Импульсный плазменный тепловой актуатор эжекторного типа

Изобретение относится к системам управления обтеканием летательного аппарата при дозвуковых и околозвуковых скоростях полета. Импульсный плазменный тепловой актуатор эжекторного типа содержит подводной канал с обратным клапаном, разрядную камеру со встроенными игольчатыми электродами, сопло эжектора, камеру смешения, полость разрежения со щелью, соединяющей полость разрежения с поверхностью крыла, выходной диффузор. Актуатор позволяет без перегрева рабочей области создавать истекающую из сопла высокоскоростную пульсирующую струю газа в одной области течения и одновременно осуществлять отсос пограничного слоя в другой. Изобретение направлено на расширение возможности управления обтеканием крыла летательного аппарата. 2 ил.

 

Изобретение относится к системам управления обтеканием летательного аппарата (ЛА) при до - и околозвуковых скоростях полета.

Для управления обтеканием крыла летательного аппарата с целью его перестройки в благоприятном направлении используются актуаторы различных типов. Наиболее изученными в настоящее время считаются плазменные актуаторы на диэлектрическом барьерном разряде (ДБР-актуаторы), создающие тангенциальную или нормальную к поверхности струю газа, импульс которой используется для управления обтеканием.

Известен импульсный плазменный актуатор, использующий для формирования управляющей струи газа тепло, выделяющееся при высоковольтном разряде: Lin Wang, Zhi-xun Xia, Zhen-bing Luo, Jun Chen. Three-Electrode Plasma Synthetic Jet Actuator for High-Speed Flow Control. AIAA JOURNAL, Vol. 52, No 4, April 2014. Основным недостатком данного актуатора является невозможность его работы при больших частотах повторения импульсов из-за перегрева активной зоны.

Принципиальным недостаткам ДБР-актуаторов является невозможность создания актуатора с достаточно большим импульсом, что является препятствием для использования актуаторов этих типов для высокоскоростных летательных аппаратов. Область их эффективного применения (при разумных ограничениях на напряжение питания 20-30 кВ) ограничена скоростями полета 10-30 м/сек.

Еще один недостаток - предельно низкий КПД преобразования электроэнергии в механическую энергию струи газа. КПД этих групп актуаторов не превышает долей процента, так как основная часть энергии разряда преобразуется в тепло, которое бесполезно рассеивается в пространстве.

К недостаткам ДБР-актуаторов можно отнести также невозможность создания систем отсоса пограничного слоя на их основе, в то время как отсос пограничного слоя часто является более эффективным средством для управления обтеканием, чем выдув.

Известен актуатор, принятый за прототип, работающий на газе высокого давления и содержащий подводной канал, сопло эжектора, камеру смешения, полость разрежения, выходной диффузор, осуществляющий формирование пульсирующего выдува в одной области течения и постоянного отсоса пограничного слоя в другой: Arwatz, G., Fono, I., and Seifert, A. "Suction and oscillatory blowing actuator modeling and validation," AIAA journal, Vol. 46, No. 5, 2008, pp. 1107-1117. Основным недостатком актуатора является необходимость отбора газа высокого давления от двигателя или от специального компрессора.

Задачей и техническим результатом настоящего изобретения является создание импульсного плазменного теплового актуатора эжекторного типа для работы с высокой частотой повторения импульсов без перегрева активной зоны, который позволит формировать высокоскоростную управляющую струю газа путем выдува воздуха через диффузор в одной области течения и производить отсос пограничного слоя в другой.

Решение задачи и технический результат достигаются тем, что импульсный плазменный тепловой актуатор эжекторного типа, состоящий из подводного канала, сопла эжектора, камеры смешения, полости разрежения выходного диффузора, дополнительно содержит разрядную камеру со встроенными игольчатыми электродами, обратный клапан, полость разрежения выполнена со щелью, соединяющей ее с поверхностью крыла.

На фиг. 1 приведена схема импульсного плазменного теплового актуатора эжекторного типа, установленного в крыло модели.

На фиг. 2 приведен общий вид действующей модели импульсного плазменного теплового актуатора эжекторного типа.

Импульсный плазменный тепловой актуатор эжекторного типа состоит из (фиг. 1) подводного канала для подачи рабочего тела (газа) из области повышенного давления на нижней поверхности крыла 1 с обратным клапаном 2, разрядной камеры 3 со встроенными игольчатыми электродами 4, сопла эжектора 5, камеры смешения 6, полости разрежения 7 со щелью, соединяющей полость разрежения с поверхностью крыла 8, выходного диффузора 9.

