Способ определения места короткого замыкания на многоцепной с грозозащитными тросами трехфазной воздушной линии электропередачи с распределенными параметрами

Изобретение относится к измерениям в электротехнике и может быть использовано для определения места короткого замыкания на длинных многоцепных воздушных линиях электропередачи с распределенными параметрами напряжением 220 кВ и выше. Технический результат: повышение точности определения места короткого замыкания за счет полного учета продольных и поперечных параметров многопроводной линии электропередачи с тросами при использовании несинхронизированных измерений по концам линии. Сущность: на предварительной стадии формируют полную модель многоцепной с тросами длинной линии в трехфазном виде с учетом взаимоиндуктивных и емкостных связей между проводами линий. При возникновении короткого замыкания измеряют и регистрируют значения комплексных фазных напряжений на шинах и фазных токов в линии. Измеряют и регистрируют значения комплексных напряжений тросов на шинах и токов в тросах линии. Далее разбивают модель линии на равные участки, например от опоры до опоры, формируют поочередно напряжения в конце каждого участка в каждой фазе и тросе, начиная от шин с одного и другого концов линии, формируют при этом токи в конце каждого участка в каждой фазе и тросе, выделяют модули фазных напряжений в конце каждого участка, начиная от шин с одного и другого концов линии. По модулям напряжений строят графики с осями с двух сторон зависимости модулей напряжений от номера участка (от расстояния от своего конца линии). Точка пересечения графиков с одного и другого концов линии соответствует точке короткого замыкания.

 

Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на длинных многоцепных воздушных линиях электропередачи с распределенными параметрами напряжением 220 кВ и выше на основе измерения параметров аварийного режима с двух концов линии.

Изобретение относится к приоритетному направлению развития науки и технологий «Технологии создания энергосберегающих систем транспортировки, распределения и потребления тепла и электроэнергии» [Алфавитно-предметный указатель к Международной патентной классификации по приоритетным направлениям развития науки и технологий / Ю.Г. Смирнов, Е.В. Скиданова, С.А. Краснов. - М.: ПАТЕНТ, 2008. - с. 97], так как решает проблему уменьшения времени задержек при транспортировке электроэнергии потребителям в случае повреждения электрических сетей.

Известен способ определения места короткого замыкания по измерениям параметров аварийного режима с одного (и с другого) концов линии, в котором измеряют реактивную составляющую сопротивления поврежденной фазы [Разработка и исследование защиты линий электропередач с фиксацией места повреждения, Новочеркасский политехнический институт, г. Новочеркасск, 1969].

Признаками аналога, совпадающими с существенными признаками заявляемого способа, являются измерение фазных токов и напряжений в момент короткого замыкания на линии на одном конце линии, определение по соотношению параметров линии и измеренных с одного конца мнимых составляющих комплексных величин расстояния до места короткого замыкания. Аналогично по соотношению измеренных величин с другого конца определяют расстояние до места короткого замыкания с другого конца.

Данный метод, использующий только реактивную составляющую отношения измеренного напряжения к измеренному току, позволяет уменьшить влияние переходного сопротивления в месте повреждения. Однако точность во многом зависит от величины переходного сопротивления и величины подпитывающего тока противоположного конца линии тому, на котором производятся измерения. Кроме того, данный метод не учитывает емкость линии на землю и различие сопротивлений фазных проводов линии.

Хорошо известен способ, использующийся в устройствах релейной защиты некоторых западных производителей - компенсационный метод [Висящев А.Н. Приборы и методы определения места повреждения на линиях электропередачи: Учебное пособие. - Иркутск: Издательство ИрГТУ, 2001, ч. 1]. Данный способ использует параметры аварийного и предаварийного режимов, полученные с одного конца линии.

Признаками аналога, совпадающими с существенными признаками заявляемого способа, являются измерение фазных токов и напряжений в момент короткого замыкания на линии на одном конце линии, определение по соотношению измеренных с одного конца величин расстояния до места короткого замыкания. Аналогично по соотношению измеренных величин с другого конца определяют расстояние до места короткого замыкания со второго конца.

Основная особенность способа - это возможность учета влияния питания с противоположного конца линии, а также исключение погрешности от переходного сопротивления в месте короткого замыкания. Для реализации этого метода требуется полная модель сети, т.е. программы расчета установившихся и аварийных режимов сети. Кроме того, требуется произвести предварительные измерения тока нагрузки, которые сохраняют и используют для компенсации погрешности от влияния нагрузки. Данный метод, также как предыдущий, не учитывает емкость линии на землю и различие сопротивлений фазных проводов линии.

