Способ определения границ фазовых и релаксационных переходов в полимерных материалах

Изобретение относится к области исследования свойств и контроля качества полимеров в отраслях промышленности, производящих и использующих полимерные материалы, в частности для определения границ фазовых и релаксационных переходов в полимерных материалах. Сущность предлагаемого способа заключается в том, что исследуемый образец помещают между двумя электродами конденсатора, нагревают исследуемый образец с постоянной скоростью контактным способом, измеряют температуру и диэлектрические параметры исследуемого образца. На исследуемый образец периодически воздействуют проникающим высокочастотным электрическим полем при отключенном нагреве и одновременно регистрируют изменяющийся анодный ток работы высокочастотного оборудования, а также непрерывно фиксируют линейное тепловое расширение исследуемого образца. По полученным данным устанавливают зависимость анодного тока от температуры и зависимость линейного теплового расширения исследуемого образца от температуры и по их экстремумам определяют границы фазовых и релаксационных переходов. Причем периодическое воздействие на исследуемый образец высокочастотным электрическим полем производят кратковременно (1 секунда) после каждого повышения температуры исследуемого образца на 5°C. Технический результат – повышение точности и достоверности определения фазовых и релаксационных переходов в полимерных материалах. 2 з.п. ф-лы, 2 ил.

 

Предлагаемый способ относится к области исследования свойств и контроля качества полимеров в отраслях промышленности, производящих и использующих полимерные материалы, в частности для определения границ фазовых и релаксационных переходов в полимерных материалах.

Известен способ (пат. РФ №2104515, МПК G01N 22/00, G01N 25/02, заявлен 23.05.1991) определения температурных границ фазовых переходов в полимерах, заключающийся в том, что в исследуемом образце полимера, выполненном в виде открытого дискового диэлектрического резонатора и помещенном в термокамеру, бесконтактным способом возбуждают колебания при низких температурах, производят одновременное измерение температуры и собственной резонансной частоты образца, отличающийся тем, что температуру в камере повышают в пределах диапазона исследований материала образца и по полученным данным совокупности собственных резонансных частот образца, соответствующих его температурам, строят кривую, а температурные границы фазовых переходов определяют по экстремумам этой кривой.

Данный способ может быть реализован на любой частоте только в миллиметровом диапазоне волн (КВЧ), что ограничивает проведение исследований на полимерных образцах большой толщины. Необходимо изготовление специального образца (резонатора). Вводятся существенные ограничения на исследуемые материалы, поскольку использование данного способа наиболее эффективно для исследования полимерных материалов с низкими значениями тангенса угла диэлектрических потерь (<1⋅10-4). А также к недостаткам относится сложность конструкции устройства для реализации данного способа. Применим для определения только фазовых переходов.

Известен способ (пат. РФ №2234077, МПК G01N 25/02, заявлен 08.04.2003) определения температур релаксационных переходов в полимерах, включающий нагрев объекта исследования от 0 К до температуры разрушения. Способ заключается в том, что на исследуемый полимер воздействуют монохроматическим электромагнитным излучением с частотой ν, 1011 Гц < ν < 1017 Гц, в процессе нагревания полимера измеряют угол преломления луча после прохождения его через призму из исследуемого полимера, рассчитывают по углу преломления показатель преломления полимера, строят зависимость показателя преломления от температуры, по которому определяют температуры релаксационных переходов по точкам перегиба кривой зависимости показателя преломления полимера от температуры.

Недостатком данного способа является то, что он применим только для определения температур релаксационных переходов. Объектом исследования могут быть только прозрачные и полупрозрачные полимерные материалы. Также для проведения исследований необходимо изготавливать специальные образцы.

Известен способ (пат. РФ №1727048, МПК G01N 29/00, заявлен 16.04.1990) определения фазовых переходов в полимерах, заключающийся в том, что в исследуемом материале возбуждают акустические волны, измеряют температурную зависимость последних и определяют с ее учетом области фазовых переходов, при этом в исследуемом материале возбуждают стоячие акустические волны, регистрируют резонансную кривую в исследуемом диапазоне температур, с учетом формы которой определяют наличие и механизм протекания фазового перехода, по положению и полуширине пиков на резонансной кривой определяют модули упругости (модуль Юнга и модуль сдвига) и величины затухания акустических волн (тангенс угла механических потерь) соответственно каждой из фазовых компонент.

Применение данного способа невозможно для исследования полимерных образцов (изделий) сложной геометрии (например, пустотелых - с воздушным включением). Возбуждение акустических волн в полимерном образце вызывает его разрушение. Применим для определения только фазовых переходов.

