Способ защиты от обледенения с использованием углеродного волокна и противообледенительная система для ветрогенераторов, основанная на использовании данного способа

Изобретение относится к способу защиты от обледенения с использованием углеродного волокна и противообледенительная система для ветрогенераторов, основанная на использовании данного способа. Способ защиты от обледенения с использованием углеродного волокна, включающий в себя следующие этапы: установку на поверхностном слое или на ближайшем к поверхностному слое лопасти карбоновых электронагревательных пластин, образующих нагревательный слой, при этом для карбоновых электронагревательных пластин задают различную мощность в соответствии с изменением линейной скорости в различных радиальных положениях лопасти ветряной турбины в процессе работы; выделение в нагревательном слое на различных участках лопасти по крайней мере одной области нагрева, при этом карбоновую электронагревательную пластину каждой области нагрева соединяют с токовым выходом соответствующего терморегулятора посредством параллельного, последовательного или последовательно-параллельного соединения; установку датчиков температуры рядом с карбоновой электронагревательной пластиной и на поверхностях областей нагрева; отливку карбоновых электронагревательных пластин, датчиков температуры и других структурных слоев за одно целое с лопастью с использованием технологии вакуумной пропитки, при этом датчик температуры каждой области нагрева соединяют с сигнальным входом соответствующего терморегулятора, датчик температуры и влажности окружающего воздуха и скорости ветра соединяется с сигнальным входом терморегулятора, при этом для поддержания температуры наружной поверхности областей нагрева, превышающей 0°С, терморегулятор регулирует работу карбоновых электронагревательных пластин отдельных областей нагрева в соответствии с сигналами датчика температуры и влажности окружающего воздуха и скорости ветра и сигналами датчиков температуры областей нагрева. Изобретение направлено на стабильность и равномерность нагрева и на энергосбережение. 2 н. и 6 з.п. ф-лы, 7 ил.

 

Область техники

Изобретение относится к способу защиты от обледенения поверхности оборудования, устанавливаемого вне помещения, в частности к способу, предусматривающему использование нагревательного материала на основе углеродного волокна для осуществления электрического нагрева с целью предотвращения обледенения ветрогенератора или плавления образовавшегося льда, а также к противообледенительной системе для ветрогенераторов, основанной на использовании данного способа; таким образом, изобретение относится к области ветроэнергетического оборудования.

Предпосылки создания изобретения

Зимой 2012 года некоторые ветряные электростанции в Китае, в частности на юге страны, не работали на протяжении более двух месяцев из-за обледенения лопастей ветряных турбин, что привело к значительным потерям мощности; в северных районах ряда зарубежных стран, таких как Россия, Швеция, Канада и т.д., часть ветряных электростанций ежегодно закрываются на срок до 3 месяцев из-за обледенения лопастей ветряных турбин, кроме того, чрезмерное обледенение лопастей ветряных электростанций становится причиной выхода из строя ветряных турбин. Обледенение лопастей ветряных турбин - проблема, актуальная для многих стран мира, приводящая к снижению мощности, генерируемой существующими ветрогенераторами, ограничивающая развитие и использование доступных ветровых ресурсов в районах с суровым холодным климатом и являющаяся техническим препятствием для развития ветроэнергетики.

В патентной заявке Китая № CN 102878036 A раскрыта лопасть ротора ветрогенератора с электрическим нагревательным устройством для плавления льда, где электрическое нагревательное устройство для плавления льда крепится к поверхности, внутренней поверхности и заполнителю лопасти, материал лопасти ветряной турбины обычно представляет собой композитный материал с низкой теплопроводностью, электрическое нагревательное устройство для плавления льда, крепящееся к внутренней поверхности и заполнителю лопасти, может легко вызвать перегрев внутренней части лопасти и замедлить передачу тепла вовне, что приводит к значительному перепаду температур внутри лопасти и сокращает срок службы лопасти, при этом устройство для плавления льда содержит теплоизоляционный слой, электрический нагревательный элемент и слой изоляции; электрический нагревательный элемент содержит нагревательную схему из отожженной при низкой температуре проволоки из нейзильбера, электронагревательной проволоки из сплава никеля и хрома или электронагревательной проволоки из алюминиевого сплава. Процесс монтажа электронагревательной проволоки является сложным. Электронагревательная проволока после подключения питания представляет собой часть нагревательного элемента, при этом нагрев концентрируется во внутренней части лопасти, что приводит к локальному перегреву внутренней части лопасти или ее поверхности. Лопасть непосредственно нагревается для плавления льда, при этом не предусмотрен контроль температуры во время нагрева, то есть регулирование по разомкнутому контуру. Существует опасность воспламенения лопасти из-за локального перегрева. Между тем, учитывая, что толщина электрического нагревательного устройства для плавления льда составляет 2-4 мм, процесс его монтажа на лопасти, описанный в вышеупомянутой патентной заявке, является сложным. Изолирующий слой для рассеивания тепла, изготовленный из конструкционного ПВХ, может легко отделиться, будучи установлен на поверхности лопасти, и снижает конструктивную прочность лопасти, будучи установлен на ее внутренней поверхности или на заполнителе. При обычных условиях, способствующих обледенению, в стационарном состоянии, мощность, требующаяся для предотвращения обледенения или плавления льда, образовавшегося на лопасти, как правило, превышает 400 Вт/м2, однако заданная максимальная мощность, раскрытая в патентной заявке, составляет всего 400 Вт/м2. Во время вращения лопасти основные теплопотери при плавлении льда, образовавшегося на лопасти, связаны с конвекцией, при этом теплопотери вследствие конвекции являются максимальными на конце лопасти и могут превышать 2000 Вт/м2. Таким образом, данная патентная заявка не учитывает реальные обстоятельства, и предлагаемое изобретение вряд ли способно реализовать заявленную функцию плавления льда в режиме реального времени.

