Способ смазки и охлаждения передней опоры ротора газотурбинного двигателя

Изобретение относится к способу смазки авиационных газотурбинных двигателей (ГТД) и может быть использовано в двигателях, где привод маслоагрегатов осуществляется непосредственно от ротора ГТД, а маслоагрегаты и коммуникации маслосистемы установлены внутри ГТД. Способ смазки и охлаждения передней опоры ротора газотурбинного двигателя, снабженного циркуляционной системой смазки, при котором воздух, поступающий в двигатель, охлаждает маслобак и масло, поступающее далее к опорам, причём охлаждение корпуса маслобака, совмещенного с теплообменником и расположенного внутри двигателя между коком и передней опорой ротора, осуществляется воздухом, поступающим через открытые навстречу набегающему потоку воздуха каналы в коке, при этом на следующем этапе движения воздух поступает в корпус передней опоры ротора двигателя для ее дополнительного охлаждения. Изобретение позволяет повысить эффективность охлаждения масла в маслобаке, а также эффективность охлаждения передней опоры ротора ГТД, с уменьшением массы и габаритов двигателя. 2 ил.

 

Изобретение относится к способу смазки авиационных газотурбинных двигателей (ГТД) и может быть использовано в двигателях, где привод маслоагрегатов осуществляется непосредственно от ротора ГТД, а маслоагрегаты и коммуникации маслосистемы установлены внутри ГТД.

Известна маслосистема авиационного ГТД (Патент №2243393, МПК F02C 7/06, опубл. 27.12.2004), содержащая маслобак, агрегаты маслосистемы (насосы нагнетающий и откачивающий), коммуникации маслосистемы и опору, размещенную на роторе ГТД. Маслобак, агрегаты и коммуникации маслосистемы расположены снаружи двигателя (внешней обвязкой). Агрегаты маслосистемы получают привод от ротора высокого давления через несколько зубчатых зацеплений: конических и цилиндрических. Недостатком данного способа смазки является то, что размещение элементов маслосистемы и ее разводки по периметру двигателя, наличие нескольких пар зубчатых зацеплений, причем, конические передачи усложняют конструкцию двигателя и требуют дополнительного подвода смазки, приводят к большим габаритам и массе газотурбинного двигателя, при этом достигается меньшая эффективность охлаждения масла из-за отсутствия дополнительного охлаждения опоры воздухом.

Наиболее близким к изобретению является способ смазки и охлаждения передней опоры ротора газотурбинного двигателя ("Газотурбинный двигатель АИ-9. Краткое описание и инструкция по технической эксплуатации (редакция 3)". М., Внешторгиздат, 1971 г., 80 с, с. 9, фиг. 5), снабженного циркуляционной системой смазки, при котором воздух, поступающий в двигатель, охлаждает масло в маслобаке, поступающее далее к опорам. Воздухозаборник двигателя образован одной из стенок маслобака кольцевого типа (внешняя проточная часть). В процессе работы двигателя воздух, поступающий в двигатель омывает стенку маслобака, охлаждая находящееся в нем масло. При помощи нагнетающей секции маслонасоса охлажденное масло направляется по внешним и внутренним трубопроводам к опорам ротора ГТД.

Недостатком данного способа смазки и охлаждения является меньшая эффективность охлаждения масла из-за отсутствия дополнительного охлаждения опоры воздухом, также размещение агрегатов маслосистемы (блока агрегатов и т.д.) по периметру двигателя, что приводит к увеличению его поперечного сечения

Техническим результатом, на достижение которого направлено изобрете6ние, является повышение эффективности охлаждения масла в маслобаке и передней опоры ротора ГТД с помощью рабочего тела газотурбинного двигателя - воздуха при совмещении маслобака и теплообменника. Дополнительной технической задачей является уменьшение массы и габаритов двигателя.

