Ковалентный моноконъюгат капроновой кислоты с тимозином бета 4, устойчивый к деградации в токе крови, и способ его получения

Группа изобретений относится к области биотехнологии, в частности к области модификации белков, и описывает способ региоселективного химического N-концевого гексаилирования тимозина бета 4, а также моноконъюгат, полученный вышеописанным способом. Способ характеризуется тем, что растворяют ангидрид гексановой кислоты в многокомпонентном водно-органическом буфере с pH 3, обеспечивающим региоселективное гексаилирование и содержащем дезацетилтимозин бета 4, инкубируют его в течение 3 ч при 25°C, очищают методом ОФ ВЭЖХ и лиофилизуют. Моноконъюгат капроновой кислоты с тимозином бета 4 обладает улучшенными фармакокинетическими свойствами. Изобретение позволяет получить моногексаилированный тимозин бета 4 с высоким выходом и может быть использовано в медицине и фармацевтической промышленности.2 н.п. ф-лы, 4 ил., 3 пр.

 

Область техники, к которой относится изобретение

Изобретение относится к области модификации белков, в частности касается аналогов тимозина бета 4 с пролонгированным временем циркуляции в крови. Оно может быть использовано для получения аналогов человеческого тимозина бета 4.

Уровень техники

Тимозин бета 4 - это пептид, вырабатываемый клетками тимусовой железы, который участвует в регуляции полимеризации актина, а также участвует в пролиферации, миграции и дифференциации клеток. Эти свойства тимозина бета 4 определяют его ценность в качестве медицинского препарата, особенно при лечении ишемической болезни сердца.

Тимозин бета 4 человека представляет собой 43-членный пептид, ацетилированный по N-концевой α-аминогруппе.

Немодифицированный тимозин бета 4 получают биотехнологическим методом с помощью технологии рекомбинантной ДНК и далее модифицируют путем избирательного химического ацетилирования N-концевой альфа-аминогруппы. Такой способ описан в работах (К.А. Бейрахова, В.Н. Степаненко, А.И. Мирошников, Р.С. Есипов / Биотехнологический способ получения ацетилированного тимозина бета 4 // Биоорганическая химия, 2011, том 37, №2, с. 1-10), (Д.А. Макаров, Т.И. Муравьева, В.Н. Степаненко, В.И. Швец, Р.С. Есипов, 2014. Оптимизация и масштабирование лабораторного метода получения рекомбинантного тимозина бета 4 человека до пилотного производства. Биотехнология 4, 35-44).

Природный тимозин бета 4 коротко живущий пептид, и период его полувыведения из крови напрямую зависит от вводимой дозы в организм [Mora CA, Baumann CA, Paino JE, Goldstein AL, Badamchian M / Biodistribution of synthetic thymosin beta 4 in the serum, urine, and major organs of mice // Int. J. Immunopharmacol. 1997 Jan; 19(1):1-8], что создает трудности при его администрировании. Стандартный подход, применяемый для повышения стабильности терапевтического белка, заключается в присоединении к нему химическими или энзиматическими методами различных защитных групп, обеспечивающих защиту от протеалитических ферментов [Jevsevar S, Kunstelj М, Porekar VG. PEGylation of the therapeutic proteins. Biotechnol J. 2010 Jan; 5(1):113-28; Schlapschy M, Binder U, , Theobald I, Wachinger K, Kisling S, Haller D, Skerra A. PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. ProteinEngDesSel. 2013 Aug; 26(8):489-501; Susanne M Mumby. Reversible palmitoylation of signaling proteins / Current Opinionin Cell Biology Volume 9, Issue 2, April 1997, Pages 148-154]. Но принципиальная сложность такого подхода по отношению к тимозину бета 4 заключается в том, что химическая модификация тимозина бета 4 предпочтительна только по N-концевой альфа-аминогруппе. Присоединение функциональной группы к любому другому аминокислотному остатку внутри пептида изменит его нативную структуру, что в свою очередь приведет к потере его биологической активности. Известно, что биологическая активность тимозина бета 4 определяется активными сайтами в коротких пептидных последовательностях, так например, его основной актинсвязывающий сайт расположен в аминокислотных остатках 17-22, основной сайт, проявляющий антиапоптозную активность и осуществляющий защиту от токсичности, располагается в аминокислотных остатках 1-15, а сайт, представляет собой первые четыре аминокислотных остатка Ac-SPDK, первый из которых ацетилирован по N-концевой альфа-аминогруппе, обладает широким спектром биологической активности. Связано это с тем, что природная пострансляционная модификация пептида - присоединение ацетильной группы происходит именно по N-концевой альфа-аминогруппе тимозина бета 4. Поскольку концентрация тимозина бета 4 в крови уже через 2 часа падает до базального уровня после его администрирования [Mora CA, Baumann CA, Paino JE, Goldstein AL, Badamchian M. Biodistribution of synthetic thymosin beta 4 in the serum, urine, and major organs of mice. Int J Immunopharmacol. 1997 Jan; 19(1):1-8], существует потребность в аналогах тимозина бета 4 с пролонгированным временем циркуляции в крови.