В патентной заявке Китая №201220245659 Х раскрыто автоматическое устройство для предотвращения обледенения и удаления льда для лопастей ветряных турбин, где поверхность лопасти имеет токопроводящее покрытие или покрыта токопроводящей пленкой, при этом токопроводящее покрытие или токопроводящая пленка легко отделяется от лопасти при нагреве и может воспламеняться при трении в процессе использования. В данной патентной заявке также раскрыт инфракрасный измерительный элемент, который используется для динамического измерения температуры поверхности в определенном положении с подветренной и наветренной стороны лопасти, при этом данная температура не дает представления о температуре лопасти в целом. Инфракрасный измерительный элемент легко может быть поврежден, также возможны значительные погрешности измерения при обледенении лопасти. Кроме того, устройство имеет сложную систему управления, характеризующуюся низкой степенью надежности; таким образом, при его использовании сложно достичь цели предотвращения обледенения.

Раскрытие сущности изобретения

Для решения вышеуказанных технических проблем в настоящем изобретении предлагается способ осуществления нагрева в реальном режиме времени с целью предотвращения обледенения лопастей ветрогенератора с использованием электронагревательного материала на основе углеродного волокна, обеспечивающий равномерный нагрев поверхности и низкое потребление энергии, а также экономичная энергосберегающая противообледенительная система для ветрогенераторов, основанная на использовании данного способа и отличающаяся простотой конструкции, стабильной работой и надежностью.

Техническое решение вышеуказанных технических проблем, предлагаемое в настоящем изобретении, состоит в том, что способ защиты от обледенения с использованием углеродного волокна включает в себя следующие этапы: установка на поверхностном или на ближайшем к поверхностному слое лопасти карбоновых электронагревательных пластин, образующих нагревательный слой и имеющих различную мощность, которая может быть задана в соответствии с изменением линейной скорости в различных радиальных положениях лопасти ветряной турбины в процессе работы; выделение в нагревательном слое на различных участках лопасти по крайней мере одной области нагрева, при этом карбоновая электронагревательная пластина каждой области нагрева соединяется с токовым выходом соответствующего терморегулятора посредством параллельного, последовательного или последовательно-параллельного соединения; установка датчиков температуры рядом с карбоновой электронагревательной пластиной и на поверхностях областей нагрева; отливка карбоновых электронагревательных пластин, датчиков температуры и других структурных слоев за одно целое с лопастью с использованием технологии вакуумной пропитки, при этом датчик температуры каждой области нагрева соединяется с сигнальным входом соответствующего терморегулятора, датчик температуры и влажности окружающего воздуха и скорости ветра соединяется с сигнальным входом терморегулятора, при этом терморегулятор регулирует работу карбоновых электронагревательных пластин отдельных областей нагрева в соответствии с сигналами датчика температуры и влажности окружающего воздуха и скорости ветра и сигналами датчиков температуры областей нагрева, для поддержания температуры наружной поверхности областей нагрева, превышающей и примерно равной 0°C.