Наиболее близким аналогом, взятым за прототип, является способ определения температуры механического стеклования полимеров (пат. РФ №1742689, МПК G01N 25/02, заявлен 05.01.1990). Данный способ заключается в помещении исследуемого образца в емкостный первичный измерительный преобразователь, задании частоты измерений и измерении электрического параметра образца. При этом производят нагрев образца с постоянной скоростью, измеряют средний квадрат напряжения тепловых электрических флуктуаций на зажимах преобразователя и фиксируют температуру, соответствующую максимуму текущего среднего значения напряжения, которую принимают за температуру механического стеклования.

Данный способ применим для определения релаксационного перехода только одного вида, а именно механического стеклования полимеров, т.е. перехода из кристаллического состояния в стеклообразное. Также данный способ не позволяет достаточно точно определить температуру механического стеклования полимеров поскольку за искомую температуру принимают температуру, соответствующую максимум среднего значения напряжения.

Задачей предлагаемого способа является определение границ всех фазовых и релаксационных переходов в полимерных материалах.

Поставленная задача достигается тем, что предлагаемый способ определения границ фазовых и релаксационных переходов в полимерных материалах включает операции: исследуемый образец помещают между двумя электродами конденсатора, нагревают исследуемый образец с постоянной скоростью контактным способом, измеряют температуру и диэлектрические параметры исследуемого образца, отличающийся тем, что на исследуемый образец периодически воздействуют проникающим высокочастотным электрическим полем при отключенном нагреве и одновременно регистрируют изменяющийся анодный ток работы высокочастотного оборудования, а также непрерывно фиксируют линейное тепловое расширение исследуемого образца, по полученным данным устанавливают зависимость анодного тока от температуры и зависимость линейного теплового расширения исследуемого образца от температуры и по их экстремумам определяют границы фазовых и релаксационных переходов. Причем периодическое воздействие на исследуемый образец высокочастотным электрическим полем производят кратковременно (1 секунда) после каждого повышения температуры исследуемого образца на 5°C.

На фигуре 1 представлена блок-схема устройства, реализующего предлагаемый способ определения фазовых и релаксационных переходов в полимерных материалах.

На фиг. 2 представлены результаты исследований стеклонаполненного полиамида марки ПА СВ 30-1 ЭТМ.

На фиг. 1 представлена блок-схема устройства для определения фазовых и релаксационных переходов в полимерных материалах, включающего блок автоматизации (1), вычислительное устройство микроконтроллера (аналоговые входы) (2), исполнительный механизм переменного конденсатора (3), цепь управления генератором (4), систему управления, сигнализацию (5), источник постоянного напряжения (6), экранирующий корпус (7), высокочастотный генератор (8), коаксиальный кабель (9), датчик угла поворота (10), линейный токовый датчик (11), термопару (12), датчик теплового расширения (13), рабочий конденсатор (14), исполнительный механизм нагревательного элемента (15), операционный усилитель (16), вычислительное устройство микроконтроллера (цифровые входы/выходы) (17), промышленный логический контроллер (18), персональный компьютер (19), помехозащищенный корпус (20).

На фиг. 2 представлено 3 графика зависимостей линейного теплового расширения образца от температуры (фиг. 2а), анодного тока от температуры (фиг. 2б, сплошная линия) и скорости изменения анодного тока от температуры (фиг. 2б, пунктирная линия). При совмещении фигур 2а и 2б определяют момент начала плавления объекта исследования (фазовый переход первого рода). Остальные фазовые и релаксационные переходы определяют по экстремуму кривых на фиг. 2б.

Способ осуществляется следующим образом.

Помещают образец между электродами конденсатора (14) горизонтально. С целью устранения тепловых потерь между образцом и электродом конденсатора (14) размещают тепло-, электроизолятор (диэлектрический картон). Включают оборудование. Считывают показания термопары. На протяжении всего процесса исследований непрерывно регистрируют тепловое расширение образца.

Значение начальной температуры, до которой необходимо нагреть образец на первом этапе, составляет 30°С.

Определяют количество энергии, которую необходимо потратить, чтобы линейно нагреть образец до 30°С.

Нагревают образец до 30°С, после чего включают ВЧ-генератор на 1 секунду и считывают показания анодного тока ВЧ-генератора. Первый этап завершен.

На втором этапе определяют количество энергии, которую необходимо потратить, чтобы линейно нагреть образец до 35°С. Нагревают образец, после чего, отключив нагрев, включают ВЧ-генератор на 1 секунду и считывают показания анодного тока ВЧ-генератора.

Далее повторяют действия, описанные выше, при шаге повышения температуры 5°С.

По показаниям датчика теплового расширения при резком изменении толщины образца заканчивают нагревать образец и переходят к обработке полученных экспериментальных данных.

По полученным экспериментальным данным строят графики зависимостей теплового расширения от температуры (фиг. 2а); анодного тока от температуры (фиг. 2б, сплошная линия).