Принцип работы импульсного плазменного теплового актуатора эжекторного типа следующий: Система управления подает на электроды 4 импульсное напряжение, превышающее напряжение пробоя. Величина напряжения пробоя зависит от расстояния между электродами. При пробое образуется низкотемпературная плазма и выделяется тепло, нагревающее воздух в разрядной камере 3. Обратный клапан 2 при разряде закрыт. Подведение тепла вызывает повышение температуры и давления в разрядной камере и истечение газа из эжекторного сопла 5. Скорость газа на выходе из сопла в зависимости от его конструкции может превышать скорость звука. При этом в камере смешения 6 и полости разрежения 7 со щелью 8 создается пониженное давление, вызывающее эжектирование (отсос) газа через щель. Из камеры смешения газ свободно истекает через диффузор 9 в окружающую среду. При этом полное давление выходящей из диффузора струи становится выше, чем изначальной. Предполагается располагать выход диффузора на нижней поверхности крыла в области задней кромки для реализации эффекта струйного закрылка.

По окончании каждого цикла за счет избыточного давления на входе в подводной канал 1 клапан 2 открывается в сторону разрядной камеры, которая наполняется холодным газом. Далее происходит следующий искровой разряд и весь цикл повторяется. Таким образом формируется импульсная струя газа, вытекающая из диффузора, и осуществляется отсос пограничного слоя через щель в поверхности полости разрежения, которая может быть конструктивно совмещена с верхней поверхностью крыла.

Все характеристики импульсного плазменного теплового актуатора эжекторного типа зависят от его геометрических размеров и параметров питания. Импульсный плазменный тепловой актуатор предполагается использовать, в первую очередь, для отсоса пограничного слоя через щель вдоль размаха крыла с целью предотвращения его отрыва, например, за скачком уплотнения. Диапазон скоростей, при которых импульсный плазменный тепловой актуатор эжекторного типа сможет обеспечить эффективное подавление отрыва, зависит от его геометрических параметров и системы питания. Варьируя их, можно получить требуемые величины скорости отсоса и скорости выхода из диффузора.

Отсос пограничного слоя в одной из зон течения существенно расширяет возможности импульсного плазменного теплового актуатора эжекторного типа при управлении обтеканием летательного аппарата вплоть до больших дозвуковых скоростей потока. Расчетные исследования обтекания профиля П184-15 потоком со скоростью М=0.735 на углах атаки α от 0° до 5° с применением отсоса пограничного слоя при помощи импульсного плазменного теплового актуатора эжекторного типа показывают увеличение коэффициента подъемной силы Су профиля примерно на 11%. При этом максимальное аэродинамическое качество профиля Кмакс увеличивается на 4 единицы. В расчетах без учета упругих свойств крыла зафиксировано также устранение такого негативного эффекта, как бафтинг.

Импульсный плазменный тепловой актуатор эжекторного типа, состоящий из подводного канала, сопла эжектора, камеры смешения, полости разрежения и выходного диффузора, отличающийся тем, что он дополнительно содержит разрядную камеру со встроенными игольчатыми электродами, обратный клапан, полость разрежения, выполненную со щелью, соединяющей полость разрежения с поверхностью крыла.



 

Похожие патенты:

Изобретение относится к технологии питания рабочим газом ионного реактивного двигателя малой тяги. Способ питания ионного реактивного двигателя малой тяги рабочим газом, поступающим из резервуара с избыточным давлением, осуществляется посредством устройства питания, содержащего клапан on/off и, последовательно по ходу от упомянутого клапана on/off, дроссель высокого давления, буферный резервуар и по меньшей мере один дроссель низкого давления.

Изобретение относится к способу создания электрореактивной тяги. Способ состоит в том, что после создания электрореактивной тяги в режиме горения топлива при импульсном давлении в усеченной сферической камере сгорания с образованием огненного ядра в камере сгорания и плазменного ядра в индукторе магнитного поля при воздействии СВЧ-полем в электронно-циклотронном резонансном режиме, а также создания прямого ускоряющего импульсного напряжения со стороны ускорителя катионов, расположенного перед соплом, дополнительно обеспечивают путем создания обратного ускоряющего импульсного напряжения со стороны изолированного электрода, установленного в камере сгорания, детонационный режим горения топлива в импульсно-пульсирующем режиме, при котором происходит формирование устойчивой детонационной волны в огненном ядре за счет импульсного потока ионизационно-термических волн катионов из плазменного ядра.

Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи рабочего тела ЭРДУ.

Изобретение относится к области двигателей на эффекте Холла, в частности к двигателю (1) на эффекте Холла с регулируемой тягой, в котором конечная ступень магнитного контура содержит взаимно противоположные внутренний полюс (18) и внешний полюс (15), причем внутренний полюс (18) смещен по оси вниз по потоку по отношению к внутреннему полюсу (15) таким образом, что магнитное поле (M) наклонено относительно поперечной плоскости двигателя (1).

Изобретение относится к межорбитальным маневрам космических аппаратов (КА). Способ включает выведение КА на переходную орбиту с высотой апогея больше высоты геостационарной орбиты (ГСО) и высотой перигея ниже ГСО.