Противообледенительная система для ветрогенераторов, основанная на использовании углеродного волокна для предотвращения обледенения, содержит лопасть с системой защиты от обледенения и противообледенительную систему управления, при этом противообледенительная система управления содержит источник питания, контактное кольцо и терморегулятор, лопасть с системой защиты от обледенения содержит наружную обшивку, заполнитель и внутреннюю обшивку, при этом внутренняя поверхность внутренней обшивки образует полость, снабженную накладкой из листового железа, закрепленной на внутренней обшивке, наружный слой внутренней обшивки образован заполнителем, наружный слой заполнителя образован наружной обшивкой, при этом противообледенительная система отличается тем, что на поверхностном или ближайшем к поверхностному слое наружной обшивки закреплена карбоновая электронагревательная пластина, образующая нагревательный слой, в нагревательном слое на различных участках лопасти выделена по крайней мере одна область нагрева, мощность карбоновой электронагревательной пластины каждой области нагрева задается в соответствии с максимальной мощностью, требующейся для предотвращения обледенения в определенном радиальном положении, карбоновая электронагревательная пластина каждой области нагрева соединена с токовым выходом терморегулятора, соответствующего данной области, посредством параллельного, последовательного или последовательно-параллельного соединения, на поверхности карбоновой электронагревательной пластины, поверхностях областей нагрева и поверхностях необогреваемых областей установлены датчики температуры, датчик температуры каждой области нагрева соединен с сигнальным входом терморегулятора, соответствующим данной области, датчик температуры и влажности окружающего воздуха и скорости ветра соединен с сигнальным входом терморегулятора, терморегулятор осуществляет комплексный анализ температуры и влажности окружающего воздуха и скорости ветра и сигналов, получаемых от датчиков температуры каждой области нагрева, и на основании этого анализа управляет работой карбоновой электронагревательной пластины каждой области нагрева для поддержания температуры наружной поверхности лопасти, превышающей и приблизительно равной 0°C, с целью автоматического предотвращения обледенения и плавления льда.

В вышеописанной противообледенительной системе для ветрогенераторов мощность карбоновой электронагревательной пластины устанавливается таким образом, что температура поверхности лопасти поддерживается на уровне выше 0°C при работе лопасти ветряной турбины на номинальной скорости вращения в самых суровых зимних условиях, способствующих обледенению, при этом мощность карбоновой электронагревательной пластины составляет от 400 до 4000 Вт/м2.

В вышеописанной противообледенительной системе для ветрогенераторов весь поверхностный слой или ближайший к поверхностному слой наружной обшивки турбины, либо часть одного из этих слоев, представляет собой нагревательный слой, образованный карбоновой нагревательной пластиной.

В вышеописанной противообледенительной системе для ветрогенераторов карбоновая нагревательная пластина имеет отверстия диаметром 1-10 мм, либо прорези шириной 1-10 мм.

В вышеописанной противообледенительной системе для ветрогенераторов карбоновая электронагревательная пластина содержит подложку и нанесенное на нее углеродное волокно, при этом подложка изготовлена из материала, относящегося к тому же типу, что и материал наружной обшивки лопасти, и сплавленного с этим материалом.

В вышеописанной противообледенительной системе для ветрогенераторов толщина карбоновой электронагревательной пластины составляет 0,2-1 мм.

В вышеописанной противообледенительной системе для ветрогенераторов поверхность лопасти имеет покрытие.

Настоящее изобретение имеет следующие технические эффекты: 1) В соответствии с изобретением, карбоновая электронагревательная пластина содержит подложку и нанесенное на нее углеродное волокно, при этом подложка изготовлена из материала, относящегося к тому же типу, что и материал наружной обшивки лопасти, и сплавленного с этим материалом, что способствует объединению подложки и лопасти в единое целое; углеродное волокно представляет собой электронагревательный материал, имеющий чисто активное сопротивление, что облегчает изготовление карбоновых электронагревательных пластин с различной мощностью; при этом карбоновая электронагревательная пластина осуществляет быстрый и равномерный нагрев поверхности, обеспечивая защиту от перегрева и преждевременного износа, что позволяет решить проблему, состоящую в том, что тепловая энергия, вырабатываемая источником тепла, выполненным из электропроводящего материала, концентрируется в центральной части, вследствие чего нагрев является неравномерным, а регулирование нагрева поверхности усложняется. 2) В соответствии с изобретением, карбоновые электронагревательные пластины различной мощности, которая определяется в соответствии с изменением линейной скорости в различных радиальных положениях лопасти ветряной турбины в процессе работы, устанавливаются на поверхностном или ближайшем к поверхностному слое лопасти, образуя нагревательный слой; нагревательный слой разделяется на области нагрева, количеством более одной, которые соответственно регулируются, за счет чего тепло, вырабатываемое нагревательным слоем лопасти с системой защиты от обледенения при различных климатических условиях, способствующих обледенению, позволяет восполнить потерю тепла поверхностью и поддерживать температуру лопасти с системой защиты от обледенения выше 0°C.

Кроме того, изобретение имеет простую конструкцию, обеспечивает хороший противообледенительный эффект, отличается низким потреблением электроэнергии и реализует функцию автоматического предотвращения обледенения или плавления льда, образовавшегося на ветрогенераторе, в процессе вращения.

Краткое описание чертежей

На Фиг. 1 представлена принципиальная блок-схема противообледенительной системы в соответствии с настоящим изобретением.

На Фиг. 2 представлена схема в разрезе лопасти с системой защиты от обледенения в соответствии с настоящим изобретением.

На Фиг. 3 представлена схема слоев, соответствующая позиции «А» на Фиг. 2.

На Фиг. 4 представлена структурная схема лопасти с системой защиты от обледенения в соответствии с настоящим изобретением, где нагревательный слой установлен на слое лопасти, ближайшем к поверхностному слою.