Известен способ [Аржанников Е.А., Чухин A.M. Методы и приборы определения места короткого замыкания на линиях: Учебное пособие/ Ивановский государственный энергетический университет, г. Иваново, 1998 - 74 с.], в основу которого заложено предположение о том, что сопротивление в месте короткого замыкания имеет чисто активный характер, и как следствие, реактивная мощность в месте повреждения равна нулю. Критерием короткого замыкания является равенство нулю реактивной мощности в месте повреждения, для определения которой используются мнимая часть системы из трех произведений комплекса напряжения и сопряженного тока в месте повреждения в системе симметричных или фазных координат. Метод реализуется следующим образом, сначала фиксируют момент повреждения, измеряют в начале и в конце линии напряжения и токи первой гармоники в доаварийном и аварийном режимах. Полученные величины токов и напряжений передают на противоположный конец линии, где определяют ток в месте короткого замыкания, как сумму токов на концах линии. Затем, меняя расстояние от нуля до величины, равной длине линии, находят для каждой точки линии с определенным шагом напряжение, как разность между напряжением в конце линии и падением напряжения до предполагаемой точки повреждения. Для каждой из точек через произведение комплекса напряжения и сопряженного комплексного тока в месте повреждения находят полную мощность, мнимая часть от которой равна реактивной мощности в предполагаемом месте короткого замыкания. Точка, в которой реактивная мощность окажется минимальной и будет являться местом повреждения. Такой расчет проводится либо для всех трех фаз линии, либо для всех трех последовательностей симметричных составляющих, что позволяет повысить точность процедуры определения места повреждения.

Признаками аналога, совпадающими с существенными признаками заявляемого способа, являются измерение фазных токов и напряжений в момент короткого замыкания на линии на одном конце линии, определение по соотношению измеренных с одного конца величин и параметров линии расстояния до места короткого замыкания. Аналогично по соотношению измеренных величин с другого конца определяют расстояние до места короткого замыкания с другого конца.

Недостатком способа является необходимость использования только мнимых составляющих расчетных величин. Также указанный способ, как и другие, ранее указанные способы определения места короткого замыкания, обладает таким существенным недостатком, как неучет емкости линии на землю и неучет различия сопротивлений фазных проводов линии.

Указанные недостатки могут приводить к значительной погрешности в определении места короткого замыкания из-за неполного учета параметров линии, из-за неучета емкостных параметров линии.

Известен способ определения места повреждения на воздушных линиях электропередачи [патент RU 2426998], в котором повышение точности определения места повреждения осуществляется за счет учета поперечных емкостей и волновых процессов на линиях электропередачи. Результат достигается за счет введения в схему замещения линии электропередачи (модель линии) на стадии получения расчетных выражений поперечных емкостей и использования телеграфных уравнений для описания воздушной линии электропередачи для симметричных составляющих.

В ранее предлагаемых методах определения места повреждения поперечные емкости не вводили в схему замещения по причине сложности получения расчетных выражений из-за увеличения контуров в модели линии. Такое допущение может приводить к существенной погрешности, особенно на линиях электропередачи большой протяженности и высокого напряжения.

В этом способе используют телеграфные уравнения, полученные для однофазной линии электропередачи, для описания модели трехфазной линии электропередачи. Составление системы дифференциальных уравнений для трехфазной линии электропередачи в соответствии с теорией волновых процессов - задача громоздкая и для практики малоприменимая. Составление системы дифференциальных уравнений для однофазной линии электропередачи требует в значительной степени меньше трудозатрат и позволяет получить телеграфные уравнения, учитывающие волновые процессы на однофазной линии. Телеграфные уравнения, полученные для однофазной линии электропередачи, недопустимо использовать для трехфазной линии электропередачи, т.к. все три фазы связаны и влияют друг на друга. Однако телеграфные уравнения, полученные для однофазной линии, можно применить по отдельности к прямой, обратной и нулевой последовательностям линии электропередачи.

Предложенный в этом способе подход позволяет учесть волновые процессы на линиях электропередачи, чем повышает точность определения места повреждения, и в то же время дает возможность практической реализации метода, благодаря отсутствию громоздких вычислений и сложных математических преобразований, что было бы неизбежно, если бы для учета волновых процессов использовалось полное описание трехфазной линии электропередачи системой дифференциальных уравнений.

Недостатком этого способа является неучет пофазного различия параметров линии, неучет междуфазных емкостей линии.

Указанный недостаток может приводить к погрешности в определении места повреждения из-за усреднения величин сопротивлений линии.

