Способ подвидовой дифференциации штаммов возбудителя чумы методом полимеразной цепной реакции с гибридизационно-флуоресцентным учетом результатов в режиме реального времени



Способ подвидовой дифференциации штаммов возбудителя чумы методом полимеразной цепной реакции с гибридизационно-флуоресцентным учетом результатов в режиме реального времени
Способ подвидовой дифференциации штаммов возбудителя чумы методом полимеразной цепной реакции с гибридизационно-флуоресцентным учетом результатов в режиме реального времени
C12N1/00 - Микроорганизмы, например простейшие; их композиции (лекарственные препараты, содержащие материал из микроорганизмов A61K 35/66; приготовление лекарственных составов, содержащих бактериальные антигены или антитела, например бактериальных вакцин A61K 39/00); способы размножения, содержания или консервирования микроорганизмов или их композиций; способы приготовления или выделения композиций, содержащих микроорганизмы; питательные среды

Владельцы патента RU 2621869:

Федеральное казенное учреждение здравоохранения "Российский научно-исследовательский противочумный институт "Микроб" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека ("РосНИПЧИ "Микроб") (RU)

Изобретение относится к биохимии и области медицинской микробиологии. Описан способ подвидовой дифференциации штаммов возбудителя чумы Yersinia pestis. Способ предусматривает выделение ДНК исследуемого штамма, проведение полимеразной цепной реакции с гибридизационно-флуоресцентным учетом результатов в режиме реального времени с праймерами SEQ ID NO: 1, 3, 5, 7, 9, 11, 13 и зондами SEQ ID NO: 2, 4, 6, 8, 10, 12, 14 на ДНК-мишени 45, 89, Caucasic(-91), His(-205), Alt(-90), Uleg(-88), Tal(-72). Подвидовую дифференциацию штаммов Yersinia pestis проводят по отсутствию сигнала флуоресценции по специфической для подвида ДНК-мишени и по его наличию по остальным используемым ДНК-мишеням. 1 ил., 6 пр.

 

Изобретение относится к медицинской микробиологии, в частности к молекулярному типированию и подвидовой дифференциации штаммов Yersinia pestis, и может быть использовано в научно-исследовательских медицинских учреждениях и службах Роспотребнадзора.

Возбудитель чумы является этиологическим агентом особо опасной инфекционной болезни, которая в большом проценте случаев приводит к летальному исходу. Высоковирулентные штаммы Y.pestis могут быть использованы в биотеррористических атаках, что требует разработки высокоэффективных способов индикации и идентификации штаммов Y.pestis с помощью современных молекулярно-генетических технологий. Такие способы обладают высокой чувствительностью и разрешающей способностью, сокращают время проведения анализа.

Штаммы Y. pestis отличаются по вирулентности, эпидемической значимости, по биохимической активности и циркулируют в различных ландшафтно-географических зонах природных очагов чумы. Согласно используемой в Российской Федерации и других странах СНГ классификации возбудитель чумы включает пять подвидов - основной и четыре неосновных (кавказский, алтайский, гиссарский и улегейский) подвида. Кроме того, выделяется отдельная группа штаммов Y.pestis из Таласского высокогорного очага, обладающих рядом фенотипических и генетических особенностей, которая по комплексу признаков близка штаммам неосновных подвидов. Наибольшей вирулентностью и эпидемической значимостью обладают штаммы возбудителя чумы основного подвида, в то время как для штаммов неосновных подвидов характерна избирательная вирулентность и низкая эпидемическая значимость. Определение подвидовой принадлежности исследуемых штаммов дает возможность оценить их вирулентный и эпидемический потенциал, а также установить происхождение этих штаммов и возможные пути заноса в рамках проводимого эпидемиологического мониторинга чумы.