Технический результат достигается тем, что в способе смазки и охлаждения передней опоры ротора газотурбинного двигателя, снабженного циркуляционной системой смазки, при котором воздух, поступающий в двигатель, охлаждает маслобак и масло, поступающее далее к опорам, в отличие от известного охлаждение корпуса маслобака, совмещенного с теплообменником и расположенного внутри двигателя между коком и передней опорой ротора, осуществляется воздухом, поступающим через открытые навстречу набегающему потоку воздуха каналы в коке, при этом на следующем этапе движения воздух поступает в корпус передней опоры ротора двигателя для ее дополнительного охлаждения.

На фигурах показаны:

фиг. 1 - схема смазки газотурбинного двигателя;

фиг. 2 - общий вид устройства охлаждения передней опоры ротора ГТД.

Способ осуществляется следующим образом.

При работе ГТД, снабженного циркуляционной системой смазки (фиг. 1), воздух, поступающий в двигатель через каналы в коке, охлаждает корпус маслобака 1, расположенного внутри двигателя между коком и передней опорой ротора и совмещенного с воздушным теплообменником 2. В результате происходит двустороннее охлаждение масла, поступающего к передней опоре 3, - со стороны воздушного потока входа в двигатель и со стороны теплообменника. Масло из маслобака забирается нагнетающим маслонасосом 4 и под давлением, пройдя через масляный фильтр 5, подается к форсункам подачи масла передней опоры 3 ротора.

При этом воздух, используемый на охлаждение масла, пройдя через каналы кока, маслобака и теплообменник, далее также поступает в корпус передней опоры ротора двигателя, охлаждая тем самым, например, наружное кольцо подшипника.

Для поддержания необходимого давления в системе установлен редукционный клапан 6. Отработанное масло стекает вниз из полости передней опоры, откуда забирается маслонасосом 7. Суфлирование полости 8 и маслобака 1 осуществляется системой их суфлирования, по которой воздушно-масляная смесь поступает на вход в центробежный суфлер 9 и далее в атмосферу.

Откачиваемое из полости 8 масло поступает в воздушно-масляный теплообменник 2, конструктивно выполненный единым узлом с маслобаком 1 и блоком агрегатов 10 маслосистемы, и далее, пройдя через статический воздухоотделитель 11, сбрасывается в маслобак 1.

Пример.

Газотурбинный двигатель (фиг. 2), в котором реализован способ смазки и охлаждения передней опоры, содержит маслобак 1, совмещенный с теплообменником 2, с присоединенными к нему трубопроводами подвода и отвода масла, и размещенный внутри двигателя между коком 12, который является одним из элементов забора воздуха, и передней опорой 3 ротора 13 компрессора, при этом маслобак 1 ограничен наружными стенками проточной части двигателя и кока 12. Корпус маслобака 1, снабженный воздушными каналами 14, образует внутреннюю проточную часть двигателя. Воздушные каналы 14 соединены с одной стороны с воздушными каналами 15, выполненными в корпусе кока, которые открыты со стороны входа 16 в двигатель набегающему потоку воздуха. С другой стороны воздушные каналы 14 соединены с полостью охлаждения 17 наружного кольца 18 подшипника передней опоры 3, при помощи каналов 19, выполненных в корпусе данной опоры. Маслобак 1 через блок агрегатов 10 маслосистемы сообщен с внутренней полостью 20 вала ротора 13 компрессора, стенка 21 которого снабжена отверстиями 22 для подвода масла к внутреннему кольцу 23 подшипника передней опоры 3. При этом блок агрегатов 10 маслосистемы, с непосредственным приводом от ротора 13, может быть размещен в полости 24 передней опоры 3.