На Фиг. 5 представлена структурная схема лопасти с системой защиты от обледенения в соответствии с настоящим изобретением, где нагревательный слой покрывает всю поверхность лопасти и разделен на семь областей нагрева.

На Фиг. 6 представлена структурная схема карбоновой электронагревательной пластины в соответствии с настоящим изобретением.

На Фиг. 7 представлена схема в разрезе карбоновой электронагревательной пластины в соответствии с настоящим изобретением.

На Фиг. 1-7: 1 - наружная обшивка, 2 - заполнитель, 3 - внутренняя обшивка, 4 - покрытие, 5 - нагревательный слой, 6 - конец лопасти, 7 - основание лопасти, 8 - задняя кромка лопасти, 9 - передняя кромка лопасти, 10 - электрод, 11 - прорезь, 12 - подложка, 13 - углеродное волокно, 14 - накладка из листового железа, 15 - полость, 16 - датчик температуры.

Подробное описание вариантов осуществления изобретения

Ниже раскрыты подробности настоящего изобретения с использованием чертежей и примеров.

Со ссылкой на Фиг. 1-7, способ защиты от обледенения с использованием углеродного волокна, в соответствии с настоящим изобретением, включает в себя следующие этапы: нанесение углеродного волокна 13, состоящего из наноразмерных токопроводящих кристаллов углерода, на подложку 12, подготовка с использованием технологий вулканизации и горячего прессования тонкой карбоновой электронагревательной пластины, образующей нагревательный слой 5, представляющий собой один из слоев лопасти, установка карбоновых электронагревательных пластин на поверхностном или ближайшем к поверхностному слое лопасти в процессе производства лопасти ветряной турбины, при этом для карбоновой электронагревательной пластины может быть установлена различная мощность в соответствии с изменением линейной скорости в различных радиальных положениях лопасти ветряной турбины в процессе работы, например, с учетом того факта, что теплопотери за счет конвекции возрастают с увеличением линейной скорости в направлении от основания 7 лопасти к концу 6 лопасти, мощность на единицу площади, требующаяся для предотвращения обледенения, увеличивается, и, аналогичным образом, теплопотери за счет конвекции изменяются в направлении от задней кромки 8 к передней кромке 9 лопасти, таким образом, мощность карбоновой электронагревательной пластины, образующей нагревательный слой 5 лопасти с системой защиты от обледенения, устанавливается с учетом разницы теплопотерь между этими двумя сторонами, при этом в нагревательном слое 5 выделяется по крайней мере одна область нагрева. На Фиг. 5 показан вариант осуществления изобретения, в котором нагревательный слой разделен на 7 областей нагрева, при этом карбоновая электронагревательная пластина каждой области нагрева соединена с токовым выходом соответствующего терморегулятора посредством параллельного, последовательного или последовательно-параллельного соединения, датчики температуры 16 расположены рядом с карбоновой электронагревательной пластиной и на наружных поверхностях областей нагрева, карбоновая электронагревательная пластина, датчики температуры и другие структурные слои отлиты за одно целое с лопастью с использованием технологии вакуумной пропитки, датчик температуры каждой области нагрева соединен с сигнальным входом терморегулятора, соответствующего данной области, датчик температуры и влажности окружающего воздуха и скорости ветра соединен с сигнальным входом терморегулятора, терморегулятор управляет запуском и отключением противообледенительной системы на основе комплексного анализа сигналов датчика температуры и влажности окружающего воздуха и скорости ветра в соответствии с заранее заданной моделью, при этом при запуске противообледенительной системы электроэнергия передается на терморегулятор через контактное кольцо, терморегулятор регулирует мощность нагрева карбоновой электронагревательной пластины соответствующей области в соответствии с полученным сигналом датчика температуры каждой области нагрева, при этом терморегулятор может управлять работой противообледенительной системы таким образом, что области нагрева будут работать одновременно или поочередно, с целью автоматического предотвращения обледенения и плавления льда.