В настоящее время в лабораторной диагностике возбудителя чумы разделение штаммов Y.pestis разных подвидов проводят на основе различий в биохимической активности в отношении сахаров и спиртов (ферментация сахаров и многоатомных спиртов, редукция нитратов). При этом экспрессия этих фенотипических признаков зависит от условий культивирования и качества питательных сред, а для проведения анализа необходимо выделение чистых культур возбудителя. На современном этапе развития микробиологии эту длительную процедуру установления подвидовой принадлежности штаммов возбудителя чумы можно ускорить с помощью методов молекулярно-генетического анализа, в частности с помощью простого и эффективного метода полимеразной цепной реакции (ПЦР), использование которого обеспечивает получение стабильных и обладающих высокой воспроизводимостью результатов. Среди различных вариаций ПЦР наибольшей эффективностью обладает метод ПЦР с гибридизационно-флуоресцентным учетом результатов в режиме реального времени (ПЦР-РВ). Он занимает меньше времени по сравнению с ПЦР с электрофоретическим учетом результатов, а также снижает вероятность контаминации исследуемого образца в связи с отсутствием этапа электрофореза.

В настоящее время для индикации и внутривидовой дифференциации штаммов Y.pestis применяется ряд способов, основанных на ПЦР с электрофоретическим учетом.

Зарегистрирована тест-система («ГенПест», ТУ8895-005-0189), предназначенная для экспресс-диагностики штаммов Y.pestis методом ПЦР с использованием двух пар праймеров на участки генов caf1 (плазмида pFra) и pla (плазмида pPst). Однако данная тест-система предназначена для детекции вида Y.pestis и не может быть использована для проведения его внутривидовой дифференциации.

Известен способ экспресс-диагностики бактерий рода Yersinia, основанный на методе мультиплексной ПЦР с последующим анализом длин амплифицированных фрагментов гена порина - OmpF (патент RU 2385941, опубликован 10.04.2010). Метод позволяет одновременно осуществлять детекцию и дифференциальную диагностику патогенных и непатогенных видов иерсиний, а также видовую идентификацию патогенных для человека видов: Yersinia pestis, Yersinia pseudotuberculosis и Yersinia enterocolitica. Однако этот способ не предназначен для проведения подвидовой дифференциации штаммов Y.pestis.

Известен способ дифференциации штаммов возбудителя чумы основного и неосновных подвидов и возбудителя псевдотуберкулеза методом полимеразной цепной реакции (патент RU 2425891, опубликован 10.08.2011). Согласно этому способу, дифференциацию исследуемых штаммов проводят на основе сравнения размеров получаемых фрагментов генов terC, ilvN и inv с аналогичными фрагментами типичных штаммов возбудителей чумы основного и неосновных подвидов. Этот метод позволяет быстро, эффективно и надежно проводить дифференциацию штаммов Y.pestis основного и неосновных подвидов и Y.pseudotuberculosis, однако он не обеспечивает разделения штаммов возбудителя чумы неосновных подвидов.

Известен способ дифференциации чумного и псевдотуберкулезного микробов с одновременной внутривидовой дифференциацией штаммов чумного микроба (RU 2332464, опубликован 27.08.2008). Согласно этому методу дифференциацию исследуемых штаммов проводят по размеру амплификатов вариабельной области hutG-YP01967, полученных с помощью праймеров TAN1 и TAN2. Недостатком этого способа является то, что локус hutG-YP01967 расположен в нестабильной области генома Y.pestis, которая может утрачиваться у штаммов основного подвида. Также этот способ сложен в интерпретации результатов и требует использования большого количества референтных штаммов.

Известен способ дифференциации биоваров и геновариантов штаммов Yersinia pestis основного подвида с помощью полимеразной цепной реакции (RU 2565554, опубликован 20.01.2015). Этот способ предназначен для разделения биоваров основного подвида и отдельных популяций штаммов Y.pestis, но не для разделения штаммов разных подвидов возбудителя.

Разработан способ подвидовой дифференциации штаммов возбудителя чумы методом полимеразной цепной реакции (RU 2552611, опубликован 10.06.2015), основанный на использовании метода ПЦР с электрофоретическим учетом результатов. Недостаток этого способа заключается в том, что он не позволяет проводить дифференциацию штаммов алтайского и гиссарского подвидов.

