Композиционный материал на основе сверхвысокомолекулярного полиэтилена для комбинированной радио и радиационной защиты, наполненный пентаборидом дивольфрама и техническим углеродом

Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Предлагаемый композиционный материал состоит из: сверхвысокомолекулярного полиэтилена - 50-75 масс.%, пентаборида дивольфрама - 20-30 масс.% и технического углерода УМ-76 - 5-20 масс.%. Изобретение позволяет комбинировать свойства поглощения гамма-, нейтронного и электромагнитного излучения. 3 табл., 1 ил.

 

Изобретение относится к композиционным материалам, обладающим комбинированными свойствами по защите от гамма-, нейтронного и электромагнитного излучения, в частности к материалам на основе полимерного связующего, в качестве которого используется сверхвысокомолекулярный полиэтилен (СВМПЭ), наполненный радио- и радиационно-защитными неорганическими компонентами. Изобретение может быть использовано для изготовления изделий, применяемых в средствах индивидуальной защиты медицинских и аварийно-спасательных служб, а также в атомной, авиакосмической, атомной отраслях промышленности и в медицине. Особенностью данного материала является способность поглощения быстрых нейтронов полимерной матрицей, которые впоследствии затормаживаются до тепловых нейтронов, в свою очередь пентаборид дивольфрама обладает способностью поглощения тепловых нейтронов и гамма-квантов, а технический углерод, образуя пространственную токопроводящую сеть, поглощает электромагнитное излучение.

Известен многослойный композиционный материал для защиты от электромагнитного излучения (RU 2529494 C1, опубл. 27.09.2014), состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B. Данный материал отличается тем, что он представляет собой многослойную конструкцию, каждый слой которой выполнен из указанного состава, а содержание частиц сплава в каждом слое составляет 70-90 масс. % и ограничено определенным диапазоном размеров частиц из непрерывного ряда 1-200 мкм с увеличением размерности частиц в каждом последующем слое. Совмещение однослойных композитов в многослойную структуру осуществляется с помощью специальных колландров, обеспечивающих требуемую механическую прочность композиции.

Недостатками данного материала являются:

- сложность конструкции, так как многослойные материалы теряют свои механические свойства по сравнению с монолитными образцами;

- материал не защищает от нейтронного и гамма-излучения.

Известна рентгенозащитная композиция (RU 2415485 C1, опубл. 27.03.2011), содержащая эпоксидное связующее, отвердитель, в качестве которого используется полиаминоамидная смола с аминным числом 280-310 мг КОН/г, и экранирующий порошкообразный наполнитель в виде смеси оксидов кадмия, церия, гадолиния, иттербия и висмута при следующем соотношении компонентов, масс. %: эпоксидное связующее 14,0-17,0; полиаминоамидная смола 10,0-12,0; кадмия оксид 31,0-32,0; церия оксид 31,5-33,0; гадолиния оксид 5,0-6,0; иттербия оксид 0,5-1,0; висмута оксид 3,0-4,0.

Недостатками данного материала являются:

- неспособность защищать на более высоких энергиях;

- не защищает от электромагнитного излучения.

Прототипом является полимерная композиция для радиационной защиты электронных приборов (RU 2530002 C2, опубл 10.10.2014), содержащая полимерное связующее, литий и бор в качестве экранирующих наполнителей (агентов), которая может быть использована для изготовления защитных материалов для биологической защиты, в качестве теневой защиты ядерных энергетических установок, аппаратуры ядерно-опасных объектов. Заявленная композиция содержит в качестве связующего полипропилен и/или полиэтилен, а литий и бор в составе соединения тетрагидридобората лития (ТГБЛ), капсулированного при следующем соотношении ингредиентов, % масс: порошкообразный экранирующий наполнитель - тетрагидридоборат лития не более 5, полиэтилен и/или полипропилен остальное.

Отличием является полимерная матрица и невозможность поглощения электромагнитного излучения.

Технический результат изобретения заключается в комбинации свойств, таких как поглощение гамма-, нейтронного и электромагнитного излучения за счет введения в полимерную матрицу (поглотитель быстрых нейтронов) порошка, состоящего из соединения бора и вольфрама (поглотитель гамма-квантов и тепловых нейтронов) и углеродного компонента (поглотитель электромагнитного излучения). При этом достигается низкий коэффициент потерь на отражение и увеличение коэффициента потерь на поглощение электромагнитного излучения, что является необходимым параметром.