Раскрытие изобретения

Настоящее изобретение относится к созданию стабильного в токе крови аналога тимозина бета 4 посредством региоселективного химического гексаилирования тимозина бета 4. Конкретнее, настоящее изобретение раскрывает способ получения модифицированного тимозина бета 4 с пролонгированной стабильностью в токе крови с высоким выходом за счет региоспецифического ацилирования тимозина бета 4 ангидридом гексановой кислоты по свободной N-концевой альфа-аминогруппе тимозина бета 4.

Изобретение иллюстрируется следующими чертежами.

Фиг 1. Формула ангидрида гексановой кислоты.

Фиг 2:

A - Профиль полупрепаративной хроматографической очистки продуктов реакции гексаилирования дезацетилтимозина бета 4. Колонка Диасорб 130 С16Т, 8 мкм, 15X250 мм. Разделение проводили в градиенте 80% ацетонитрила с 0,1% ТФУ 15-30%. 1 - дезацетилтимозин бета 4, 2 - моногексаноилтимозин бета 4, 3-5 - побочные продукты реакции.

B - профиль аналитической ОФ ВЭЖХ фракции 2.

C - Масс-спектр аналитической ОФ ВЭЖХ фракции 2.

Фиг 3. Хроматографический профиль продуктов протеолитического расщепления конъюгата капроновой кислоты с тимозином бета 4.

Фиг 4. Однобуквенная последовательность дезацетилтимозина бета 4. Результаты протеолитического расщепления конъюгата капроновой кислоты с тимозином бета 4.

Подробное описание изобретения

Химическая модификация молекулы белка жирными кислотами придает молекуле белка липофильные свойства, что приводит к изменениям в белок/белковых взаимодействиях, связывании с мембраной и таргетных взаимодействиях. Сайтспецифическое ацилирование ангидридом гексановой кислоты возможно только при pH ниже 4. Характерным аспектом изобретения является региоспецифический способ гексаилирования, включающий моноселективное ацилирование тимозина бета 4 ангидридом гексановой (капроновой) кислоты (фиг. 1) по свободной N-концевой альфа-аминогруппе пептида в буферном растворе для гексаилирования. Техническим результатом региоселективной химической модификации является образование моногексаноилтимозина β4, выход которого составляет не ниже 30%.

Под буферным раствором для гексаилирования подразумевается многокомпонентный водно-органический буферный раствор, содержащий 30% ацетонитрила и 15% любого другого органического растворителя, например бутанола или изопропанола, список не ограничивается перечисленным, который обеспечивает постоянное значение pH 3,0. Такой буфер с концентрацией от 5 мМ до 100 мМ может содержать соли уксусной, фосфорной, лимонной кислот, список не ограничивается перечисленным.

Техническим результатом изобретения является получение моногексаилированного тимозина бета 4, обладающего в 4 раз большим временем полувыведения из плазмы крови по сравнению с тимозином бета 4.

Осуществление изобретения

Пример 1

Получение моногексаноилтимозина бета 4.