Анализ данных графиков позволил определить фазовый переход первого рода - плавление образца (фиг. 2, при T=195°С) и релаксационный переход - переход из эластичного состояния в высокоэластичное (фиг. 2б, сплошная линия, при T=160°С), также данный переход идентифицируют как распад сегментальной подвижности.

Для нахождения остальных переходов рассчитывают скорость изменения анодного тока от температуры методом левой конечной разности первого порядка аппроксимации по формуле (1)

где Ia - анодный ток, А; и - текущее и предыдущее значения анодного тока соответственно; Т - температура, °C; Tm и Tm-1 - текущее и предыдущее значения температуры соответственно.

После чего строят график зависимости скорости изменения анодного тока от температуры (фиг. 2б, пунктирная линия). По полученному графику определяют следующие релаксационные переходы:

переход из кристаллического состояния в стеклообразное (фиг. 2б, пунктирная линия, при T=75°C), соответствующий изменению угла наклона кривой зависимости анодного тока от температуры;

переход из стеклообразного состояния в эластичное (фиг. 2б, пунктирная линия, при T=105°C).

Также был определен момент начала деструкции полимера (фиг. 2б, пунктирная линия, при T=210°C).

Для проверки предлагаемого способа были проведены экспериментальные исследования с использованием разработанной авторами автоматизированной установки высокочастотного контроля.

Исследовались такие полимерные материалы как поливинилхлорид (ПВХ) марки ОМБ-60; полиамид марки ПА-6-6; стеклонаполненный полиамид (армамид) марки ПА СВ 30-1 ЭТМ.

Для реализации процесса определения фазовых и релаксационных переходов было изготовлено по 10 образцов из представленных выше материалов. Толщина образцов составляла 4 мм; диаметр 50 мм.

Предлагаемым способом определения границ фазовых и релаксационных переходов было определено следующее. Релаксационные переходы: переход из кристаллического состояния в стеклообразное; из стеклообразного состояния в эластичное; из эластичного состояния в высокоэластичное (распад сегментальной подвижности); из высокоэластичного состояния в вязкотекучее. Фазовый переход первого рода - плавление. А также был определен момент начала деструкции полимеров.

1. Способ определения границ фазовых и релаксационных переходов в полимерных материалах, включающий операции: исследуемый образец помещают между двумя электродами конденсатора, нагревают исследуемый образец с постоянной скоростью контактным способом, измеряют температуру и диэлектрические параметры исследуемого образца, отличающийся тем, что на исследуемый образец периодически воздействуют проникающим высокочастотным электрическим полем при отключенном нагреве и одновременно регистрируют изменяющийся анодный ток работы высокочастотного оборудования, а также непрерывно фиксируют линейное тепловое расширение исследуемого образца, по полученным данным устанавливают зависимость анодного тока от температуры и зависимость линейного теплового расширения исследуемого образца от температуры и по их экстремумам определяют границы фазовых и релаксационных переходов.

2. Способ по п. 1, отличающийся тем, что воздействуют на исследуемый образец высокочастотным электрическим полем кратковременно (1 секунда), без оказания теплового воздействия.

3. Способ по п. 1 или 2, отличающийся тем, что периодическое воздействие высокочастотным электрическим полем производят после каждого повышения температуры исследуемого образца на 5°C.



 

Похожие патенты:

Изобретение относится к аналитической химии органических соединений. Способ характеризуется тем, что применяются два сенсора на основе пьезокварцевых резонаторов (ПКР) объемных акустических волн с базовой частотой колебания 10,0 МГц, на электроды которых наносят пленки из насыщенного раствора фторида калия в ацетоне, для чего электроды опускают в насыщенный раствор фторида калия в ацетоне и выдерживают в течение 10 и 5 с, после удаления свободного растворителя в течение 10 мин при температуре t = 100°C , наносятся фазы фторида калия массой 4,0 и 1,0 мкг соответственно, выдерживают их 2 мин для установления стабильности исходной частоты колебания каждого сенсора QUOTE (Гц), предварительно анализируемую твердую фазу массой 1 – 5 г измельчают, жидкую фазу объемом 10 QUOTE отбирают и выдерживают в бюксе с полиуретановой пробкой в течение 20 и 10 мин соответственно, анализируемые газовую смесь или равновесные пары над твёрдыми, жидкими пробами объемом 5 QUOTE отбирают газовым шприцем и инжектируют в ячейку детектирования со скоростью 1 QUOTE , при этом вещества взаимодействуют с покрытиями из фторида калия и изменяются частоты колебания обоих сенсоров, фиксируют частоту колебаний сенсора с массой пленки 4,0 мкг через 30 с после инжекции паров QUOTE (Гц) и для сенсора с массой пленки 1,0 мкг через 60 с после инжекции QUOTE (Гц), по полученным данным рассчитывают для каждого сенсора изменение частот колебаний относительно исходной и, если соотношение изменений частот колебаний сенсоров с массой пленок соответственно 4,0 и 1,0 мкг составляет 1,2 ± 0,3, то делают вывод о присутствии в газовой смеси паров моноэтаноламина.