Другой вариант метода ПЦР - ПЦР с гибридизационно-флуоресцентным учетом результатов в режиме реального времени - до сих пор применялся, в основном, для проведения видовой индикации возбудителя чумы. В частности, известен «Набор и способ для ускоренной идентификации чумного микроба с одновременной дифференциацией вирулентных и авирулентных штаммов Y. pestis, определением их плазмидного профиля» (патент RU 2473701, опубликован 27.01.2013). В то же время метод ПЦР-РВ практически не применялся для проведения внутривидовой дифференциации штаммов Y.pestis. Известен лишь один пример использования этого метода для проведения внутривидовой дифференциации типичных и атипичных штаммов Yersinia pestis средневекового биовара методом ПЦР с гибридизационно-флуоресцентным учетом результатов (RU 2550257, опубликован 10.05.2015). Этот способ предназначен для разделения штаммов основного подвида средневекового биовара, но он не позволяет разделять штаммы разных подвидов возбудителя чумы. Другие данные об использования метода ПЦР-РВ для проведения подвидовой дифференциации штаммов Y.pestis в литературе отсутствуют.

Задачей изобретения является разработка высокоразрешающего, быстрого и надежного способа дифференциации штаммов Y.pestis разных подвидов на основе метода ПЦР с гибридизационно-флуоресцентным учетом результатов в режиме реального времени.

Техническим результатом изобретения является повышение разрешающей способности, надежности и сокращение времени проведения подвидовой дифференциации штаммов возбудителя чумы.

Заявленный способ основан на использовании в качестве ДНК-мишеней вариабельных участков хромосомной ДНК, локализованных в последовательностях генов ilvN, terC, АК38_2123, АК38_1098, АК38_1327, АК38_334 и AK38_181, по последовательности референтного штамма Y.pestis CO92. Эти ДНК-мишени несут специфические для каждого подвида и таласских штаммов делеции и обозначены нами как 45, 89, Caucasic(-91), His(-205), Alt(-90), Uleg(-88) и Tal(-72).

Технический результат достигается способом дифференциации штаммов Y.pestis основного, кавказского, алтайского, гиссарского, улегейского подвидов и таласских штаммов методом ПЦР с гибридизационно-флуоресцентным учетом результатов в режиме реального времени, который предусматривает амплификацию участков ДНК-мишеней 45, 89, Caucasic(-91), His(-205), Alt(-90), Uleg(-88) и Tal(-72) в раздельных реакциях на матрице ДНК исследуемых штаммов с использованием сконструированных праймеров SEQ ID NO: 1, 3, 5, 7, 9, 11, 13 и зондов SEQ ID NO: 2, 4, 6, 8, 10, 12, 14 и подвидовую дифференциацию штаммов по отсутствию сигнала флуоресценции по мишеням 45 и 89 у штаммов основного подвида, по мишени Caucasic(-91) у кавказского подвида, по мишени His(-205) у гиссарского подвида, по мишени Alt(-90) у алтайского подвида, по мишени Uleg(-88) у улегейского подвида, по мишени Tal(-72) у таласских штаммов при наличии у исследуемых штаммов сигналов по остальным ДНК-мишеням.

Способ осуществляют следующим образом.

Выделение ДНК исследуемого штамма Y.pestis и проведение ПЦР с гибридизационно-флуоресцентным учетом результатов осуществляют по стандартной методике в соответствии с МУ 1.3.2569-09 «Организация работ лабораторий, использующих методы амплификации нуклеиновых кислот при работе с материалом, содержащим микроорганизмы I-IV групп патогенности». ПЦР проводят с применением праймеров SEQ ID NO: 1, 3, 5, 7, 9, 11, 13 и зондов SEQ ID NO: 2, 4, 6, 8, 10, 12, 14 на ДНК-мишени 45, 89, Caucasic(-91), His(-205), Alt(-90), Uleg(-88) и Tal(-72). Последовательности праймеров и зондов, используемые метки и гасители приведены на чертеже.