Известен способ определения места повреждения на воздушных линиях электропередачи [патент RU 2033623], принятый за прототип, с использованием моделей входящих в нее линий электропередачи. В этом способе предполагается, что система наблюдается со всех сторон. Если система содержит одну линию, то получится двухстороннее наблюдение. В данном способе модель повреждения может быть более сложной, включая в себя как продольные, так поперечные и элементы. Способ складывается из характерных операций. Напряжения и токи, наблюдаемые на границах сети, преобразуются в комплексы основных гармоник. Далее на модели сети, составленной применительно к месту предполагаемого повреждения, преобразуют напряжения и токи, подводимые с соответствующей стороны к избранному месту предполагаемого повреждения. Эти напряжения и токи, полученные в ходе преобразования, составляют первую группу электрических величин места предполагаемого повреждения. Аналогичным образом поступают с другим концом линии, получая в результате вторую группу электрических величин, подводимых к месту предполагаемого повреждения с другой стороны. Затем первую и вторую группы электрических величин преобразуют в величины, характеризующие собственно повреждение, и из множества мест предполагаемого повреждения выбирают, руководствуясь критерием резистивности, место реального повреждения.

Указанному способу присущи следующие недостатки:

1. Необходимость синхронизации наблюдений на разных сторонах электрической сети.

2. Привязка к определенной модели повреждения и, соответственно, к трехфазной системе проводов. Между тем, актуальна проблема распознавания многопроводных повреждений, например, в двухцепных передачах с грозозащитными тросами - это восьмипроводные системы. Кроме того, получают распространение конструкции передач разных классов напряжений, когда ради экономии отчуждаемой земли разнородные линии размещаются на общих опорах. Здесь повреждение может охватывать не только восемь, но и большее число проводов.

3. Неоправданно узкая интерпретация условий повреждения электропередачи только в виде критерия резистивности, подразумевающего построение модели повреждения из чисто резистивных элементов.

Указанные недостатки могут приводить к погрешности в определении места короткого замыкания из-за неполного учета параметров линии и принятой резистивной модели повреждения.

Изобретение направлено на решение задачи по созданию технологий, позволяющих повысить эффективность электроснабжения.

Технический результат изобретения заключается в повышении точности определении места короткого замыкания за счет полного учета продольных и поперечных параметров многопроводной линии электропередачи с тросами при использовании не синхронизированных измерений по концам линии.

Технический результат достигается за счет того, что в способе определения места короткого замыкания на многоцепной с грозозащитными тросами трехфазной воздушной линии электропередачи с распределенными параметрами по замерам с двух ее концов, соединяющей две питающие системы, в котором измеряют с двух концов линии (' - один конец линии, ʺ - другой конец линии) не синхронизированные по углам комплексные фазные токи цепей и напряжения фаз цепей основной частоты в момент короткого замыкания, расчетным путем определяют значение расстояния до места короткого замыкания, согласно изобретения предварительно формируют модель линии в виде значений продольных и поперечных параметров М участков i-j схемы замещения N-цепной линии с тросами в трехфазном виде:

где: - значения собственных и взаимных продольных сопротивлений фаз (k = А, В, С) и тросов (Т = T1, Т2) цепей участка i-j схемы замещения N-цепной линии (n=1÷N), Ом;

- значения собственных и взаимных поперечных емкостных проводимостей фаз (k = А, В, С) и тросов (Т = Т1, Т2) участка i-j схемы замещения N-цепной линии (n=1÷N), Сим.

В соответствии со значением n формируют размерность матриц сопротивлений и проводимостей.

Значения собственных и взаимных сопротивлений определяются по общеизвестным выражениям (например, Ульянов С.А. Электромагнитные переходные процессы в энергетических системах, изд-во Энергия, 1970 г., с 293, 294):

Значения емкостных проводимостей фаз на «землю» и взаимных емкостных проводимостей между фаз определяются по общеизвестным выражениям (например, Висящев А.Н. Приборы и методы определения места повреждения на линиях электропередачи, Иркутск, уч. пособие, изд-во ИрГТУ, 2001 г., с. 27-29).

Далее после получения значений измеренных фазных напряжений цепей и тросов на шинах и токов цепей и тросов с двух концов линии (' и ʺ) задают поочередно точки j в конце каждого участка вдоль схемы замещения многоцепной с тросами линии, формируют и сохраняют для двух концов линии (' и ʺ) значения комплексных фазных напряжений цепей и тросов в каждой j-ой точке по выражениям:

где:

- значения комплексных фазных напряжений и напряжений тросов (k = А, В, С, Т1, Т2) в каждой i-ой точке N-цепной линии (n=1÷N), для I = 1 значения напряжений на шинах с одного конца линии, В;

- сформированные значения комплексных фазных напряжений и напряжений тросов (k = А, В, С, Т1, Т2) в каждой j-ой точке N-цепной линии (n=1÷N), с одного конца линии, В;

