крови. Комплексный скрининг мутаций проводили следующим образом: мутации c.5266dupC (BRCA1) и p.R145W (CHEK2) детектировали с помощью HRM анализа; мутацию c.181T>G (BRCA1) - аллель-специфичной ПЦР; мутацию del5395 (CHEK2) - аллель-специфичной дуплексной ПЦР. В результате у пациентки выявлена мутация с.181Т>G в гене BRCA1.

Пример 4. Пациентка М.В., 1946 г. р., русского этнического происхождения. Клинический диагноз - рак яичников.

Для выявления предрасположенности к развитию РЯ у пациентки был произведен забор крови объемом 5 мл с последующим выделением ДНК из периферических лимфоцитов с помощью наборов реагентов для выделения геномной ДНК из цельной крови. Комплексный скрининг мутаций проводили следующим образом: мутации c.5266dupC (BRCA1) и p.R145W (CHEK2) детектировали с помощью HRM анализа; мутацию c.181T>G (BRCA1) - аллель-специфичной ПЦР; мутацию del5395 (CHEK2) - аллель-специфичной дуплексной ПЦР. В результате у пациентки выявлена мутация p.R145W в гене CHEK2.

Пример 5. Женщина из контрольной группы Г.А., 1967 г. р. русского этнического происхождения.

С целью выявления предрасположенности к развитию РЯ у здорового донора был произведен забор крови объемом 5 мл с последующим выделением ДНК из периферических лимфоцитов с помощью наборов реагентов для выделения геномной ДНК из цельной крови. Комплексный скрининг мутаций проводили следующим образом: мутации c.5266dupC (BRCA1) и p.R145W (CHEK2) детектировали с помощью HRM анализа; мутацию c.181T>G (BRCA1) - аллель-специфичной ПЦР; мутацию del5395 (CHEK2) - аллель-специфичной дуплексной ПЦР. В результате у обследованной женщины не выявлены не одна из исследуемых мутаций.

Обследование женщин, больных РЯ, и женщин из контрольной группы подтвердило высокую точность прогноза РЯ с применением предложенного способа, включающего в себя совместную детекцию четырех мутаций c.5266dupC (BRCA1), c.181T>G (BRCA1), del5395 (CHEK2) и p.R145W (CHEK2). Использование данного способа выявления мутаций в генах, ассоциированных с повышенным риском развития рака яичников, на доклинической стадии заболевания, позволило бы проводить у носителей мутаций профилактику онкологических заболеваний. Кроме того, предлагаемый способ предполагает сокращение времени исследования до 1 дня.

Способ прогнозирования риска развития рака яичников, включающий выделение ДНК из лимфоцитов периферической венозной крови и комплексную детекцию мутаций c.5266dupC (BRCA1), c.181T>G (BRCA1), del5395 (CHEK2) и p.R145W (CHEK2) у одного пациента, при этом выделение ДНК из лимфоцитов периферической венозной крови проводят наборами реагентов для выделения геномной ДНК из цельной крови, а амплификацию участка ДНК, содержащего мутацию p.R145W (CHEK2), проводят с помощью последовательностей олигонуклеотидов: (F) 5′-ttgctttgatgaaccactgc-3′, (R) 5′-tgtttcagactttgaatagcagaga-3′ посредством анализа кривых плавления с высокой разрешающей способностью, и обнаружение хотя бы одной из мутаций c.5266dupC (BRCA1), c.181T>G (BRCA1), del5395 (CHEK2) и p.R145W (CHEK2) свидетельствует о повышенном риске развития рака яичников.



 

Похожие патенты:

Изобретение относится к медицине, а именно к иммунологии, клеточным биотехнологиям, и может быть использовано для восстановления противоопухолевого иммунитета и подавления роста опухоли с последующим применением в клинической практике.

Группа изобретений относится к медицине и касается способа определения присутствия гемопоэтической опухоли или карциномы, включающего стадию измерения концентрации и/или количества растворимого LR11 в образце, полученном у субъекта, для получения значения измерения растворимого LR11 субъекта, стадию применения эталонного значения каждой опухоли, определенного статистической обработкой значений измерений растворимого LR11 в группе здоровых субъектов, для осуществления сравнения эталонного значения каждой опухоли со значением измерения растворимого LR11 субъекта и стадию сравнения значения измерения растворимого LR11 субъекта с эталонным значением каждой опухоли.

Изобретение относится к области биотехнологии и иммунологии Описаны выделенные антитела и их фрагменты, которые связываются с опухолевыми антигенами. Также описаны композиции и агенты для доставки, которые включают раскрываемые антитела; клетки, которые продуцируют эти антитела; способы продуцирования этих антител; способы применения этих антител, нацеливания на опухоли и/или метастатические клетки, образуемые ими, и/или опухолевые стволовые клетки, и лечение опухолей и/или метастатических клеток, образуемых ими, и/или опухолевых стволовых клеток; и способы прогнозирования рецидива рака у субъекта.