Воздух, поступая на вход 16 в двигатель при обтекании наружных стенок кока 12 и стенок маслобака 1, проходя через каналы 15 кока 12 и далее теплообменник 2, расположенный внутри маслобака 1, охлаждает масло с двух сторон - со стороны воздушного потока входа 16 в двигатель и со стороны теплообменника 2. Далее воздух по каналам подвода воздуха 19 в корпусе поступает в полость охлаждения 17 наружного кольца 18 подшипника опоры 3. Привод маслоагрегатов 10 приводится в движение непосредственно ротором 13 ГТД. Охлажденное масло по трубопроводу 25 подвода масла поступает в блок агрегатов 10 маслосистемы и через жиклер форсунки 26 и ротор 13 ГТД подается через внутреннее кольцо 23 подшипника в опору 3.

Таким образом, воздух, направленный на охлаждение масла и проходящий по внутренним каналам кока, маслобака и через теплообменник, далее поступает к передней опоре, дополнительно охлаждая наружное кольцо подшипника.

Также для осуществления данного способа смазки и охлаждения передней опоры ротора ГТД элементы маслосистемы, включая маслобак, теплообменник, агрегаты и т.д., монтируются внутри ГТД, где маслонасосы имеют непосредственный привод от ротора ГТД. В результате происходит уменьшение габаритно-массовых характеристик двигателя.

В результате, данное техническое решение позволяет увеличить эффективность охлаждения масла в маслобаке и передней опоры ротора ГТД с помощью рабочего тела газотурбинного двигателя – воздуха, при совмещении маслобака с теплообменником и уменьшении массы и габаритов двигателя.

Способ смазки и охлаждения передней опоры ротора газотурбинного двигателя, снабженного циркуляционной системой смазки, при котором воздух, поступающий в двигатель, охлаждает маслобак и масло, поступающее далее к опорам, отличающийся тем, что охлаждение корпуса маслобака, совмещенного с теплообменником и расположенного внутри двигателя между коком и передней опорой ротора, осуществляется воздухом, поступающим через открытые навстречу набегающему потоку воздуха каналы в коке, при этом на следующем этапе движения воздух поступает в корпус передней опоры ротора двигателя.



 

Похожие патенты:

Изобретение относится к газотурбинным двигателям авиационного и наземного применения, а именно к конструкции радиально-упорной опоры ротора компрессора. Радиально-упорная опора ротора газотурбинного двигателя содержит радиально-упорный шарикоподшипник и дополнительный радиально-упорный шарикоподшипник, внутренние кольца которых установлены на валу.

Изобретение относится к области авиационного двигателестроения и, в частности, к элементам системы суфлирования авиационного газотурбинного двигателя (ГТД) и может быть использовано в качестве суфлера-сепаратора, воздухоотделителя в других устройствах для отделения жидкости от газожидкостной смеси.

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов газотурбинных двигателей (ГТД). В устройстве всасывающий патрубок откачивающего насоса выполнен в виде полого гибкого элемента, соединенного герметично с входным фланцем насоса и снабженным на конце заборником масла с инерционным грузом, а в канале для суфлирования масляной полости установлен нормально открытый шариковый клапан, что позволяет при перевороте самолета или возникновении отрицательных перегрузок исключить перетекание масла из маслобака в масляную полость опорного подшипника при выполнении самолетом длительных (более 30 с) фигурных полетов и восстановить циркуляционный объем масла в маслобаке и обеспечить стабильность давления масла на входе в двигатель.

Изобретение относится к системе смазки подшипников опор роторов газотурбинного двигателя и обеспечивает отказоустойчивость насосов с регулируемыми электроприводами системы смазки с числом откачивающих насосов более двух при отказе одного из насосов или их электроприводов как в тракте нагнетания масла, так и в тракте откачки масловоздушной смеси для ГТД.

Изобретение относится к области авиационного двигателестроения, а именно к масляной системе авиационного газотурбинного двигателя (ГТД). Маслосистема ГТД содержит маслобак с центробежным воздухоотделителем, суфлер-сепаратор с магистралью суфлирования и установленный в магистрали подачи масла сифонный затвор с жиклером стравливания в петле затвора.