Противообледенительная система для ветрогенераторов, основанная на использовании способа защиты от обледенения с использованием углеродного волокна, содержит лопасть с системой защиты от обледенения и противообледенительную систему управления. Противообледенительная система управления содержит источник питания, контактное кольцо и терморегулятор. Лопасть с системой защиты от обледенения содержит наружную обшивку 1, заполнитель 2 и внутреннюю обшивку 3, при этом внутренняя поверхность внутренней обшивки 3 образует полость 15, в которой предусмотрена накладка 14 из листового железа, закрепленная на внутренней обшивке; заполнитель 2 образует наружный слой внутренней обшивки; наружная обшивка 1 образует наружный слой заполнителя 2; на поверхностном или ближайшем к поверхностному слое наружной обшивки 1 установлена карбоновая электронагревательная пластина. Как показано на Фиг. 3, на слое наружной обшивки 1, ближайшем к поверхностному слою, установлена карбоновая электронагревательная пластина, образующая нагревательный слой 5. Как показано на Фиг. 4, нагревательный слой 5 разделен на семь областей нагрева, при этом мощность карбоновой электронагревательной пластины каждой области нагрева устанавливается в соответствии с максимальной мощностью, требующейся для предотвращения обледенения в определенном радиальном положении. Карбоновая электронагревательная пластина каждой области нагрева соединена с токовым выходом терморегулятора, соответствующего данной области, посредством параллельного соединения. На слое 13 углеродного волокна, поверхностях областей нагрева и поверхностях необогреваемых областей установлены несколько датчиков температуры. Датчик температуры каждой области нагрева соединен с сигнальным входом терморегулятора, соответствующим данной области. С целью повышения точности измерения температурных датчиков, определяется среднее значение показаний нескольких датчиков температуры, выполняющих одну и ту же функцию и расположенных в одной и той же области. Датчик температуры и влажности окружающего воздуха и скорости ветра соединен с сигнальным входом терморегулятора. Терморегулятор управляет запуском и отключением противообледенительной системы на основе комплексного анализа сигналов датчика температуры и влажности окружающего воздуха и скорости ветра в соответствии с заранее заданной моделью. При запуске противообледенительной системы терморегулятор анализирует сигналы, полученные от датчиков температуры отдельных областей нагрева, и своевременно регулирует мощность нагрева карбоновой электронагревательной пластины с целью поддержания температуры наружной поверхности области нагрева, превышающей и примерно равной 0°C. Терморегулятор может управлять работой противообледенительной системы таким образом, что области нагрева будут работать одновременно или поочередно, с целью автоматического предотвращения обледенения или плавления льда. Терморегулятор передает информацию о текущих условиях работы на центральную ЭВМ, после чего информация передается от центральной ЭВМ на центральный блок управления, что позволяет оператору контролировать условия работы системы, а также регулировать работу противообледенительной системы через центральный блок управления.

В соответствии с настоящим изобретением, мощность карбоновой электронагревательной пластины устанавливается в соответствии с мощностью нагрева, требующейся для поддержания температуры поверхности лопасти, превышающей 0°C, при работе лопасти ветряной турбины на номинальной скорости вращения в самых суровых зимних условиях, способствующих обледенению. Мощность карбоновой электронагревательной пластины, определенная на основании моделирования и расчетов противообледенительной системы лопасти и анализа результатов испытаний, составляет от 400 до 4000 Вт/м2.

В соответствии с настоящим изобретением, как показано на Фиг. 5, весь слой наружной обшивки лопасти, ближайший к поверхностному слою, представляет собой карбоновую электронагревательную пластину, образующую нагревательный слой 5, в то же время, в соответствии с конкретными климатическими условиями в районе расположения ветряной электростанции, карбоновая электронагревательная пластина, образующая нагревательный слой 5, может образовывать весь поверхностный слой лопасти, часть поверхностного слоя, или часть слоя, ближайшего к поверхностному слою. В климатических условиях, не способствующих сильному обледенению, важной частью поверхностного или ближайшего к поверхностному слоя наружной обшивки лопасти с системой защиты от обледенения является карбоновая электронагревательная пластина, образующая нагревательный слой, что сокращает затраты на производство изделия и в то же время обеспечивает оптимальный противообледенительный эффект.

В соответствии с изобретением, как показано на Фиг. 6, в карбоновой электронагревательной пластине имеются прорези 11, ширина которых составляет 1-10 мм. Мощность карбоновой электронагревательной пластины регулируется путем определения ширины прорезей и расстояния между ними, в то же время, прорези в карбоновой электронагревательной пластине способствуют равномерному распределению смолы в процессе вакуумной пропитки при изготовлении лопасти, тем самым повышая конструктивную прочность лопасти.

В соответствии с изобретением, карбоновая электронагревательная пластина содержит подложку 12 и углеродное волокно 13, нанесенное на подложку. Подложка изготовлена из материала, относящегося к тому же типу, что и материал наружной обшивки лопасти, и сплавленного с этим материалом, что способствует объединению подложки и лопасти в единое целое. Углеродное волокно представляет собой электронагревательный материал, имеющий чисто активное сопротивление, что облегчает изготовление карбоновых электронагревательных пластин с различной мощностью. Карбоновая электронагревательная пластина осуществляет быстрый и равномерный нагрев поверхности, что предотвращает термическое старение и позволяет решить проблему, состоящую в том, что тепловая энергия, вырабатываемая источником тепла, выполненным из электропроводящего материала, концентрируется в центральной части, вследствие чего нагрев является неравномерным, а регулирование нагрева поверхности усложняется.

В соответствии с изобретением, толщина карбоновой электронагревательной пластины составляет 0,2-1 мм, что облегчает установку карбоновой электронагревательной пластины при изготовлении лопасти.

В соответствии с изобретением, поверхностный слой лопасти имеет покрытие 4, обладающее высокой стойкостью к коррозии, истиранию и воздействию ультрафиолетового излучения.