- значения комплексных фазных напряжений и напряжений тросов (k = А, В, С, Т1, Т2) в каждой i-ой точке N-цепной линии (n=1÷N), для i=1 значения напряжений на шинах с другого конца линии, В;

- сформированные значения комплексных фазных напряжений и напряжений тросов (k = А, В, С, Т1, Т2) в каждой j-ой точке N-цепной линии (n=1÷N), с другого конца линии, В;

- значения комплексных фазных токов и токов в тросах (k = А, В, С, Т1, Т2) в начале участка i-j с одного конца N-цепной линии (n=1÷N), для i=1 значения комплексных фазных токов, измеренных с одного конца линии, для i>l значения комплексных фазных токов в конце предыдущего участка, с одного конца линии, А;

- значения комплексных фазных токов и токов в тросах (k = А, В, С, Т1, Т2) в начале участка i-j с другого конца N-цепной линии (n=1÷N), для i=1 значения комплексных фазных токов, измеренных с другого конца линии, для i>1 значения комплексных фазных токов в конце предыдущего участка, с другого конца линии, А;

- значения собственных и взаимных продольных сопротивлений и тросов фаз (k = А, В, С, Т1, Т2 - считаем, что два троса на каждую цепь) цепей участка i-j схемы замещения N-цепной линии (n=1÷N), с одного конца линии, Ом;

- значения собственных и взаимных поперечных емкостных проводимостей фаз и тросов (k = А, В, С, T1, Т2) половины участка i-j схемы замещения N-цепной линии (n=1÷N), с одного конца линии, Сим;

- значения собственных и взаимных продольных сопротивлений фаз и тросов (k = А, В, С, T1, Т2) - считаем, что два троса на каждую цепь) цепей участка i-j схемы замещения N-цепной линии (n=1÷N), с другого конца линии, Ом;

- значения собственных и взаимных поперечных емкостных проводимостей фаз и тросов (k = А, В, С, T1, Т2) половины участка i-j схемы замещения N-цепной линии (n=1÷N), с другого конца линии, Сим.

Формируют значения фазных токов в конце каждого участка линии по выражениям:

где:

- сформированные значения комплексных фазных токов и токов в тросах (k = А, В, С, Т1, Т2) в конце участка i-j с одного конца N-цепной линии (n=1÷N), А;

- сформированные значения комплексных фазных токов и токов в тросах (k = А, В, С, Т1, Т2) в конце участка i-j с другого конца N-цепной линии (n=1÷N), А;

Далее из сохраненных значений комплексных фазных напряжений цепей и выделяют модули, по которым строят графики с двумя осями зависимости модулей фазных напряжений от номера участка (от расстояния от своего конца линии). Точка пересечения графиков соответствует точке короткого замыкания. Фаза цепи, в которой напряжение в точке пересечения графиков минимальное считается поврежденной. Дополнительно выделяют аргументы фазных напряжений, по которым также строят графики с двумя осями.

Для 2-х фазных замыканий находят линейные напряжения как разницу фазных напряжений, по которым также строят графики с двумя осями зависимости модулей линейных напряжений от номера участка (от расстояния от своего конца линии).

Таким образом предлагаемое изобретение имеет следующие общие признаки с прототипом:

1) Предварительное формирование расчетной модели линии;

2) Измерение с двух сторон линии фазных токов и напряжений в момент замыкания на линии;

3) Расчет контролируемого параметра по данным модели сети и измеренным токам и напряжениям.

Предлагаемое изобретение имеет следующие отличия от прототипа, что обуславливает соответствие технического решения критерию новизна:

1) Схему замещения многоцепной линии с тросами составляют в трехфазном виде, что позволяет наиболее полно учесть физические параметры линии (взаимоиндукцию между проводами фаз линии, междуфазную емкость и емкость на землю);

2) Схема замещения линий составляется из участков линии, что позволяет учесть различие в параметрах линий (транспозиция, различный тип опор, грозозащитный трос, и т.п.) на каждом участке.

3) По измеренным токам и напряжениям и параметрам схемы замещения линии рассчитывают контролируемый параметр - значения комплексных фазных напряжений, из которых выделяются модули, по которым строятся графики с двумя осями зависимости модулей напряжений от расстояния. Точка пересечения графиков соответствует точке короткого замыкания.

Из уровня техники неизвестны отличительные существенные признаки заявляемых способов, охарактеризованных в формуле изобретения, что подтверждает ее соответствие условию патентоспособности «изобретательский уровень».

Способ реализуют следующим образом.

На предварительной стадии формируют полную модель многоцепной с тросами длинной линии, в трехфазном виде с учетом взаимоиндуктивных и емкостных связей между проводами линий.

При возникновении короткого замыкания измеряют и регистрируют значения комплексных фазных напряжений на шинах и фазных токов в линии. Измеряют и регистрируют значения комплексных напряжений тросов на шинах и токов в тросах линии.