Группа изобретений относится к области биотехнологии. В частности, изобретение связано с фосфодиэстеразой-9А (PDE9A) для применения ее в качестве маркера злокачественной опухоли предстательной железы, а также для применения PDE9A в качестве маркера для диагностики, детекции, мониторинга или прогнозирования злокачественной опухоли предстательной железы или прогрессии злокачественной опухоли предстательной железы, и иммуноанализом.

Группа изобретений относится к медицине и касается способа определения резистентности субъекта к лечению рака с использованием 2,2-диметил-N-((S)-6-оксо-6,7-дигидро-5Н-дибензо[b,d]-азепин-7-ил)-N′-(2,2,3,3,3-пентафторпропил)малонамида, включающего измерение уровня биомаркера, присутствующего в биологическом образце, полученном у упомянутого субъекта, где биомаркер представляет собой IL6 и/или IL8, и где повышенный уровень IL6 и/или IL8 свидетельствует о наличии резистентности к указанному лечению.
Изобретение относится к области биотехнологии и предназначено для неинвазивной диагностики колоректального рака. Осуществляют забор и транспортировку образцов стула пациента, выделение из стула пациента общей ДНК и определение целостности ДНК методом ПЦР-анализа.

Изобретение относится к области биохимии, в частности к применению Axl в качестве биомаркера для распознавания наступления эпителиально-мезенхимального перехода (EMT) у субъекта, где показателем наступления EMT является повышающая регуляция экспрессии Axl.

Изобретение относится к области медицины. Предложен способ оценки чувствительности субъекта к возникновению рака предстательной железы, включающий определение в образце уровня фрагментов MR-pro-ADM, MR-pro-ANP и копептина длиной по крайней мере 12 аминокислот и соотнесение указанного уровня фрагментов с риском возникновения рака предстательной железы у субъекта, где субъект еще не был диагностирован как такой, который имеет рак, и/или не имеет рака.

Группа изобретений относится к медицине, а именно к онкологии, и может быть использована для повышения лечебного действия режима химиотерапии на пациента, страдающего раком поджелудочной железы, путем добавления бевацизумаба к режиму химиотерапии.

Изобретение относится к биотехнологии, конкретно к стоматологии и медицинской генетике, и может быть использовано для прогнозирования злокачественной трансформации эрозивно-язвенной формы красного плоского лишая (КПЛ) слизистой оболочки полости рта (СОПР).

Изобретение относится к биохимии. Предоставлена композиция для осуществления реакции замещения цепей нуклеиновых кислот, содержащая первый и второй комплексы нуклеиновых кислот, каждый из которых содержит первую, вторую, третью и четвертую цепи нуклеиновых кислот, где каждая из цепей содержит последовательно первый, второй и третий фрагменты.

Изобретение относится к области биотехнологии. Описаны способ и система для определения того, существует ли аномалия генома.

Изобретение относится к биохимии. Описаны выделенные моноклональные антитела, которые специфически связываются с PD-1 с высокой аффинностью.

Изобретение относится к области медицины, в частности к молекулярной биологии и онкологии, и предназначено для прогнозирования развития острой почечной недостаточности (ОПН) после кратковременной ишемии почки.

Изобретение относится к области медицинской диагностики и касается прогнозирования интенсивности болевого синдрома в раннем послеоперационном периоде у больных хроническим калькулезным холециститом, русской национальности, являющихся уроженцами Центрального Черноземья России.

Изобретение относится к области биотехнологии и представляет собой способ сайт-специфического гидролиза С5-метилированной последовательности ДНК. Готовят реакционную смесь, содержащую буферный раствор и образец С5-метилированной ДНК, добавляют к смеси диметилсульфоксид до конечной концентрации 15-25%, а затем MD-эндонуклеазу, смесь инкубируют в течение часа при 30-37°C с последующим анализом результата гидролиза ДНК методом гель-электрофореза, при этом в качестве MD-эндонуклеазы используют GlaI с концентрацией 4-8 е.а./мкл или PcsI с концентрацией 1-2 е.а./мкл.

Изобретение относится к области биотехнологии. Способ предусматривает приготовление реакционной смеси, содержащей буферный раствор и исследуемый образец ДНК.

Группа изобретений относится к области биотехнологии. Предложены способ и система для определения нуклеотидной последовательности в заданной области генома плода.

Изобретение относится к области медицинской диагностики и предназначено для прогнозирования риска развития первичной открытоугольной глаукомы (ПОУГ). У индивидуумов русской национальности, являющихся уроженцами Центрального Черноземья России, из периферической венозной крови выделяют ДНК, после чего проводят анализ полиморфизмов генов TNFα, Ltα, TNFR1 и TNFR2.

Настоящее изобретение относится к количественному способу определения, обладает ли обследуемый человек нарушенной функцией репарации ошибочно спаренных оснований ДНК.

Изобретение относится к области медицины и предназначено для определения степени гетероплазмии мутаций митохондриального генома. Проводят полимеразную цепную реакцию в режиме реального времени, вычисляют значение ΔCt, определяют коэффициент эффективности амплификации и рассчитывают степень гетероплазмии мутаций митохондриального генома по формуле. Изобретение обеспечивает простой и доступный для использования в клинической практике способ определения гетероплазмии мутаций митохондриального генома. 5 пр.
Наверх