Технический результат достигается следующим образом.

Радио-, радиационно-защитный материал на полимерной основе содержит сверхвысокомолекулярный полиэтилен в качестве матрицы, наполненный порошком пентаборида дивольфрама и технического углерода при следующем соотношении компонентов, масс. %:

Сверхвысокомолекулярный полиэтилен 50-75
Пентаборид дивольфрама 20-30
Технический углерод марки УМ-76 5-20

Изображением поясняется равномерное распределение и хорошее адгезионное взаимодействие наполнителей с полимерной матрицей.

В предлагаемом материале комбинирование свойств по поглощению гамма-, нейтронного и электромагнитного излучения достигается за счет введенного в композит порошка пентаборида дивольфрама с размером частиц 10-20 мкм и технического углерода дисперсностью 5-10 нм. Введение порошка пентаборида дивольфрама в количестве 20-30 масс. % обеспечивает высокий коэффициент поглощения гамма- (200 кэВ - 1,4 МэВ) и нейтронного излучения (Кγ=1,488-1,028 и Kn=4,8-6,13). Введение технического углерода в количестве 5-20 масс. % способствует высокому уровню поглощающих свойств электромагнитного излучения. Эффективное распределение наполнителей в объеме полимерной матрицы обеспечивается за счет ступенчатого введения наполнителей в ходе механического синтеза в высокоэнергетических планетарных мельницах с металлическими мелящими телами. Получение готового продукта необходимой формы из композиции осуществляется методом термопрессования при температуре 170-190°C. Композиционный материал податлив механической обработке, поэтому конечный продукт может изготавливаться практически любой сложной формы.

Возможность промышленной применимости предлагаемого материала и его использования в качестве радио-, радиационно-защитного материала подтверждается следующим примером реализации.

Пример.

В качестве исходных материалов использовались сверхвысокомолекулярный полиэтилен (СВМПЭ) марки GUR 4120, пентаборид дивольфрама (W2B5) с размером частиц 20-30 мкм и порошок технического углерода марки УМ-76, полученный термоокислительным разложением высокоароматизированного сырья и с размером частиц 5-10 нм.

Порошки СВМПЭ, пентаборида дивольфрама и технического углерода проходят предварительную сушку при температуре 110°C. Затем в металлические барабаны планетарной мельницы FRITSCH Pulverisette 5 с металлическими мелящими телами засыпают СВМПЭ с техническим углеродом для создания пространственной токопроводящей сетки, проводят смешивание в течение 30 минут в режиме 5 минут помола 10 минут «отдых». Затем к полученной смеси добавляется порошок пентаборида дивольфрама с теми же режимами смешения. Были получены следующие композиции: пентаборид дивольфрама в количестве 30 масс. %, технический углерод УМ-76 в количестве 5 масс. %, СВМПЭ - остальное; 20 масс. %, технический углерод УМ-76 в количестве 10 масс. %, СВМПЭ - остальное; 30 масс. %, технический углерод УМ-76 в количестве 10 масс. %, СВМПЭ - остальное; 30 масс. %, технический углерод УМ-76 в количестве 20 масс. %, СВМПЭ - остальное. Полученные композиции подвергались термопрессованию при температуре 170-190°C и давлении 20-40 МПа.

На чертеже представлен пример поверхности разрыва композиционного материала, прошедшего механические испытания.

Механические, радио- и радиационно-защитные свойства композитов приведены в таблицах 1, 2, 3.

Композиционный материал для комбинированной радио- и радиационной защиты на полимерной основе, состоящий из сверхвысокомолекулярного полиэтилена, наполненного порошком пентаборида дивольфрама и технического углерода УМ-76 в масс. % соотношении:

Сверхвысокомолекулярный полиэтилен 50-75
Пентаборид дивольфрама 20-30
Технический углерод марки УМ-76 5-20



 

Похожие патенты:

Изобретение относится к способам изготовления электроизоляционных эпоксидных заливочных компаундов, наполненных порошковым ультрадисперсным наполнителем или их смесью, в частности для создания монолитных радиотехнических схем или их узлов.