К растворенному в буфере (50 мМ ацетат натрия, 30% ацетонитрила, 15% бутанола, pH 3) дезацетилтимозину бета 4 добавляют 22,5 мкл ангидрида гексановой кислоты, тщательно перемешивают и инкубируют в течение 3 ч при 25°C. Идентификацию образующегося моногексаноилтимозина бета 4 проводят методом хромато-масс-спектрометрии Реакционную смесь разбавляют в 10 раз дистиллированной водой и наносят на колонну Диасорб 130 С16Т, 8 мкм, 15X250 мм. Разделение проводят в градиенте 80% ацетонитрила с 0,1% ТФУ (15-30% за 60 мин). Фракции содержащие моногексаноилтимозин бета 4 более 98% объединяют и лиофилизуют. На фигуре 4 под буковой A изображен профиль полупрепаративной хроматографической очистки монокесаноилтимозина бета 4, где 2 - пик, соответствует моногексаноилтимозину бета 4; 3, 4 и 5 - пики - побочные продукты реакции. Под буквой B изображен профиль аналитической ОФ ВЭЖХ фракции, содержащей моногексаноилтимозин бета 4, под буквой C изображен масс-спектр моногексаноилтимозина бета 4.

Пример 2

Подтверждение структуры моногексаилированного тимозина бета 4.

Лиофилизованный аналог тимозина бета 4 и химически синтезированный тимозин бета 4 в количестве 200 мкг (считают по пептиду) растворяют в 50 мкл буфера (50 мМ Трис/HCl, pH 8,0), затем добавляют 5 мкл 0,067 мг/мл раствора Asp-N протеиназы (0,335 мкг) и инкубируют в течение 3 ч при 37°C. Протеолитическую смесь анализируют методом хромато-масс-спектрометрии. Хроматографические профили продуктов протеолитического расщепления соответствуют профилям на фиг 3. Молекулярные массы фрагментов пептидов соответствуют значениям на фиг 4.

Пример 3

Тестирование стабильности аналога тимозина бета 4 и химически синтезированного тимозина бета 4 на сыворотке крови.

Стабильность определяют как время, за которое в сыворотке крови остается 50% пептида от исходного количества (T1/2). Сыворотку крови выделяют из крови кролика по стандартным протоколам. Расфасовывают по 50 мкл и замораживают на -70°C. Расфасованную сыворотку крови используют однократно. Тестируемые образцы растворяют в стерильном физиологическом растворе и вводят в концентрации 10 мг/мл в 50 мкл сыворотки крови и инкубируют в течение 1-24 ч при 37°C. Смесь анализируют методом хромато-масс-спектрометрии. Стабильность измеряют по изменению площади поглощения исследуемого образца со временем. Результаты обрабатывают статистически, достоверность отличий результатов определяют параметрическим методом. Для тимозина бета 4 T1/2 соответствует 2 ч., для моногексаилированного тимозина бета 4 T1/2 соответствует 8 ч.

1. Способ получения моноконъюгата капроновой кислоты с тимозином бета 4, включающий растворение ангидрида гексановой кислоты в многокомпонентном водно-органическом буфере с pH 3, обеспечивающим региоселективное гексаилирование и содержащем дезацетилтимозин бета 4, инкубирование в течение 3 ч при 25°C, очистку методом ОФ ВЭЖХ и лиофилизацию.

2. Ковалентный моноконъюгат капроновой кислоты с тимозином бета 4, устойчивый к деградации в токе крови, полученный способом по п.1.



 

Похожие патенты:
Изобретение относится к медицине, а именно к гинекологии, и может быть использовано для комплексного лечения дисфункции яичников при применении гормонального контрацептива имплантата "Импланона".
Изобретение относится к медицине, в частности к педиатрии и урологии, и касается лечения гиперактивного мочевого пузыря у детей. Способ включает введение препаратов, увеличивающих объем мочевого пузыря, а также введение десмопрессина (минирина) в течение 3-х месяцев.

Изобретение относится к применению прогестогена, выбранного из группы, состоящей из 17НРС, Р4 и MPА, в качестве компонента фармацевтической композиции глюкокортикоидной сенсибилизации мононуклеарных клеток периферической крови (РВМС), полученных от субъекта, страдающего глюкокортикоидной нечувствительностью, повышенной глюкокортикоидной чувствительностью или обращением глюкокортикоидной нечувствительности, причем субъект не имеет рецидива, связанного с менструальным циклом, а состояния, связанные с глюкокортикоидной нечувствительностью, включают круг иммуновоспалительных расстройств/болезней, лечимых терапией стероидами, но такая терапия не в состоянии достигнуть контроля над болезнью или является неэффективной, или интолерантной, или зависимой от кортикостероидов, или их комбинацией.