Группа изобретений относится к определению массовой доли ацетальдегида, выделяющегося в полиэтилентерефталате (ПЭТ) или его композитах. Способ определения массовой доли ацетальдегида в ПЭТ или его композитах включает запаивание пробы в стеклянные ампулы диаметром 5-6 мм на воздухе или путем вакуумирования, помещение ампул в термостат при температуре 120±2°С и выдерживание в течение 2 ч, последующее помещение ампул в термостатированную ячейку с ударным механизмом, продуваемую инертным газом и нагреваемую до температуры 20-80°С, с последующим вскрытием ампул с помощью ударного механизма и оценкой содержания ацетальдегида методом газовой хроматографии.

Изобретение относится к области измерительной техники и может быть использовано для оценки состояния поверхностей резиновых и пластиковых нитей. Заявлено устройство для оценки технического состояния поверхности нитей, включает в себя температурный генератор, температурный датчик, интерфейс, анализатор изображения и элемент принятия решения.
Изобретение относится к аналитической химии газовых и воздушных сред и касается способа определения ацетона и фенола в равновесной газовой фазе над полимерными материалами и воздухе рабочей зоны.

Изобретение относится к способам оценки драпируемости меховых и кожевенных полуфабрикатов. Способ включает закрепление образца на держателе с возможностью вертикального перемещения, определение параметров проекций образца, общей драпируемости, драпируемости в продольном и поперечном направлениях.

Изобретение относится к области экспериментального определения температуры хрупко-вязкого перехода при распространении быстрой трещины в образцах материалов, на основе полиолефинов при их испытании на растяжение в исследуемом интервале температур и предназначено для использования при создании однородного хрупкого слоя на поверхности образца, действующего в качестве инициатора трещины.

Изобретение относится к аналитической химии, а может быть использовано для оценки безопасности изделий из фенолформальдегидных пластмасс. Для этого используют многоканальный анализатор газов (МАГ-8) с 8-мью пьезокварцевыми резонаторами, электроды которых модифицируют нанесением растворов полидиэтиленгликольсукцината, полиэтиленгликольсебацината, полиэтиленгликольфталата, полифенилового эфира, триоктилфосфиноксида, пчелиного клея, пчелиного воска и комбинированного сорбента - пчелиного клея с хлоридом железа (III).
Изобретение относится к области прогнозирования процессов старения синтетических полимерных материалов (СПМ) в зависимости от продолжительности их эксплуатации или хранения.

Изобретение относится к средствам и способам виброзащиты объектов техники, в частности к прокладкам-амортизаторам под подошву шпал или брусьев стрелочных переводов, а также для виброзащиты строительных конструкций и промышленного оборудования.
Изобретение относится к медицине и предназначено для оценки эффективности нутриционной поддержки при язвенном колите. В качестве маркера используют растворимую форму молекул адгезии семейства ICAM - sICAM-1, sICAM-2, sICAM-3.

Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к устройствам для измерения температурного коэффициента линейного расширения (ТКЛР).

Изобретение относится к области исследования механических и тепловых свойств материалов. Способ определения температурного коэффициента линейного расширения материала предусматривает перемещение относительно друг друга образца исследуемого материала и источника нагрева поверхности образца.

Изобретение относится к способу и устройству определении давления распирания угля или угольной смеси путем лабораторного исследования. Осуществляют нагревание образца в виде угля или угольной смеси в перфорированной гильзе, находящейся внутри тигля.

Изобретение относится к области исследования физических свойств материалов и может быть использовано преимущественно в дилатометрии, например, для измерения коэффициента линейного расширения.

Изобретение относится к измерительной технике и может быть использовано для измерения линейных перемещений образца под воздействием температуры из различных материалов и для определения содержания углерода в углеродистых сталях.

Изобретение относится к области исследования свойств жидкости и может найти применение в нефтегазовой, химической промышленности и др. Для определения коэффициента объемного теплового расширения жидкости в ячейку калориметра помещают образец исследуемой жидкости и осуществляют ступенчатое повышение давления в ячейке с образцом исследуемой жидкости.

Изобретение относится к области теплофизики и может быть использовано при определении коэффициента термического расширения твердых тел. .

Изобретение относится к тепловым испытаниям материалов, а именно к способам определения коэффициента термического расширения пленочных образцов. .

Изобретение относится к области неразрушающего контроля. .

Изобретение относится к способам определения термобарических параметров (температуры и давления) образования гидратов в многокомпонентной смеси типа нефтяных или природных газов.
Наверх