Изобретение относится к области двигателей на эффекте Холла и, в частности, к двигателю (1), в кольцевом канале (2) которого нижний по потоку край имеет изменяемое поперечное сечение для обеспечения возможности изменения тяги и удельного импульса.

Изобретение относится к области создания электрических реактивных двигателей. Для обеспечения надежной подачи твердого топлива в источник плазмообразующего вещества при длительной эксплуатации электрического ракетного двигателя в условиях низких отрицательных температур предложено поверхность направляющего приспособления для прямоточного перемещения твердого топлива в источнике плазмообразующего вещества со стороны прямоточного перемещения твердого топлива покрыть стеклоподобной пленкой в виде наноматериала.

Изобретение относится к системам подачи рабочего тела в импульсный плазменный электрический реактивный двигатель. Способ подачи жидкого рабочего тела из бака хранения в импульсном плазменном электрическом реактивном двигателе на подвижную поверхность разрядного промежутка заключается в смачивании поверхности путем контакта капиллярного фитиля, смоченного рабочим телом, с указанной поверхностью.

Изобретение относится к электрореактивным двигателям прямоточного типа (ПЭРД), в которых в качестве рабочего вещества используется газообразная окружающая среда. ПЭРД предназначен для управления движением низкоорбитального космического аппарата.

Изобретение относится к средствам управления движением космических аппаратов, а именно к электрическим (плазменным) ракетным двигателям для коррекции орбиты искусственного, преимущественно низкоорбитального спутника планеты с атмосферой.

Изобретение относится к области ракетной техники, созданию прямоточных воздушно-реактивных двигателей (ПВРД) для крылатых ракет (КР) и управлению КР. В случаях неисправности датчиков командных давлений выдается команда для выполнения резервного алгоритма управления ПВРД.

Изобретение относится к ракетной технике и может быть использовано в гиперзвуковых крылатых ракетах с прямоточными воздушно-реактивными двигателями, предназначенных для полетов на больших высотах.

Изобретение относится к прямоточному воздушно-реактивному двигателю, включающему детонационную камеру, и к летательному аппарату, содержащему такой прямоточный реактивно-воздушный двигатель.

Изобретение относится к гиперзвуковой авиации, а именно к гиперзвуковым летательным аппаратам с прямоточным воздушно-реактивным двигателем. В передней части гиперзвукового летательного аппарата сформировано углубление, объем которого заполняется горючим газом через отверстия, распределенные по поверхности углубления.

Изобретение относится к области авиационного двигателестроения и может быть использовано в камере сгорания гиперзвукового воздушно-реактивного двигателя. Генератор акустических колебаний для камеры сгорания гиперзвукового воздушно-реактивного двигателя содержит свечу зажигания, топливные сопла, профилированную геометрию проточной части, камеру смешения, вихревую камеру, выходной диффузор, лопаточное закручивающее устройство, сверхзвуковой диффузор.

Изобретение относится к авиационному двигателестроению и предназначено для прямоточных воздушно-реактивных двигателей. Прямоточный воздушно-реактивный двигатель на твердом горючем содержит воздухозаборник, газогенератор с зарядом твердого горючего в отдельном корпусе, камеру дожигания и сопло.

Способ организации воспламенения и горения топлива в гиперзвуковом прямоточном воздушно-реактивном двигателе высокоскоростного летательного аппарата, содержащего камеру сгорания, заключается в подаче горючего со сверхзвуковой скоростью через систему пилонов, обтекаемых кислородом, например, в составе воздуха.

Изобретение может быть использовано в космической и оборонной отрасли. Высокоскоростной прямоточный воздушно-реактивный двигатель (ПВРД) содержит последовательно расположенные воздухозаборное устройство, камеру сгорания (КС) и выходное сопло.

Изобретение может быть использовано в космической и оборонной отрасли. Способ воспламенения топливной смеси заключается в том, что в камеру сгорания двигателя подают высокоскоростной поток воздуха, обеспечивают торможение потока, образуют в камере сгорания топливную смесь и воспламеняют ее.

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, обечайку, регулятор давления подачи топлива, устройство подачи топлива в двигатель, источник лазерного излучения и оптическую систему.

Изобретение относится к системам управления обтеканием летательного аппарата при дозвуковых и околозвуковых скоростях полета. Импульсный плазменный тепловой актуатор эжекторного типа содержит подводной канал с обратным клапаном, разрядную камеру со встроенными игольчатыми электродами, сопло эжектора, камеру смешения, полость разрежения со щелью, соединяющей полость разрежения с поверхностью крыла, выходной диффузор. Актуатор позволяет без перегрева рабочей области создавать истекающую из сопла высокоскоростную пульсирующую струю газа в одной области течения и одновременно осуществлять отсос пограничного слоя в другой. Изобретение направлено на расширение возможности управления обтеканием крыла летательного аппарата. 2 ил.

Наверх