Изобретение имеет следующие преимущества: противообледенительная система имеет простую конструкцию, система управления осуществляет контроль температуры в реальном режиме времени и регулирование по замкнутому контуру, работа системы является стабильной и безопасной, для формирования нагревательного слоя на поверхностном или ближайшем к поверхностному слое лопасти используется электронагревательный материал на основе углеродного волокна, технология производства лопасти является простой, при этом повышается конструктивная прочность лопасти, нагрев для предотвращения обледенения является равномерным, температура повышается быстро, система отличается низким потреблением электроэнергии, реализуется функция автоматического предотвращения обледенения или плавления льда, образующегося на ветрогенераторе, в процессе вращения.

1. Способ защиты от обледенения с использованием углеродного волокна, включающий в себя следующие этапы: установку на поверхностном слое или на ближайшем к поверхностному слое лопасти карбоновых электронагревательных пластин, образующих нагревательный слой, при этом для карбоновых электронагревательных пластин задают различную мощность в соответствии с изменением линейной скорости в различных радиальных положениях лопасти ветряной турбины в процессе работы; выделение в нагревательном слое на различных участках лопасти по крайней мере одной области нагрева, при этом карбоновую электронагревательную пластину каждой области нагрева соединяют с токовым выходом соответствующего терморегулятора посредством параллельного, последовательного или последовательно-параллельного соединения; установку датчиков температуры рядом с карбоновой электронагревательной пластиной и на поверхностях областей нагрева; отливку карбоновых электронагревательных пластин, датчиков температуры и других структурных слоев за одно целое с лопастью с использованием технологии вакуумной пропитки, при этом датчик температуры каждой области нагрева соединяют с сигнальным входом соответствующего терморегулятора, датчик температуры и влажности окружающего воздуха и скорости ветра соединяется с сигнальным входом терморегулятора, при этом для поддержания температуры наружной поверхности областей нагрева, превышающей 0°С, терморегулятор регулирует работу карбоновых электронагревательных пластин отдельных областей нагрева в соответствии с сигналами датчика температуры и влажности окружающего воздуха и скорости ветра и сигналами датчиков температуры областей нагрева.

2. Противообледенительная система для ветрогенераторов с использованием способа защиты от обледенения, основанного на использовании углеродного волокна, по п. 1, содержащая лопасть с системой защиты от обледенения и противообледенительную систему управления, причем противообледенительная система управления содержит источник питания, контактное кольцо и терморегулятор, а лопасть с системой защиты от обледенения содержит наружную обшивку, заполнитель и внутреннюю обшивку, причем внутренняя поверхность внутренней обшивки образует полость, внутри которой установлена накладка, закрепленная на внутренней обшивке; наружный слой внутренней обшивки образован заполнителем, а наружный слой заполнителя образован наружной обшивкой, отличающаяся тем, что на поверхностном слое или ближайшем к поверхностному слое наружной обшивки установлены карбоновые электронагревательные пластины, образующие нагревательные слои, в нагревательном слое на различных участках лопасти выделена по крайней мере одна область нагрева, мощность карбоновой электронагревательной пластины каждой области нагрева задается в соответствии с максимальной мощностью, требующейся для предотвращения обледенения в определенном радиальном положении лопасти ветряной турбины, карбоновая электронагревательная пластина каждой области нагрева соединена с токовым выходом терморегулятора, соответствующего данной области, посредством параллельного, последовательного или последовательно-параллельного соединения, на поверхности карбоновой электронагревательной пластины, поверхностях областей нагрева и поверхностях необогреваемых областей установлены датчики температуры, датчик температуры каждой области нагрева соединен с сигнальным входом терморегулятора, соответствующим данной области, датчик температуры и влажности окружающего воздуха и скорости ветра соединен с сигнальным входом терморегулятора, терморегулятор осуществляет комплексный анализ температуры и влажности окружающего воздуха и скорости ветра и сигналов, получаемых от датчиков температуры каждой области нагрева, и на основании этого анализа управляет работой карбоновой электронагревательной пластины каждой области нагрева для поддержания температуры наружной поверхности лопасти, превышающей 0°C, с целью автоматического предотвращения обледенения и плавления льда.

3. Противообледенительная система для ветрогенераторов по п. 2, отличающаяся тем, что мощность карбоновой электронагревательной пластины устанавливается в соответствии с мощностью нагрева, требующейся для поддержания температуры поверхности лопасти, превышающей 0°C, при работе лопасти ветряной турбины на номинальной скорости вращения в самых суровых зимних условиях, способствующих обледенению, при этом мощность карбоновой электронагревательной пластины составляет от 400 до 4000 Вт/м2.

4. Противообледенительная система для ветрогенераторов по п. 3, отличающаяся тем, что поверхностный или ближайший к поверхностному слой наружной обшивки турбины полностью или частично представляет собой нагревательный слой, образованный карбоновой нагревательной пластиной.

