Способ стрельбы артиллерийскими снарядами на дальние расстояния

Изобретение относится к артиллерийскому вооружению и боеприпасам и, в частности, к стрельбе снарядами из артиллерийских орудий. Технический результат - повышение дальности стрельбы. По способу перед выстрелом уменьшают сопротивление движению снаряда. Для этого с помощью лазера в диапазоне длин волн 5,5-7,5 мкм излучают несколько импульсов энергии с направлением излучения, совпадающим с осью ствола орудия. С помощью этого излучения нагревают воздух в зоне луча - тоннеле в течение нескольких секунд. После этого лазер убирают и производят выстрел из орудия так, чтобы артиллерийский снаряд на начальном участке траектории двигался в упомянутом тоннеле. 3 ил.

 

Изобретение относится к артиллерийскому вооружению и боеприпасам, в частности к повышению дальности стрельбы снарядами из артиллерийских орудий. Известно, что для повышения дальности стрельбы необходимо уменьшать сопротивление движению снаряда.

Известен способ уменьшения сопротивления движению снаряда, заключающийся в том, что снаряду придают форму удлиненного конуса, а в донной части формируют полость. Это направление работ прослеживается на разработках дальнобойных осколочно-фугасных снарядов, имеющие шифры: «Наместник», «Хребет-М», «Алагез» и др. (Каллистов А.А. Научно-исследовательский машиностроительный институт (НИМИ): Страницы истории, события, люди (1932-2002). - М.: ЦЭИ «Химмаш», 2002. - 236 с.: ил.). Эти технические решения в целом уменьшают сопротивление движению снаряда в воздухе и позволяют повысить дальность стрельбы на 10-20% по сравнению с обычными снарядами такого же класса.

Наиболее близким по технической сущности к предлагаемому изобретению является способ обеспечения скоростного движения подводной ракеты (торпеды) в жидкой среде. При этом высокую скорость торпеды обеспечивают за счет уменьшения плотности среды впереди торпеды, путем турбулизации среды до появления пузырьков воздуха впереди этой торпеды (Каллистов А.А. Научно-исследовательский машиностроительный институт (НИМИ): Страницы истории, события, люди (1932-2002). - М.: ЦЭИ «Химмаш», 2002. - 236 с.: ил.) (Прототип).

В заявленном техническом решении предлагается перед выстрелом на прямолинейном участке движения снаряда в узком цилиндрическом коридоре по траектории движения снаряда нагревать воздух. На этом участке под действием тепла плотность воздуха уменьшится, и снаряд, запущенный в этот коридор с меньшей плотностью, будет испытывать меньшее сопротивление своему движению. При этом его потери скорости на данном участке будут меньше, чем если бы снаряд двигался в непрогретом воздухе. Тем самым будет получена большая дальность стрельбы артиллерийским снарядом.

Известно, что сила сопротивления воздуха движению снаряда направлена против скорости движения, ее величина пропорциональна характерной площади S снаряда, плотности среды ρ и квадрату скорости V. Из этого следует, что уменьшение силы сопротивления воздуха впереди снаряда естественно приведет к увеличению дальности стрельбы и тем самым будет повышена эффективность такой стрельбы. Вопросам оптимизации характерной площади снаряда посвящено множество исследований и достигнуты существенные результаты (варианты рассмотрены выше). Предлагается применить технические решения по снижению плотности среды впереди движущегося снаряда.

Техническое решение поясняется чертежами.

Фиг. 1. Изменение плотности воздуха (ось ординат в кг/м3) в зависимости от температуры (ось абсцисс в °С).

Фиг. 2. Световое излучение пучка лазера.

Фиг. 3. Спектральное пропускание атмосферой излучения, измеренное на горизонтальной трассе протяженностью 1,8 км на уровне моря. В нижней части чертежа указано, молекулами каких газов поглощается излучение.

Один из способов уменьшения плотности воздуха заключается в его нагреве. На фиг. 1 приведены данные по изменению плотности воздуха при его нагреве до 100°С. Как видно, с ростом температуры плотность воздуха существенно уменьшается.

Исследования движения различных снарядов на начальном участке траектории (после выстрела) показывают, что в нижних слоях атмосферы сопротивление движению снаряда максимально. Это обусловлено тем, что плотность атмосферы максимальна у поверхности земли и уменьшается с высотой.

Анализ данных, приведенных на фиг. 1, и известных данных об изменении плотности воздуха на различных высотах от поверхности земли показывает, что, например, нагрев воздуха у поверхности земли до 100°С приведет к изменению его плотности как при подъеме на высоту до 2,8 км.