Для проведения дифференциации штаммов Y.pestis разных подвидов используют зонды в формате TaqMan и применяют следующие условия проведения реакции:

для штаммов основного подвида по мишени 45 с использованием праймеров SEQ ID NO 1 и зонда SEQ ID NO 2 (с меткой FAM и гасителем RTQ1)

- 1 цикл: 95°С 10 мин; 40 циклов: 95°С 15 с, 57°С 40 с, 72°С 15 с;

для штаммов основного подвида по мишени 89 с использованием праймеров SEQ ID NO 3 и зонда SEQ ID NO 4 (с меткой FAM и гасителем RTQ1)

- 1 цикл: 95°С 15 мин; 10 циклов: 95°С 20 с, 56°С 20 с, 72°С 20 с; 30 циклов: 95°С 15 с, 57°С 45 с, 72°С 20 с;

для штаммов кавказского подвида по мишени Caucasic(-91) с использованием праймеров SEQ ID NO 5 и зонда SEQ ID NO 6 (с меткой R6G и гасителем RTQ1)

- 1 цикл: 95°С 15 мин; 40 циклов: 95°С 15 с, 58°С 40 с;

для штаммов гиссарского подвида по мишени His(-205) с использованием праймеров SEQ ID NO 7 и зонда SEQ ID NO 8 (с меткой ROX и гасителем BHQ2)

- 1 цикл: 95°С 15 мин; 40 циклов: 95°С 15 с, 57°С 35 с, 72°С 15 с;

для штаммов алтайского подвида по мишени Alt(-90) с использованием праймеров SEQ ID NO 9 и зонда SEQ ID NO 10 (с меткой R6G и гасителем RTQ1)

- 1 цикл: 95°С 15 мин; 40 циклов: 95°С 15 с, 58°С 40 с;

для штаммов улегейского подвида по мишени Uleg(-88) с использованием праймеров SEQ ID NO 11 и зонда SEQ ID NO 12 (с меткой Су5 и гасителем BHQ2)

- 1 цикл: 95°С 15 мин; 10 циклов: 95°С 20 с, 55°С 20 с, 72°С 20 с; 35 циклов: 95°С 20 с, 56°С 45 с, 72°С 20 с;

для таласских штаммов по мишени Tal(-72) с использованием праймеров SEQ ID NO 13 и зонда SEQ ID NO 14 (с меткой ROX и гасителем BHQ2)

- 1 цикл: 95°С 15 мин; 40 циклов: 95°С 15 с, 59°С 35 с, 72°С 15 с.

В ПЦР-РВ по мишеням 45 и 89 с использованием праймеров SEQ ID NO 1 и зонда SEQ ID NO 2, праймеров SEQ ID NO 3 и зонда SEQ ID NO 4 у штаммов основного подвида отсутствуют флуоресцентные сигналы, которые проявляются у штаммов других подвидов и таласских штаммов. В ПЦР-РВ по мишени Caucasic(-91) с использованием праймеров SEQ ID NO 5 и зонда SEQ ID NO 6 у штаммов кавказского подвида отсутствует флуоресцентный сигнал, который проявляется у штаммов других подвидов и таласских штаммов. В ПЦР-РВ по мишени His(-205) с использованием праймеров SEQ ID NO 7 и зонда SEQ ID NO 8 у штаммов гиссарского подвида отсутствует флуоресцентный сигнал, который проявляется у штаммов других подвидов и таласских штаммов. В ПЦР-РВ по мишени Alt(-90) с использованием праймеров SEQ ID NO 9 и зонда SEQ ID NO 10 у штаммов алтайского подвида отсутствует флуоресцентный сигнал, который проявляется у штаммов других подвидов и таласских штаммов. В ПЦР-РВ по мишени Uleg(-88) с использованием праймеров SEQ ID NO 11 и зонда SEQ ID NO12 у штаммов улегейского подвида отсутствует флуоресцентный сигнал, который проявляется у штаммов других подвидов и таласских штаммов. В ПЦР-РВ по мишени Tal(-72) с использованием праймеров SEQ ID NO13 и зонда SEQ ID NO 14 у штаммов таласской группы отсутствует флуоресцентный сигнал, который проявляется у штаммов других подвидов.