5. Противообледенительная система для ветрогенераторов по п. 4, отличающаяся тем, что карбоновая нагревательная пластина имеет отверстия диаметром 1-10 мм или прорези шириной 1-10 мм.

6. Противообледенительная система для ветрогенераторов по п. 5, отличающаяся тем, что карбоновая электронагревательная пластина содержит подложку и нанесенное на нее углеродное волокно, при этом подложка изготовлена из материала, относящегося к тому же типу, что и материал наружной обшивки лопасти, и сплавленного с этим материалом.

7. Противообледенительная система для ветрогенераторов по п. 6, отличающаяся тем, что карбоновая нагревательная пластина имеет толщину 0,2-1 мм.

8. Противообледенительная система для ветрогенераторов по п. 2, отличающаяся тем, что поверхность лопасти имеет покрытие.



 

Похожие патенты:

Изобретение относится к ветроэнергетической установке и блоку молниезащиты для ветроэнергетической установки. Ветроэнергетическая установка включает гондолу (104) и ротор, который имеет по меньшей мере две лопасти (108) ротора.

Изобретение относится к ветровой установке и направлено на повышение надежности установки. Ветровая установка содержит башню, которая имеет служебную дверь, которая имеет дверной замок и на внешней стороне перегородку, которая проходит по существу по всей поверхности служебной двери и имеет выемку.

Изобретение относится к контролируемому соединению компонентов, ветроэнергетической установке, имеющей такое соединение, и способу мониторинга соединения компонентов.

Изобретение относится к способу фиксации угла (α) установки лопасти для лопасти (16) ротора для ротора (10). Способ фиксации угла (α) установки лопасти для лопасти (16) ротора для ротора (10) ветровой турбины (1), содержит этапы, на которых располагают и выравнивают бесконтактное измерительное устройство (2) напротив ветровой турбины (1), выравнивают азимутальное положение ветровой турбины (1) относительно измерительного устройства (2), выполняют вращение ротора (10) ветровой турбины (1), берут замеры и фиксируют профиль (26) лопасти (16) ротора, или его части, на предварительно определенной высоте посредством бесконтактного измерительного устройства (2) и определяют угол (α) установки лопасти для лопасти (16) ротора из данных, записанных во время взятия замеров (26) профиля.

Изобретение относится к уменьшающему колебания модулю, устройству, конструктивному сегменту для конструктивного блока, ветроэнергетической установке с уменьшающим колебания модулем.

Изобретение относится к лопасти (1) ротора ветроэнергетической установки (100). Лопасть (1) ротора ветроэнергетической установки (100) содержит нагревательное устройство (33) для нагревания лопасти (1) ротора, расположенное в лопасти (1) ротора в зоне поверхности лопасти ротора.

Изобретение относится к ветроэнергетической установке с опорной стойкой, опорной стойке ветроэнергетической установки и способу проверки резьбовых соединений опорной стойки ветроэнергетической установки.

Изобретение относится к ветроэнергетической установке, стволовой секции ветроэнергетической установки и способу выполнения ветроэнергетической установки. Ветроэнергетическая установка (100) с гондолой (4), генератором (12), расположенным в гондоле (4), башней (2) и подшипником (24) рыскания для регулирования ориентации гондолы (4) по ветру таким образом, что подшипник рыскания размещен ниже гондолы (4) в вертикальном смещении (26) рыскания, и гондола (4) поддерживается на подшипнике (24) рыскания над вертикальной стволовой секцией (20) такой же длины, что и смещение (26) рыскания.

Изобретение относится к законцовке лопасти ротора ветровой электростанции. Лопасть (30) ротора ветровой электростанции (100) имеет главный компонент лопасти и законцовку (260) лопасти, в которой законцовка (260) лопасти съемным образом присоединена к главному компоненту посредством соединительного устройства (202), и соединительное устройство (202) имеет секцию (206) законцовки, присоединенную к законцовке (260) лопасти и основную секцию (204), присоединенную к главному компоненту лопасти для приема секции (206) законцовки.

Изобретение относится к области ветроэнергетики. Аэростатно-плавательный ветродвигатель содержит аэростатный модуль положительной плавучести из взаимосвязанных торцами на ветер газонаполненных цилиндрических баллонов, гондолу с планетарным мультипликатором и генератором, осью вращения, совпадающей с направлением воздушного потока, и на ней ветряной ротор, тросовые и трос-кабельные связи с наземным причальным узлом, на поворачивающейся платформе которого закреплены две лебедки и трос-кабельная бухта.

Изобретение относится к области воздухоплавательного ветродвигателя с наземным размещением генераторного узла. Наземно-генераторный воздухоплавательный двигатель в составе воздухоплавательной части из поперечной опоры для взаимосвязанных газонаполненных баллонов аэростатного модуля положительной плавучести и силового блока с ветряным радиально-лопастным ротором, планетарным мультипликатором, электрогенератором, причального узла, содержащего троса и трос-кабель, наземную тумбу с поворачивающейся платформой, на ней две соосных лебедки.