Изобретение относится к области техники турбовальных двигателей, более конкретно к опоре (14) для, по меньшей мере, одного подшипника для горячей части турбовального двигателя.

Изобретение относится к области авиационного двигателестроения, а именно к системам разгрузки опор роторов компрессоров низкого давления газотурбинного двигателя, в том числе и в составе летательного аппарата.

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов турбомашин. Устройство для смазки опорного подшипника ротора турбомашины содержит откачивающий насос, всасывающая магистраль которого подключена к сливной магистрали масляной полости.

Изобретение относится к области машиностроения, касается элементов систем газотурбинных двигателей и может быть использовано в качестве суфлера-сепаратора в маслосистемах авиационных газотурбинных двигателей (ГТД) для отделения жидкости от газожидкостной смеси.

Группа изобретений относится к роторным газотурбинным машинам и может быть использована для подачи масла в межроторные подшипники для смазывания и охлаждения их, а также для уменьшения контактных напряжений на телах качения подшипников.

Изобретение относится к газотурбинной установке, содержащей турбинный кожух, в котором расположены компрессор, турбина высокого давления и силовая турбина. Газовая турбина содержит систему вентиляции, предназначенную для охлаждения внутреннего пространства турбинного кожуха, а также контур подачи смазочного масла. Контур подачи смазочного масла включает насос для смазочного масла, резервуар для смазочного масла, первичный охладитель смазочного масла. В турбинном кожухе расположен вторичный охладитель смазочного масла, размещенный в положении ниже вращающегося вала газовой турбины. Система вентиляции расположена и выполнена с обеспечением контактированая по меньшей мере части воздушного потока, предназначенного для охлаждения турбинного кожуха, с вторичным охладителем смазочного масла для отвода тепла от смазочного масла, циркулирующего в указанном охладителе. Технический результат - повышение надежности путем предотвращения заливки маслом машины в случае отключения турбины и перебоя в работе маслоотсасывающего насоса. 2 н. и 15 з.п .ф-лы, 5 ил.

Газотурбинный двигатель содержит вентилятор, компрессорную секцию, камеру сгорания, сообщающуюся по текучей среде с компрессорной секцией, турбинную секцию, сообщающуюся по текучей среде с камерой сгорания, а также систему изменения скорости. Турбинная секция содержит турбину привода вентилятора и вторую турбину, при этом турбина привода вентилятора содержит множество ступеней турбины. Вентилятор содержит множество лопаток, выполненных с возможностью вращения вокруг оси, при этом соотношение между числом лопаток вентилятора и числом ступеней турбины привода вентилятора составляет от 2,5 до 8,5. Система изменения скорости приводится в действие турбиной привода вентилятора для вращения вентилятора вокруг оси. Турбина привода вентилятора содержит первый задний ротор, присоединенный к первому валу, а вторая турбина содержит второй задний ротор, присоединенный ко второму валу. Между первым валом и вторым валом образован кольцевой зазор. Первый подшипниковый узел расположен аксиально позади первого соединения между первым задним ротором и первым валом, а второй подшипниковый узел расположен в кольцевом зазоре, образованном между первым валом и вторым валом. Изобретение позволяет исключить потребность в несущих конструкциях, соединенных с неподвижной конструкцией через промежуточную силовую раму, уменьшить длину валов, обеспечить поддержку внешнего вала соосно с втулкой соединения ротора турбины высокого давления и внешнего вала, обеспечить более компактную турбинную секцию, а также снизить ее вес и потребление топлива. 19 з.п. ф-лы, 13 ил.

Изобретение относится к способу смазки и охлаждения опор авиационных газотурбинных двигателей (ГТД) и может быть использовано в двигателях, где привод маслоагрегатов осуществляется непосредственно от ротора ГТД, а маслоагрегаты и коммуникации маслосистемы установлены внутри ГТД. Техническим результатом является повышение эффективности охлаждения опор. В способе выполняется дополнительное охлаждение опор воздухом, поступающим через открытые навстречу набегающему потоку воздуха каналы в коке, сообщенные с внутренними каналами, расположенными в корпусах опор, через которые воздух поступает в зону внешней обоймы подшипника, при этом суфлирование опор и подвод масла обеспечиваются внутренними трубопроводами. 1 ил.