Далее разбивают модель линии на равные участки, например от опоры до опоры, формируют поочередно напряжения в конце каждого участка в каждой фазе и тросе, начиная от шин с одного и другого концов линии, формируют при этом токи в конце каждого участка в каждой фазе и тросе, выделяют модули фазных напряжений в конце каждого участка, начиная от шин с одного и другого концов линии. По модулям напряжений строят графики с осями с двух сторон зависимости модулей напряжений от номера участка (от расстояния от своего конца линии). Точка пересечения графиков с одного и другого концов линии соответствует точке короткого замыкания.

Предложенный способ также позволяет определять место короткого замыкания при других видах замыкания: двухфазном, двухфазном на землю, трехфазном, позволяет учесть транспозицию линии. При этом не нужно выполнять синхронизацию замеров по концам линии.

Если измерения токов и напряжений для тросов отсутствуют, а тросы заземлены по концам, то следует задать их значения по концам линии нулевыми, а далее определять напряжения и токи в конце каждого i-j-того участка по общим правилам. Или же исключить из уравнений сопротивления и проводимости, касающиеся тросов. Однако при этом возникнет небольшая погрешность в определении места короткого замыкания.

Определение места повреждения, выполненное по предложенной методике, показало в расчетных экспериментах также полное отсутствие методической погрешности при наличии переходного сопротивления от 1 до 50 Ом и при изменениях нагрузочного режима в широких диапазонах.

Таким образом, использование полной модели линий в трехфазном виде и измеренных значений фазных и тросов токов и напряжений позволяет получить более точную модель, чем достигается более точное определение расстояния до места повреждения.

Способ определения места короткого замыкания на многоцепной с грозозащитными тросами трехфазной воздушной линии электропередачи с распределенными параметрами по замерам с двух ее концов, соединяющей две питающие системы, в котором измеряют с двух концов линии несинхронизированные по углам комплексные фазные токи цепей и напряжения фаз цепей основной частоты в момент короткого замыкания, расчетным путем определяют значение расстояния до места короткого замыкания, отличающийся тем, что предварительно формируют модель линии в виде значений продольных и поперечных параметров М участков i-j схемы замещения N-цепной линии с тросами в трехфазном виде:

где:

, - значения собственных и взаимных продольных сопротивлений проводов фаз и тросов цепей участка i-j схемы замещения N-цепной линии, Ом;

k=A, B, C; T=T1, T2; n=1÷N;

, - значения собственных и взаимных поперечных емкостных проводимостей проводов фаз и тросов участка i-j схемы замещения N-цепной линии, Сим,

далее после получения значений измеренных фазных напряжений цепей и тросов на шинах и токов цепей и тросов с двух концов линии задают поочередно точки j в конце каждого участка вдоль модели многоцепной с тросами линии, формируют и сохраняют для двух концов линии значения комплексных фазных напряжений цепей и тросов в каждой j-ой точке по выражениям:

где: - значения комплексных фазных напряжений и напряжений тросов в каждой i-ой точке N-цепной линии, для i=1 значения напряжений на шинах с одного конца линии, В;

k=A, B, C, T1, T2; n=1÷N;

- сформированные значения комплексных фазных напряжений и напряжений тросов в каждой j-ой точке N-цепной линии, с одного конца линии, В;

- значения комплексных фазных напряжений и напряжений тросов в каждой i-ой точке N-цепной линии, для i=1 значения напряжений на шинах с другого конца линии, В;

- сформированные значения комплексных фазных напряжений и напряжений тросов в каждой j-ой точке N-цепной линии, с другого конца линии, В;

- значения комплексных фазных токов и токов в тросах в начале участка i-j с одного конца N-цепной линии, для i=1 значения комплексных фазных токов, измеренных с одного конца линии, для i>1 значения комплексных фазных токов в конце предыдущего участка, с одного конца линии, А;

- значения комплексных фазных токов и токов в тросах в начале участка i-j с другого конца N-цепной линии, для i=1 значения комплексных фазных токов, измеренных с другого конца линии, для i>1 значения комплексных фазных токов в конце предыдущего участка, с другого конца линии, А;

- значения собственных и взаимных продольных сопротивлений проводов фаз и тросов цепей участка i-j схемы замещения N-цепной линии, с одного конца линии, Ом;

- значения собственных и взаимных поперечных емкостных проводимостей проводов фаз и тросов половины участка i-j схемы замещения N-цепной линии, с одного конца линии, Сим;

- значения собственных и взаимных продольных сопротивлений проводов фаз и тросов цепей участка i-j схемы замещения N-цепной линии, с другого конца линии, Ом;