Изобретение относится к области ветроэнергетики. Аэростатно-плавательный ветродвигатель содержит аэростатный модуль положительной плавучести из взаимосвязанных торцами на ветер газонаполненных цилиндрических баллонов, гондолу с планетарным мультипликатором и генератором, осью вращения, совпадающей с направлением воздушного потока, и на ней ветряной ротор, тросовые и трос-кабельные связи с наземным причальным узлом, на поворачивающейся платформе которого закреплены две лебедки и трос-кабельная бухта.

Изобретение относится к возобновляемой альтернативной энергетике, а именно к способу и устройству для выработки электроэнергии на ветроэнергетической установке.

Изобретение относится к области ветроэнергетики. Способ и система для преобразования энергии ветра в электрическую или механическую энергию за счет полета по меньшей мере одного профиля (10) силового крыла, привязанного посредством по меньшей мере одного или более кабелей (11) к наземному блоку (9), передвигаемому указанным профилем силового крыла вдоль траектории знакопеременного смещения (12) для возбуждения генератора (12), причем указанная траектория знакопеременного смещения выполнена с возможностью такого ориентирования, которое обеспечивает ее самоустановку в направлении (17), по существу ортогональном направлению ветра (W).

Изобретение относится к электротехнике и предназначено для преобразования энергии ветра в электрическую энергию при стабильных параметрах выходного напряжения и частоты.

Изобретение относится к области ветроэнергетики, а именно к ветроэнергетическим установкам с горизонтально-осевыми пропеллерными турбинами. Способ ориентации ветроэнергетических установок с горизонтально-осевыми пропеллерными турбинами относительно направления воздушного потока, включающий в себя установку их на платформе с возможностью ее вращения в горизонтальной плоскости вокруг вертикальной оси, при этом, для устойчивой ориентации оси каждой турбины параллельно ветровому потоку, платформу выполняют так, чтобы для обеспечения статически устойчивого положения каждой турбины в ветровом потоке центр бокового давления всей конструкции платформы с турбинами находился за вертикальной осью вращения платформы.

Изобретение относится к машиностроению, а более конкретно к устройствам, преобразующим механическую энергию низкооборотного привода в электрическую энергию. Мультипликатор высокомощной энергетической установки содержит сепаратор (1) с телами качения (2), неподвижное жесткое колесо (3) и волнообразователь 4.

Изобретение относится к способу эксплуатации ветроэнергетической установки, к ветроэнергетической установке и ветряному парку из ветроэнергетических установок.

Изобретение относится к ветроэнергетике и может быть использовано для комплексного энергоснабжения индивидуальных потребителей. Ветроэнергетическая установка содержит ветроколесо, связанное с генератором, и блок управления.

Изобретение относится к электроэнергетике. Предложенная аэродинамическая электростанция (АДЭС) содержит по меньшей мере одну аэродинамическую трубу 1 (АДТ), верхняя часть которой сообщена с вентилятором 3, а нижняя - с атмосферой, и размещенные по длине АДТ 1 высокоскоростные аэродинамические агрегаты (ВАДА), каждый из которых включает высокоскоростной аэродинамический двигатель (ВАДД) и соединенный с его валом генератор.

Изобретение относится к ветроэнергетике. Парусная горизонтальная ветросиловая турбина состоит из двух параллельных стен, скрывающих нижнюю половину ротора от ветра и имеющих вдоль стен отсыпку грунта под углом в 30° к горизонту, крыши в виде навеса ромбообразного сечения, которая накрывает стены с таким расчетом, чтобы между стенами и крышей свободно располагался ротор, состоящий из вала, на котором жестко закреплены две боковины, представляющие из себя звездочки, имеющие 4 и более лучей, концы лучей соединены наружными трубчатыми балками, а внутри боковины ротора соединяются внутренней балкой в виде трубы, соосной с валом ротора и образующей жесткий каркас ротора, который дополнительно имеет кольцевой обод, центрируемый и регулируемый талрепами для поддержки роликовыми опорами всей конструкции ротора, имеющей радиальные лопасти, состоящие из парусов, закрепленных на упругих пластиковых каркасах, способных свободно вращаться вдоль своей оси в шарнирах наружных балок и в шарнирах внутренней балки, проходя сквозь которую, оси парусов заканчиваются рычагами, которые шарнирно объединены тягами управления, имеющими на концах ролики, подпираемые с двух сторон дисками управления, шарнирно связанными с управляющими домкратами, которые работают синхронно по сигналу от датчика силы и направления ветра, изменяя угол атаки и парусность парусов от максимальной до нулевой. Изобретение направлено на повышение коэффициента использования энергии ветра. 2 з.п. ф-лы, 7 ил.
Наверх