Изобретение относится к способу получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена для изготовления конструкционных изделий радиационной защиты.

Изобретение относится к ядерной технике, а именно к материалам для защиты от ионизирующего излучения, и предназначено для использования при изготовлении элементов радиационно-защитных экранов.

Изобретение относится к сельскому хозяйству и защите окружающей среды, в частности к средствам для дезактивации почв, зараженных радиоактивными элементами. Средство для дезактивации почв, зараженных радиоактивными элементами, содержит в своем составе поли-N,N-диалкил-3,4-диметиленпирролидиний галогенид общей формулы в которой R1 и R2 означают независимо друг от друга линейный или разветвленный алкил с 1-6 атомами углерода и X означает фтор, хлор, бром, йод или тетрафторборат, причем средняя молекулярная масса полимера составляет от 75000 до 100000 г/моль.
Изобретение относится к полимерной композиции для радиационной защиты электронных приборов, содержащей полимерное связующее, литий и бор в качестве экранирующих наполнителей (агентов), которая может быть использована для изготовления защитных материалов для биологической защиты, в качестве теневой защиты ядерных энергетических установок, аппаратуры ядерно-опасных объектов.

Изобретение относится к технологии изготовления материалов для защиты от нейтронного излучения. Пастообразный материал для защиты от нейтронного излучения включает консистентную смазку ВНИИНП-293 и порошкообразный бор аморфный в качестве наполнителя при массовом соотношении компонентов (%) 91-97 и 3-9 соответственно, при этом удельная поверхность порошка бора аморфного составляет не менее 15 м2/г.
Изобретение относится к области защиты от ионизирующего излучения и может применяться в качестве защиты электронных приборов космического аппарата (КА), работающего на геостационарной орбите, от воздействия поражающего фактора магнитных бурь.
Изобретение относится к средствам защиты от радиоактивного излучения и может применяться в производстве контейнеров для хранения радиоактивных материалов, а также изоляции помещений.

Изобретение относится к области космического материаловедения и может быть использовано в качестве терморегулирующих покрытий на внешней стороне космического аппарата в области низких земных орбит.
Изобретение относится к области разработки материалов, обладающих нейтронопоглощающими свойствами, и может быть использовано в качестве защитного слоя при изготовлении транспортно-упаковочных конструкций (ТУК) для транспортировки и хранения отработанного ядерного топлива, а также для биологической защиты от других случаев нейтронных излучений.

Изобретение относится к области химии, а именно к катализаторам, предназначенным для процесса гидроизомеризации н-алканов, а также прямогонных и гидроочищенных дизельных фракций, и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к области химии, а именно к катализаторам, предназначенным для процесса гидроизомеризации н-алканов, а также прямогонных и гидроочищенных дизельных фракций, и может быть использовано в нефтеперерабатывающей промышленности.
Изобретение относится к технологии получения синтетических алмазов методом динамического детонационного синтеза и может быть использовано для очистки и извлечения высокочистого алмаза из первичных продуктов.
Изобретение может быть использовано в наноэлектронике. Частицы графита помещают в вакуум между электродами, при этом разность потенциалов устанавливают достаточной для электродинамического ожижения частиц и получения ими энергии, превышающей работу, необходимую для их раскола по плоскостям спайности на слои графена при хрупком разрушении во время ударов об электроды.
Изобретение относится к области нанотехнологии, а более конкретно, к нанокомпозитным материалам с пленочным углеродсодержащим покрытием, получаемым осаждением ионов из газовой фазы углеводородов посредством ионно-стимулированного осаждения.Нанокомпозитный материал с биологической активностью включает подложку из биосовместимого полимера, преимущественно политетрафторэтилена или полиэтилентерефталата, имеющую наноструктурированную поверхность в результате ее травления потоками ионов тетрафторметана до формирования среднеквадратичной шероховатости Rq величиной 5-200 нм, при этом рельеф поверхности подложки модифицирован углеродсодержащей наноразмерной пленкой, полученной ионно-стимулированным осаждением в вакууме из циклогексана.Новым является то, что модифицирующая углеродсодержащая пленка, которая получена при осаждении из плазмообразующей смеси тетрафторметана и циклогексана, дополнительно содержит фтор в массовом соотношении к углероду в диапазоне 0,5-1,3, а рельеф наноструктурированной поверхности подложки образован выступами, отстоящими между собой на расстоянии 0,3-1,0 мкм, высота которых, как минимум, вдвое превышает радиус их основания, причем модифицирующая пленка содержит фтор и углерод в следующем их массовом соотношении 32-55% и 65-42% соответственно.Предложенное техническое решение полностью исключило адгезию микроорганизмов на поверхности наноструктурированного материала, супергидрофобность которого достигнута за счет оптимизированного содержания фтора и углерода на заданном нанорельефе поверхности подложки, при этом полученная оптическая прозрачность материала в видимом спектральном диапазоне обеспечила пригодность для использования в политронике..