- значения собственных и взаимных поперечных емкостных проводимостей проводов фаз и тросов половины участка i-j схемы замещения N-цепной линии, с другого конца линии, Сим,

формируют значения фазных токов в конце каждого участка линии по выражениям:

где:

- сформированные значения комплексных фазных токов и токов в тросах в конце участка i-j с одного конца N-цепной линии, А;

- сформированные значения комплексных фазных токов и токов в тросах в конце участка i-j с другого конца N-цепной линии, А,

далее из сохраненных значений комплексных фазных напряжений цепей , , и , , выделяют модули, по которым строят графики с двумя осями зависимости модулей фазных напряжений от номера участка, т.е. от расстояния от своего конца линии, точка пересечения графиков соответствует точке короткого замыкания, а фаза цепи, в которой напряжение в точке пересечения графиков минимальное, считается поврежденной.



 

Похожие патенты:

Использование: в области электротехники. Технический результат – обеспечение автоматической локализации неисправных светильников без их отключения и сокращение времени на проведение диагностики.

Изобретение относится к измерениям в электроэнергетике и может быть использовано для определения места короткого замыкания на длинных воздушных линиях электропередачи с распределенными параметрами напряжением 220 кВ и выше на основе измерения параметров аварийного режима с двух концов линии.

Группа изобретение относится к линиям электроснабжения транспортных средств на электротяге. Способ определения удаленности короткого замыкания контактной сети заключается в том, что в момент короткого замыкания измеряют на смежных подстанциях значение токов (), напряжений () и фазовых углов () между ними.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на длинных многоцепных воздушных линиях электропередачи с распределенными параметрами напряжения 110 кВ и выше с грозозащитными тросами, заземленными на анкерных опорах, на основе измерения параметров аварийного режима с двух концов линии.

Использование – в области электротехники. Технический результат – расширение арсенала технических средств.

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа.

Изобретение относится к области электроизмерительной техники. Технический результат: обнаружение начала гололедообразования с учетом температуры, ветровых нагрузок и атмосферных осадков на распределенных участках неразветвленных и разветвленных воздушных линий.

Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения угла между напряжениями и токами по концам линии при несинхронизированных замерах с двух ее концов и для уточнения места короткого замыкания на линиях электропередачи за счет выполнения расчетной синхронизации замеров с двух ее концов.

Изобретение относится к электрифицированному транспорту и может использоваться в системах электроснабжения тяги переменного тока на многопутных участках для определения удаленности короткого замыкания в контактной сети при двухстороннем питании.

Изобретение относится к электрическим измерениям и предназначено для выявления дефектной изолирующей конструкции, например гирлянды изоляторов высоковольтной линии электропередачи, при осуществлении дистанционного контроля.

Техническое решение относится к области железнодорожной автоматики и телемеханики для контроля рельсовых цепей. Способ основан на создании замкнутого через потенциал «Земля» электрического контура постоянного тока, в который включены пары жил кабеля рельсовых цепей, в контуре формируют постоянный ток определенной величины и осуществляют контроль за уменьшением величины тока, протекающего через элементы, соединяющие пары жил кабеля или пару жил кабеля и потенциал «Земля» ниже допустимого значения. Причем нарушение изоляции в кабеле выявляют путем сравнения величин токов на входах пар жил кабеля с токами на их выходах, сопротивление изоляции между парами жил кабеля или парой жил кабеля и потенциалом «Земля» определяют по току утечки, разница величины тока на входе и выходе пары жил кабеля, и суммарному сопротивлению элементов контура, расположенных между парами жил кабеля с поврежденной изоляцией. Устройство, реализующее способ, включает в себя схему контроля, узел формирования контрольного тока, узел имитации тока утечки и блок сравнения. Достигается непрерывность контроля исправности жил кабеля рельсовых цепей на начальном этапе нарушения изоляции проводов. 2 н. и 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к линиям электроснабжения транспортных средств на электротяге. Способ определения расстояния до места короткого замыкания контактной сети заключается в том, что в момент короткого замыкания измеряют на смежных подстанциях значение токов (), напряжений () и фазовых углов () между ними. Определяют фазовые углы () сдвига между напряжением холостого хода и соответственно напряжениями (). Дополнительно определяют расстояние () между тяговыми подстанциями. Путем реализации вычислительных алгоритмов находят модуль () и аргумент () сопротивлений схемы замещения, модуль тока () и аргумент тока () в месте короткого замыкания. Затем определяют расстояние от подстанции А до места короткого замыкания. Технический результат заключается в повышении точности и упрощении способа определения удаленности короткого замыкания. 2 н.п. ф-лы, 3 ил.