Сущность изобретения поясняется примерами.

Пример 1. Дифференциация штамма Y.pestis №1 по подвидовой принадлежности

Выделение ДНК штамма №1 проводят общепринятым способом в соответствии с МУ 1.3.2569-09 «Организация работ лабораторий, использующих методы амплификации нуклеиновых кислот при работе с материалом, содержащим микроорганизмы I-IV групп патогенности» с предварительным обеззараживанием культуры возбудителя чумы путем добавления мертиолята натрия до концентрации 1:10000 (56°С, 30 мин) и лизирующего раствора на основе 6М гуанидинтиоизоцианата (65°С, 15 мин).

Амплификацию участков ДНК-мишеней 45, 89, Caucasic(-91), His(-205), Alt(-90), Uleg(-88) и Tal(-72) проводят в раздельных ПЦР-смесях с использованием праймеров SEQ ID NO: 1, 3, 5, 7, 9, 11, 13 и зондов SEQ ID NO: 2, 4, 6, 8, 10, 12, 14.

Полимеразную цепную реакцию проводят в объеме 25 мкл; реакционная смесь содержит: 2,5 мкл 10х буфера для ПЦР; 2,5 мкл раствора по 2 мМ четырех дНТФ; 2 мкл 25 мМ MgCl2; по 0,1-0,2 мкл (10-20 пМ) каждого праймера; 0,1 мкл (10 пМ) зонда в формате TaqMan; 0,2 мкл (5 ед.) Taq полимеразы; 10 мкл ДНК штамма.

У исследуемого штамма Y.pestis отсутствуют сигналы флуоресценции в реакциях с праймерами SEQ ID NO 1 и зондом SEQ ID NO 2 на ДНК-мишень 45; с праймерами SEQ ID NO 3 и зондом SEQ ID NO 4 на ДНК-мишень 89, но выявляются сигналы с праймерами SEQ ID NO: 5, 7, 9, 11, 13 и зондами SEQ ID NO: 6, 8, 10, 12, 14 на ДНК-мишени: Caucasic(-91), His(-205), Alt(-90), Uleg(-88) и Tal(-72). С учетом этих данных делается вывод о принадлежности исследуемого штамма Y.pestis №1 к основному подвиду.

Пример 2. Дифференциацию штамма Y.pestis №2 по подвидовой принадлежности проводят аналогично примеру №1

У исследуемого штамма Y.pestis отсутствует сигнал флуоресценции в реакции с праймерами SEQ ID NO 5 и зондом SEQ ID NO 6 на ДНК-мишень Caucasic(-91), но выявляются сигналы с праймерами SEQ ID NO: 1, 3, 7, 9, 11, 13 и зондами SEQ ID NO: 2, 4, 8, 10, 12, 14 на ДНК-мишени: 45, 89, His(-205), Alt(-90), Uleg(-88) и Tal(-72). Делается вывод о принадлежности исследуемого штамма Y.pestis №2 к кавказскому подвиду.

Пример 3. Дифференциацию штамма Y.pestis №5 по подвидовой принадлежности проводят аналогично примеру №1

У исследуемого штамма Y.pestis отсутствует сигнал флуоресценции в праймерами SEQ ID NO 7 и зондом SEQ ID NO 8 на ДНК-мишень His(-205), но выявляются сигналы с праймерами SEQ ID NO: 1, 3, 5, 9, 11, 13 и зондами SEQ ID NO: 2, 4, 6, 10, 12, 14 на ДНК-мишени: 45, 89, Caucasic(-91), Alt(-90), Uleg(-88) и Tal(-72). Делается вывод о принадлежности исследуемого штамма Y.pestis №3 к гиссарскому подвиду.