Изобретение относится к области фармацевтики, а именно к способу получения нанокапсул лекарственных препаратов группы пенициллинов, выбранных из амоксициллина, натриевой соли бензилпенициллина, ампициллина, заключающемуся в том, что в качестве оболочек нанокапсул используется конжаковая камедь, а в качестве ядра - препарат группы пенициллинов, при массовом соотношении ядро:оболочка 1:1, при этом указанный препарат группы пенициллинов добавляют в суспензию конжаковой камеди в бутаноле в присутствии 0,01 г Е472с, затем добавляют метиленхлорид, полученную суспензию нанокапсул отфильтровывают и сушат при 25°С.
Изобретение относится к технологии получения игольчатых монокристаллов оксида молибдена VI MoO3. Поверхность молибденовой ленты, надежно закрепленной своими концами и выгнутой кверху в виде арки, разогревают с помощью резистивного, индукционного или лучевого воздействия до температуры 650-700°С в окислительной газовой среде, содержащей от 10 до 40% кислорода и инертный газ или смесь инертных газов при давлении, превышающем 100 Па, выдерживают при этой температуре в течение не менее 10 с с момента появления паров MoO3 белого цвета, затем нагрев прекращают и молибденовую ленту остужают до 25°С, после чего нагрев возобновляют при температуре 650-700°С до образования на торцах и поверхности молибденовой ленты из паров MoO3 тонких игольчатых монокристаллов оксида молибдена длиной до 5 мм.

Изобретение относится к области электрохимии, в частности к технологии получения пористого покрытия, представляющего собой высокоупорядоченный массив нанотрубок диоксида титана, и может быть использовано в устройствах для очистки воды и воздуха от органических соединений, в производстве комплексов промышленной экологии, а также в устройствах для выработки водорода.

Группа изобретений относится к области медицины, а именно к наночастицам для введения одного или более терапевтических, профилактических и/или диагностических средств, которые получают эмульгированием раствора одного или более биосовместимых полимеров, формирующих ядро наночастиц, одного или более полиэтиленгликолей (ПЭГ), формирующих покрытие наночастиц, одного или более терапевтических, профилактических и/или диагностических средств и одного или более низкомолекулярных эмульгаторов в органическом растворителе при перемешивании в течение по меньшей мере трех часов для испарения органического растворителя и диффундирования и сбора цепей ПЭГ на поверхности наночастиц, при этом покрытие наночастиц характеризуется отношением [Г/Г*] больше 2, где Г – это поверхностная плотность ПЭГ, характеризующая число молекул ПЭГ на 100 нм2 поверхности наночастицы, а Г* – это полное покрытие поверхности наночастицы, характеризующее теоретическое число свободно расположенных молекул ПЭГ, необходимое для полного покрытия 100 нм2 поверхности наночастицы; а также к способу их получения и фармацевтической композиции, содержащей такие наночастицы.
Изобретение относится к способу нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава и может быть использовано для гравюр штампов, применяемых для горячей объемной изотермической штамповки металлических деталей.

Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Предлагаемый композиционный материал состоит из сверхвысокомолекулярного полиэтилена 40-62 мас.%, порошка вольфрама 18-20 мас.%, нитрида бора 15-20 мас.% и технического углерода УМ-76 5-20 мас.%. Изобретение позволяет комбинировать свойства поглощения гамма, нейтронного и СВЧ-излучения. 1 ил., 3 табл.
Наверх