Изобретение относится к обнаружению коротких замыканий в системе распределения энергии. Сущность: устройство (10) для обнаружения направления короткого замыкания (7) на землю в многофазной энергосистеме содержит средства (14), (14’) для приема сигналов, представляющих собой ток каждой из фаз и ток нулевой последовательности (I0), средство (30) обработки сигналов тока, содержащее средство (34) для вычисления нормализованных коэффициентов корреляции и средство (36) для вычисления среднего значения (μ) и среднеквадратичного отклонения (σ) между вычисленными коэффициентами корреляции, средство для интерпретации результатов обработки сигналов, содержащее средство для сравнения среднего значения (μ) и среднеквадратичного отклонения (σ) для определения, расположено ли короткое замыкание со стороны линии или со стороны нагрузки от устройства (10). Устройство (10) дополнительно содержит средство (20) хранения значений сигналов тока нулевой последовательности и тока каждой из фаз в течение периода хранения до сигнала обнаружения возникновения короткого замыкания на землю. Средство (30) обработки сигналов содержит средство для определения изменения сигнала тока нулевой последовательности и тока каждой из фаз за заранее заданное время, которое меньше или равно времени хранения, средство для вычисления нормализованного коэффициента корреляции (34), предназначенное для вычисления коэффициента корреляции между изменением сигнала, представляющего собой ток нулевой последовательности, и изменением каждого из сигналов, представляющих собой фазный ток. Технический результат: возможность определения направления короткого замыкания без использования измерения напряжения. 5 н. и 12 з.п. ф-лы, 4 ил.

Использование: в области электротехники. Технический результат - достоверное определение поврежденной линии среди других линий сети, позволяющее создать селективную защиту электрических сетей от однофазного замыкания на землю в распределительных сетях напряжением 6-35 кВ с изолированной или резонансно компенсированной нейтралью. Способ заключается в фиксации момента замыкания на землю, подключении дополнительно источника синусоидального напряжения переменной частоты выше 50 Гц на шины распределительного устройства питающего линии электропередач, изменении частоты дополнительного источника синусоидального напряжения до момента резонанса напряжения, измерении значения тока с использованием датчиков тока высокой частоты в момент резонанса напряжения, сравнении значений измеренных высокочастотных токов отходящих линий и определении отходящей линии с однофазным замыканием на землю. При этом значение тока на резонансной частоте в поврежденной отходящей линии электропередачи на несколько порядков больше, чем ток на отходящей линии электропередачи без замыкания на землю. Способ может быть реализован на базе известных микропроцессорных устройств. 4 ил.

Изобретение относится к контролю электрической сети. Сущность: устройство содержит средства (51a-52b) обнаружения электрических сигналов (S1a, S1b) и дополнительных сигналов (S2a, S2b), создаваемых в электрической сети (3). Дополнительные сигналы (S2a, S2b) имеют физическую природу, отличную от электрических сигналов (S1a, S1b). Устройство содержит также средства (7) обработки упомянутых электрических сигналов для определения первого временного ориентира (t1), представляющего момент обнаружения электрических сигналов, испускаемых, когда событие неисправности (E1, E2) произошло в электрической сети, - средства (7) обработки упомянутых дополнительных сигналов (S2) для определения второго временного ориентира (t2), представляющего момент обнаружения дополнительных сигналов, испускаемых, когда упомянутое событие неисправности произошло в электрической сети, и средства обработки для определения пространственной локализации упомянутого события неисправности в электрической сети в зависимости от первого и второго временных ориентиров (t1, t2). Технический результат: возможность просто, быстро и надежно обнаружить и локализовать повреждения в электрической сети любого типа без введения сигналов в упомянутую сеть. 3 н. и 7 з.п. ф-лы, 7 ил.

Использование: в области электротехники. Технический результат: повышение надежности защиты параллельных линий. Способ защиты параллельных линий заключается в измерении мгновенных значений токов i1 и i2 в одноименных фазах первой и второй линий при нарастании токов и сравнении их с заданной величиной тока iэт. Затем одновременно фиксируют очередность моментов достижения мгновенных значений токов i1 и i2 в одноименных фазах первой и второй линий при нарастании токов значения заданной величины тока и измеряют время t между моментом, когда мгновенное значение тока i1 в фазе первой линии достигает значения заданной величины тока iэт, и моментом, когда мгновенное значение тока i2 в одноименной фазе второй линии достигает значения заданной величины тока iэт, затем сравнивают измеренное время t с заданной величиной времени tэт1. Если t≥tэт1, то подают сигнал на отключение той линии, ток в которой достиг значения заданной величины тока первым. После того, как мгновенное значение тока iэт в фазе первой линии и мгновенное значение тока в фазе второй линии достигают заданной величины тока iэт, через времяtэт2=tотк+tдз+Δt,где tотк - время, необходимое на отключение выключателя линии с противоположной стороны;tдз - время действия защиты, установленной с противоположной стороны;Δt - время запаса, учитывающее влияние погрешностей,подают сигнал на отключение той линии, ток в которой оказался больше или равен заданной величине тока iэт. 1 ил.