Пример 4. Дифференциацию штамма Y.pestis №4 по подвидовой принадлежности проводят аналогично примеру №1

У исследуемого штамма Y.pestis отсутствует сигнал флуоресценции в реакции праймерами SEQ ID NO 9 и зондом SEQ ID NO 10 на ДНК-мишень Alt(-90), но выявляются сигналы с праймерами SEQ ID NO: 1, 3, 5, 7, 11, 13 и зондами SEQ ID NO: 2, 4, 6, 8, 12, 14 на ДНК-мишени: 45, 89, Caucasic(-91), His(-205), Uleg(-88) и Tal(-72). Делается вывод о принадлежности исследуемого штамма Y.pestis №4 к алтайскому подвиду.

Пример 5. Дифференциацию штамма Y.pestis №3 по подвидовой принадлежности проводят аналогично примеру №1

У исследуемого штамма Y.pestis отсутствует сигнал флуоресценции в реакции с праймерами SEQ ID NO 11 и зондом SEQ ID NO 12 на ДНК-мишень Uleg(-88), но выявляются сигналы с праймерами SEQ ID NO: 1, 3, 5, 7, 9, 13 и зондами SEQ ID NO: 2, 4, 6, 8, 10, 14 на ДНК-мишени: 45, 89, Caucasic(-91), His(-205), Alt(-90) и Tal(-72). Делается вывод о принадлежности исследуемого штамма Y.pestis №5 к улегейскому подвиду.

Пример 6. Дифференциацию штамма Y.pestis №6 по подвидовой принадлежности проводят аналогично примеру №1

У исследуемого штамма Y.pestis отсутствует сигнал флуоресценции в реакции с праймерами SEQ ID NO 13 и зондом SEQ ID NO 14 на ДНК-мишень Tal(-72), но выявляются сигналы с праймерами SEQ ID NO: 1, 3, 5, 7, 9, 11 и зондами SEQ ID NO: 2, 4, 6, 8, 10, 12 на ДНК-мишени: 45, 89, Caucasic(-91), His(-205), Alt(-90) и Uleg(-88). Делается вывод о принадлежности исследуемого штамма Y.pestis №6 к таласским штаммам.

Таким образом, заявленный способ дифференциации штаммов Y.pestis основного, кавказского, алтайского, гиссарского и улегейского подвидов и таласских штаммов методом ПЦР с гибридизационно-флуоресцентным учетом результатов в режиме реального времени с использованием праймеров SEQ ID NO: 1, 3, 5, 7, 9, 11, 13 и зондов SEQ ID NO: 2, 4, 6, 8, 10, 12, 14 на ДНК-мишени 45, 89, Caucasic(-91), His(-205), Alt(-90), Uleg(-88) и Tal(-72) позволяет быстро и эффективно проводить определение подвидовой принадлежности штаммов возбудителя чумы. Разработанный способ является высокоразрешающим, простым и универсальным способом дифференциации штаммов Y.pestis по подвидам и найдет применение в усовершенствовании лабораторной диагностики возбудителя чумы, в повышении эффективности эпидемиологического мониторинга природных очагов чумы и санитарной охраны территории Российской Федерации.

Способ подвидовой дифференциации штаммов возбудителя чумы методом полимеразной цепной реакции с гибридизационно-флуоресцентным учетом результатов в режиме реального времени, включающий выделение ДНК исследуемого штамма, амплификацию ДНК-мишеней 45, 89, Caucasic(-91), His(-205), Alt(-90), Uleg(-88) и Tal(-72) в отдельных ПЦР-реакциях с праймерами SEQ ID NO: 1, 3, 5, 7, 9, 11, 13 и зондами SEQ ID NO: 2, 4, 6, 8, 10, 12, 14 и проведение подвидовой дифференциации штаммов по отсутствию сигнала флуоресценции: у основного подвида по мишеням 45 и 89, у кавказского - Caucasic(-91), у гиссарского - His(-205), у алтайского - Alt(-90), у улегейского - Uleg(-88), у таласских штаммов по мишени Tal(-72) и по наличию у них сигналов по остальным ДНК-мишеням.