Группа изобретений относится к медицине, а именно к терапии и эндокринологии, и может быть использована для предотвращения тяжелой симптоматической гипогликемии, связанной с концентрацией глюкозы в плазме ниже 50 мг/дл, при сахарном диабете 2 типа.

Изобретение относится к медицине, а именно к дерматологии, и касается кожной терапевтической композиции для лечения дерматита, содержащей натрийуретический пептид С-типа (CNP) или натрийуретический пептид В-типа (BNP) в количестве 1-500 мкг/г.

Группа изобретений относится к области медицины и касается фармацевтической композиции для индуцирования у пациента антидиуретического эффекта при снижении риска того, что у пациента может развиться гипонатремия, содержащей интраназальную дозу десмопрессина для распыления в форме конического факела, выбрасываемого через некоторый временной интервал из сопла, отмеривающего дозу распыляющего устройства, а также раскрыто само устройство.
Изобретение относится к медицине, онкологии, лучевой терапии. Для лечения рака предстательной железы (ПЖ) с диссеминацией в кости проводят сегментарное облучение и локорегионарную и локальную лучевую терапию на фоне гормонотерапии.

Группа изобретений относится к медицине и касается применения фармацевтически активного релаксина Н2 для получения лекарственного средства для лечения нефрогенного несахарного диабета у субъекта, нуждающегося в этом.
Изобретение относится к области фармацевтики и пищевой промышленности, а именно представляет собой биологически активный состав в форме ородисперсной таблетки, характеризующийся тем, что содержит дегидроэпиандростерон (DHEA) в качестве активного компонента или его сочетание с тианином и инертные наполнители: маннитол, сорбитол, мальтитол, кросповидон, коповидон, скользящее вещество, интенсивный подсластитель и ароматизатор при определенном соотношении компонентов.

Изобретение относится к новым пептидам, их фармацевтическим композициям и применению в способе снижения внутриглазного давления и способе лечения или профилактики офтальмологических заболеваний, опосредованных натрийуретическими пептидами или белками.

Изобретение относится к области фармакологии, химии полимеров и нанотехнологиям и может быть использовано для получения полимерных наночастиц низкосиалированного эритропоэтина с высокой степенью сорбции, перпективных для лечения неврологических заболеваний. Способ получения наночастиц заключается в использовании 1% раствора сополимера PDLGA-93, представляющего собой сополимер D,L-лактида и гликолида при соотношении D,L-лактида и гликолида 75/25 и средневесовой молекулярной массой 70-80 кДа, в ацетоне и 1% раствора стабилизатора, представляющего собой раствор поливинилового спирта молекулярной массой 30-70 кДа в бидистиллированной деионизированной воде. Способ позволяет получать наночастицы, отличающиеся высокой стабильностью и наивысшей степенью сорбции препарата на наночастицах для прохождения через гематоэнцефалический барьер. 7 з.п. ф-лы, 20 ил., 4 пр.

Изобретение относится к области биотехнологии, конкретно к пептидным антагонистам кальцитонин ген-родственного пептида (CGRP), и может быть использовано в медицине для лечения состояния, связанного с повышенным уровнем CGRP, в том числе мигрени. Предложен пептид, имеющий структуру X1- Y1- Z1, где X1 имеет структуру X11-X12-X13-X14-X15-X16-X17 (SEQ ID №: 16), где X17 представляет собой Cys, где X11 выбран из группы, состоящей из Ala, Cys и Gly, и где X12 выбран из группы, состоящей из Cys и Ser, при условии, что один из X11 или X12 представляет собой Cys, где X13 выбран из группы, состоящей из Arg, Asn, Asp и Val, где X14 выбран из группы, состоящей из Leu, Phe и Thr, где X15 выбран из группы, состоящей из Ala, Gly и Ser, где X16 выбран из группы, состоящей из Ala, Ile, Leu, Ser и Val. При этом Y1 представляет собой Val-Leu-Gly-Arg-Leu-Ser-Gln-Glu-Leu-His-Arg-Leu-Gln-Thr-Tyr-Pro-Arg-Thr-Asn- (SEQ ID №: 34); и Z1 представляет собой Val-Gly-Ser-Lys-Ala-Phe-NH2 (SEQ ID №: 46). Изобретение обеспечивает получение эффективного антагониста CGRP. 5 н. и 18 з.п. ф-лы, 7 табл., 1 пр.