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для определения места повреждения в трехфазной линии электропередачи (ЛЭП) высокого и сверхвысокого напряжения. На каждом из концов линии измеряют токи и напряжения, выделяют из измеренных токов и напряжений аварийный сигнал, производят вычисления внутри скользящего временного окна, фиксируют момент превышения порога с помощью спутниковой навигационной системы и вычисляют расстояние до места повреждения по разности моментов превышения порога, зафиксированных на концах линии. Внутри скользящего временного окна вычисляют энергию аварийного сигнала, формируемую путем суммирования квадратов мгновенных значений сигнала, затем сравнивают вычисленную энергию аварийного сигнала с величиной порога. Технический результат заключается в упрощении способа определения места повреждения ЛЭП за счет более простых операций точного выделения фронта волны переходного процесса из совокупности помех, подчиняющихся нормальному закону распределения. 1 ил.

Изобретение относится к автоматизации энергетических систем для определения нахождения однофазного замыкания на землю в распределительной сети. Сущность: способ содержит этапы, на которых захватывают переходные сигналы тока нулевой последовательности, которые опережают и запаздывают на 2 периода от начального значения с помощью терминалов, установленных в различных местонахождениях на линии электропередачи. Производят вейвлет-преобразование и восстановление переходного сигнала тока нулевой последовательности с помощью терминалов. Анализируют секцию, где находится место повреждения согласно интегрированному значению коэффициентов аппроксимации восстановленных компонентов детализации. Устройство содержит основную станцию и терминалы. Терминалы устанавливаются на башенной опоре воздушной линии электропередачи или внутри шкафа кабельной сети с кольцевой организацией и соединены с основной станцией через волоконно-оптическую связь или мобильную связь. Терминалы принимают сигналы фазного тока и вырабатывают сигналы тока нулевой последовательности. Основная станция, которая включает в себя модуль волоконно-оптической связи и модуль мобильной связи, устанавливается в помещении подстанции или диспетчерского центра и принимает сигналы, передаваемые терминалами. Технический результат: повышение точности. 2 н.п. ф-лы, 6 ил., 1 табл.

Группа изобретений относится к направленному обнаружению замыкания на землю, в частности, в энергосистеме со скомпенсированной нейтралью и, в конкретном случае, с изолированной нейтралью. В частности, изобретение относится к способу обнаружения замыкания на землю в энергосистеме, дополнительно предоставляющему возможность определения, располагается ли замыкание на стороне линии или на стороне нагрузки от точки обнаружения. Предложены способ направленного обнаружения замыкания на землю в многофазной энергосистеме, устройство для реализации указанного способа, указатель протекания тока короткого замыкания на землю, содержащий устройство направленного обнаружения замыкания, реле защиты заземления, содержащее указатель замыкания. Способ направленного обнаружения замыкания на землю в многофазной энергосистеме среднего напряжения, в частности со скомпенсированной нейтралью и/или изолированной нейтралью, включает этапы: обнаружения замыкания посредством изменения напряжения (V0) нулевой последовательности; определения направленности, определенной по разности фаз, в частности посредством угла или знака произведения, между производной тока нулевой последовательности (dI0/dt) и напряжением (V0) нулевой последовательности, при условиях непрерывного замыкания. Технический результат заключается в снижении влияния помех, в упрощении процедуры измерений, упрощении расчетов, в частности в возможности обнаружения при малой дискретизации. 5 н. и 10 з.п. ф-лы, 4 ил.

Использование: в области электротехники. Технический результат – повышение точности определения места короткого замыкания в тяговой сети многопутного участка. Согласно способу в момент короткого замыкания измеряют напряжение на шинах тяговой подстанции, ток питающей линии секции контактной сети с коротким замыканием, фазовый угол, вычисляют значение индуктивного сопротивления петли короткого замыкания и сравнивают его с заранее рассчитанными значениями с заданным шагом индуктивных сопротивлений мест короткого замыкания на всех путях секции. Судят о месте повреждения, принимая в качестве места короткого замыкания то место, для которого измеренное индуктивное сопротивление петли короткого замыкания совпадает с рассчитанным. При этом предварительно внутри секции исключают параллельное соединение контактной сети путем установки дополнительных секционных изоляторов и шлейфов, обеспечивающих единственный путь протекания тока короткого замыкания последовательно по каждому пути секции станции к точке короткого замыкания. 2 ил.
Наверх