Изобретение относится к области авиадвигателестроения и касается устройства для смазки опорного подшипника ротора турбомашины, в частности авиационного двухроторного газотурбинного двигателя самолета (ГТД). Патрубок подвода масла выполнен из двух сообщающихся между собой трубопроводов, снабженных на концах заборниками, один из которых установлен в верхней части масляной полости, а другой в нижней ее части, при этом заборники снабжены автономными грузовыми шариковыми клапанами. Эта особенность позволит при перевернутом полете или полете с отрицательными перегрузками исключить уход масла из маслобака в масляную полость опорного подшипника ротора ГТД и избежать режим «масляное голодание» двигателя при выполнении самолетом фигур высшего пилотажа (не менее 30 с). 1 ил.

Изобретение относится к области авиационного двигателестроения и касается масляной системы газотурбинного двигателя маневренного самолета. Перепускной клапан установлен за топливомасляным теплообменником, а выход из перепускного клапана сообщен трубопроводом с внутренней полостью циркуляционного отсека так, что выходное отверстие трубопровода расположено в верхней полости циркуляционного отсека и направлено в сторону перегородки, отделяющей отсеки друг от друга. В результате использования изобретения продолжительность фигурных полетов самолета увеличивается (более 30 с), кроме того, повышается надежность маслосистемы за счет перепуска охлажденного масла в бак, а также стабильной подачи масла на вход в двигатель при перевороте самолета. 1 ил.

Изобретение относится к упругодемпферным опорам турбин газотурбинных двигателей авиационного и наземного применения. Упругодемпферная опора турбины, содержащая корпус опоры с установленными внутри корпуса внешним и внутренним упругими элементами с щелевой масляной полостью между ними, а также разделяющую масляную и воздушную полости обечайку, при этом внешняя поверхность корпуса опоры выполнена цилиндрической с установленным на ней телескопически в осевом направлении внутренним фланцем обечайки с уплотнительным элементом в кольцевой канавке, а щелевая масляная полость соединена равномерно расположенными по окружности каналами с кольцевыми канавками подвода масла в двух радиальных плоскостях. Изобретение позволяет исключить появление в разделительной обечайке изгибных напряжений вследствие различных температурных деформаций конструктивных элементов опоры, повысить надежность упругодемпферной опоры, обеспечить равномерный подвод масла в осевом и в радиальном направлениях в щелевую масляную полость, а также позволяет обеспечить заданные демпфирующие свойства опоры. 2 ил.

Изобретение относится к области авиационного моторостроения и может быть использовано в межроторных опорах газотурбинных двигателей. Межроторная опора газотурбинного двигателя включает подшипник скольжения, содержащий внутреннее кольцо подшипника, выполненное из композиционного материала на основе дисперсно-упрочненного реакционно-спеченного карбонитрида кремния и закрепленное на валу ротора низкого давления, наружное кольцо, выполненное из металлокерамоматричного материала на основе нитрида титана при определенном соотношении компонентов и расположенное внутри вала ротора высокого давления, а опора снабжена шарнирным элементом, представляющим собой опорное кольцо, выполненное из жаропрочной стали, установленное на наружном кольце подшипника. При этом внешняя поверхность опорного кольца выполнена в виде полусферы, взаимодействующей с соответствующей внутренней поверхностью вала ротора высокого давления. Технический результат заключается в исключении воздействия изгибающих моментов на подшипник в процессе рабочего цикла при одновременном повышении износостойкости подшипника опоры, что обеспечивает повышение надежности межроторной опоры. 1 ил.
Наверх