 

Похожие патенты:

Изобретение относится к биохимии. Описан способ определения видовой принадлежности возбудителя бруцеллеза.

Настоящая группа изобретений относится к медицине. Предложен набор реагентов для выявления Chlamydia trachomatis в образце, включающий два олигонуклеотидных праймера для полимеразной цепной реакции (ПЦР), и применение указанного набора для выявления ДНК Chlamydia trachomatis в образце.

Изобретение относится к биотехнологии и стоматологии и клинико-лабораторной диагностике. Описан способ оценки состояния пародонта человека на предмет устойчивости к развитию хронического генерализованного пародонтита, вызываемого Treponema denticola и/или Tannerella forsythensis.
Изобретение относится к области медицины и предназначено для прогнозирования синдрома гиперстимуляции яичников (СГЯ) тяжелой или средней степени тяжести в программе ЭКО.

Изобретение относится к области медицины, в частности к гинекологии, и предназначено для прогнозирования развития ВПЧ-ассоциированных цервикальных интраэпителиальных неоплазий (CIN).
Изобретение относится к области медицины и предназначено для диагностики врожденного нефротического синдрома финского типа у детей с использованием технологии секвенирования нового поколения.
Изобретение относится к области медицины и предназначено для диагностики гликогеновой болезни IXa типа у детей с использованием технологии секвенирования нового поколения.

Изобретение относится к области биохимии, в частности к способу идентификации растения, включающему по крайней мере одну детерминанту устойчивости сорта растения сои к соевой цистообразующей нематоде (SCN), а также к способу получения SCN-устойчивого растения сои, представляющего собой интерес сорта, включающему стадии скрещивания растения сои, имеющего признак устойчивости к SCN, с растением сои SCN-неустойчивого сорта, представляющий интерес, применение маркер-вспомогательной селекции, а также размножение растений сои F1 с получением SCN-устойчивого растения сои.

Изобретение относится к биотехнологии. Описан синтетический, необязательно модифицированный олигонуклеотид длиной 10-30 нуклеотидов или длиной 19-30 нуклеотидов, где модификация выбрана из модифицированного сахарного фрагмента; модифицированной межнуклеотидной связи; модифицированного нуклеотида, а также из их сочетаний.

Изобретение относится к области биохимии, в частности к способу идентификации сортов малины Агавам, Атлант, Бабье лето II, Беглянка, Бриллиантовая, Брянское диво, Геракл, Желтый гигант, Золотая осень, Кумберленд, Логанберри, Лаутон, Оранжевое чудо, Пингвин, Солнышко, Тайберри, Торнфри, Элегантная на основе RAPD-маркеров, включающий отбор растительного материала, выделение ДНК из растительного материала, амплификацию ДНК в реакционной смеси с последовательным участием нескольких рандомных праймеров, разделение продуктов амплификации с помощью электрофореза, визуализацию продуктов амплификации под ультрафиолетовым светом и выявление среди продуктов амплификации уникальных сочетаний аллелей всех амплифицируемых зон (локусов) по всем используемым праймерам, присущих только для данного сорта профилей.
Изобретение относится к биохимии. Описан способ выявления контаминации вирусами культуры клеток иммунопероксидазным методом, включающий взаимодействие антигена с мечеными антителами в неинфицированной культуре клеток и учет результатов реакции по интенсивности окрашивания образовавшегося комплекса под микроскопом.

Изобретение относится к биохимии. Описан способ диагностики рака толстой кишки путем определения уровня метилирования промоторной области гена COL1A2, посредством проведения пиросеквенирования, отличающийся тем, что исследуют уровень метилирования CpG динуклеотидов в промоторной области гена COL1A2, и при обнаружении снижения метилирования в опухолевой ткани на 10% и более по сравнению с нормальной тканью, делают вывод о высокой вероятности рака толстой кишки.