Настоящее изобретение относится к биохимии и медицине, в частности к средству для стимуляции дифференцировки панкреатических предшественников бета-клеток в продуцирующие и секретирующие инсулин бета-клетки при инсулинзависимом сахарном диабете. Указанное средство представляет собой пегилированную форму глюкагон-подобного пептида 1 GLP-1 (7-37). Настоящее изобретение позволяет расширить арсенал средств для лечения инсулинзависимого сахарного диабета за счет способности настоящего средства стимулировать дифференцировку панкреатических предшественников бета-клеток в продуцирующие и секретирующие инсулин бета-клетки. 1 ил., 9 табл., 7 пр.

Изобретение относится к области медицины, в частности к гинекологии, и предназначено для лечения вагинальной атрофии у женщин в постменопаузе с учетом состояние биоценоза влагалища. Биоматериал берут с помощью вагинального или уретрального зонда путем соскоба влагалища. Методом ПЦР в режиме реального времени с помощью комплекта реагентов «Фемофлор-16» определяют количество геном-эквивалентов микроорганизмом и их долю в общей бактериальной массе. Если доля Lactobacillus spp. больше 80%, диагностируют нормоценоз, характеризующийся доминированием нормофлоры. Если доля Lactobacillus spp. менее 80%, диагностируют дисбиоз. При вагинальной атрофии на фоне нормоценоза назначают гормональную терапию. При вагинальной атрофии на фоне дисбиоза назначают гормональную терапию и препараты, содержащие лактокультуру. Изобретение обеспечивает разработку индивидуальных подходов лечения вагинальной атрофии у женщин в постменопаузе с учетом состояния биоценоза влагалища. 5 табл., 3 пр.

Изобретение относится к новым пептидам, обладающие активностью агонистов NPR-B, которые могут быть использованы для лечения и профилактики нарушений, опосредованных натрийуретическими пептидами, например, таких как глаукома, гипертензия глаза и оптические нейропатии. 8 н. и 13 з.п. ф-лы, 3 ил., 5 табл., 5 пр.

Изобретение относится к области биотехнологии, конкретно к получению светочувствительного химерного белка, способного включать световой сигнал в сигнальный каскад метаботропного глутаматного рецептора 6 (mGluR6), который является природным компонентом клеточной мембраны ON-биполярных клеток во внутреннем слое сетчатки, что может быть использовано в медицине. Получают химерный белок GPCR, содержащий домены по меньшей мере двух членов белкового суперсемейства рецепторов, сопряженных с G-белками (GPCR), нуклеиновую кислоту, кодирующую указанный белок, вектор экспрессии, включающий указанную нуклеиновую кислоту, а также трансгенную клеточную линию, содержащую генетическую информацию, кодирующую химерный белок GPCR. Изобретение позволяет осуществлять эффективную медикаментозную терапию и получать эффективное лекарственное средство для улучшения зрения, в частности для лечения потери зрения в результате дегенерации фоторецепторов сетчатки. 10 н. и 22 з.п. ф-лы, 6 ил., 1 табл., 1 пр.

Изобретение относится к области биотехнологии, конкретно к рекомбинантному получению белков человека, и может быть использовано для получения орексина А человека в клетках Escherichia coli. Способ получения заключается в культивировании клеток штамма-продуцента Escherichia coli BL21(DE3)pET151/D-TOPO, полученного трансформацией плазмидной ДНК pET151/D-TOPO, содержащей кодонно оптимизированный ген орексина А человека, клеток Escherichia coli BL21(DE3) с использованием индуктора экспрессии таргетного белка. Затем лизируют клетки, отмывают тельца включения 0.2 М дезоксихолятом натрия, растворяют тельца включения в 8 М растворе мочевины, проводят рефолдинг орексина А в буфере 0.1M Tris рН 8.0, 0.2 mM ЭДТА с 0.5 М L-аргинином и проводят хроматографическую очистку полученного раствора белка на S-Sepharose колонке и S-100 колонке. Изобретение позволяет получить высокоочищенный физиологически активный рекомбинантный орексин А человека. 3 н.п. ф-лы, 3 ил., 2 табл., 5 пр.
Наверх