Изобретение относится к сельскому хозяйству. Способ увеличения срока годности биоудобрения на основе клубеньковых бактерий основан на использовании технологии лиофилизации бактериальных культур и возможности их последующей регенерации и наращивания на питательных средах непосредственно перед обработкой ими посевного материала, при котором 125 мл вновь наращенной культуры будет достаточно для обработки 20-25 кг посевного материала.

Изобретение относится к области молекулярной биологии и биотехнологии. Изобретение представляет собой набор 5'-фосфорилированных олигонуклеотидных праймеров для амплификации методом полимеразной цепной реакции (ПЦР) полной кодирующей последовательности гена мембранного протеина системы секреции III типа (TTSS) HrcV возбудителя мелиоидоза.

Изобретение относится к области молекулярной биологии и биотехнологии. Изобретение представляет собой набор 5'-фосфорилированных олигонуклеотидных праймеров для амплификации методом полимеразной цепной реакции гена ompA/motB, кодирующего поверхностный протеин OmpA/MotB возбудителя мелиоидоза.

Предлагаемый способ относится к фотобиотехнологии, промышленной микробиологии, аквакультуре, экологии, альгологии, биохимии, может быть также использован в пищевой промышленности, животноводстве при производстве кормов, в медицинской и ветеринарной микробиологии.
Изобретение относится к технологии производства биопрепаратов для растениеводства. Изобретение представляет собой способ получения базовой композиции биопрепарата для растениеводства, включающий в себя наработку биомассы гриба Mortierella alpina ВКПМ F-1134, удаление культуральной жидкости, извлечение из мицелия комплекса жирных кислот с преобладанием арахидоновой кислоты, приготовление из него спиртового раствора с введением дополнительных компонентов, где гриб выращивается на поверхности тонкого слоя жидкой питательной среды, инокуляция которой осуществляется до розлива, процесс культивирования длится 18-19 суток, разрушение мицелия осуществляется криодеструкцией и щелочным гидролизом, в конечный продукт добавляется биоразлагаемый детергент, где наработка биомассы происходит на картофельном отваре с добавлением глюкозы и хлорида кальция, наработка биомассы происходит в термостате, биомасса подвергается криодеструкции во влажном состоянии, щелочной гидролиз биомассы проводится при температуре 60°С, стадию щелочного гидролиза совмещают с первым этапом экстракции жирных кислот благодаря использованию раствора гидроксида натрия в 96% этиловом спирте, на втором этапе экстракции жирных кислот в качестве экстрагента используется н-гексан, комплекс жирных кислот после удаления н-гексана перерастворяется в 96% этиловом спирте.
Группа изобретений относится к микробиологии. Предложены жидкая микробиологическая питательная среда и ее применение.

Изобретение относится к биохимии. Описан липополисахарид, антагонист эндотоксинов, продуцируемый штаммом Rhodobacter capsulatus PG, депонированным в ВКМ ИБФМ РАН под номером В-2381 Д, в качестве средства для дифференцировки моноцитоподобных клеток.

Изобретение относится к композиции для поддержания функции тромбоцитов, где композиция в качестве активного ингредиента содержит соединение, представленное общей формулой (I), или его фармацевтически приемлемую соль: где соединение, представленное общей формулой (I), представляет собой любое из N-[2-(4-бут-2-инилоксибензолсульфонил)-1-(4-диэтиламинометилфенил)этил]-N-гидроксиформамида и N-{4-[2-(4-бут-2-инилоксибензолсульфонил)-1-(формилгидроксиамино)этил]бензил}метансульфонамида.

Изобретение относится к области биотехнологии, конкретно к молекулярной биологии и генетике. Заявлен набор последовательностей нуклеотидов, который может быть использован для диагностики частых у жителей РФ делеций гена DMD, ответственного за мышечную дистрофию Дюшена/Беккера, исходя из частот мутаций среди пациентов - жителей Российской Федерации. Изобретение позволяет провести эффективную диагностику делеций, затрагивающих промоторную область; 3, 4, 6, 8, 13, 17, 19, 32 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 60 экзоны гена DMD в гемизиготном состоянии. 1 ил.
Наверх