В связи с этим технические решения, позволяющие нагреть воздух на начальном участке движения снаряда, создадут условия для уменьшения лобового сопротивления при прохождении нижних самых плотных слоев атмосферы и тем самым позволят повысить дальность стрельбы ствольной артиллерии.

Одним из таких решений для нагрева воздуха является использование энергии излучения мощного лазера в направлении стрельбы. Картинка, демонстрирующая такой вариант подвода энергии к узкому тоннелю воздуха в направлении движения снаряда, показана на фиг. 2.

Оценки энергии, необходимой для нагрева такого канала в воздухе, приведены ниже.

Технические возможности по созданию оптических систем лазера позволяют создать луч с диаметром пятна 0,5 м на расстоянии три километра от точки излучения. На расстоянии один километр диаметр пятна в этом случае будет составлять примерно 0,2 м. Усредненный расчет показывает, что для рассмотренных условий объем воздуха в конусе от вершины в точке излучения до расстояния в один км составит 7 м3, а до расстояния в 3 км -176 м3.

Энергию для нагрева одного куба воздуха на один градус Цельсия определим из известного соотношения:

Q=cpρ,

где ср - теплоемкость воздуха, равная 0,243 ккал/кг× град; ρ - плотность воздуха, равная у поверхности земли 1,25 кг/м3. Расчет показывает, что при этом величина Q составит 300 кал или 1260 Дж.

Исходя из этого, оценим энергию, необходимую для нагрева на один градус объема воздуха в рассмотренных выше конусах, а именно: в конусах с высотами один и три километра. Проведя расчеты, получим: соответственно примерно 9 кДж и 222 кДж. Тогда для нагрева на 100°С потребуется соответственно 900 кДж и 22,2МДж. Эти расчеты распространяются на прохождение луча параллельно поверхности земли. При направлении луча под углом к поверхности земли, с ростом высоты подъема над землей, плотность воздуха будет уменьшаться. Тогда, в соответствии с расчетом, можно видеть, что с ростом высоты количество энергии для нагрева воздуха на одну и ту же величину будет уменьшаться, т.е. приведенные выше мощности являются предельными.

Следует подчеркнуть, что температура самого луча лазера не просто низкая, термодинамически она вообще отрицательная. Высокая температура может возникнуть только при соприкосновении луча с веществом, например с молекулами газов в воздухе.

В России сегодня есть предприятия, способные разрабатывать и промышленно выпускать мощные малогабаритные лазеры. Достижения в этой области хорошо показаны в документальном фильме «Повелители луча», снятом в 2009 году.

Для того чтобы заставить лазерный луч максимально отдавать энергию окружающему воздуху, необходимо использовать частотный диапазон излучения, в котором наблюдается максимальное поглощение энергии частицами воздуха. Исследования ряда авторов показывают, что это явление наблюдается, например, для длин волн в пределах 5,5-7,5 мкм. На фиг. 3 приведены известные данные исследований по измерению поглощения лазерного излучения на различных длинах волн.

Как видно из фиг. 3, в указанном диапазоне длин волн (5,5-7,5 мкм) основное поглощение энергии лазера происходит при взаимодействии с молекулами воды. Концентрация водяного пара в атмосфере зависит от географического положения района, времени года, высоты слоя атмосферы, местных метеоусловий и колеблется по объему от 0,001 до 4%. Основное количество водяного пара сосредоточено в нижнем пятикилометровом слое и резко уменьшается с дальнейшим увеличением высоты. Принципиальные возможности создания лазеров в диапазоне длин волн 5,5-7,5 мкм рассмотрены в работе (отчет о научно-исследовательской работе в рамках федеральной целевой программы «научные и научно-педагогические кадры инновационной России» на 2009-2013 годы по теме: «твердотельные лазеры с полупроводниковой накачкой ближнего и среднего ИК диапазонов спектра (2 мкм, 3-8 мкм) на основе кристаллов и керамики, активированных ионами Тm и НО» //мордовский государственный университет им. Н.П. Огарева, Саранск, 2012 г.).

Одним из таких предприятий, способным создать мощные лазеры с заданными свойствами, является ФКП «ГЛП «Радуга» (Владимирская область). На предприятии разработаны и функционируют рад уникальных малогабаритных мощных лазеров. Особых успехов они добились в области создания матриц лазерных диодов, применяемых для накачки лазеров.

Таким образом, анализ данных, приведенных на фиг. 1, показывает, что повышение температуры воздуха впереди снаряда на 100°С позволяет уменьшить его плотность более чем на 30%. А так как сопротивление движению снаряда пропорционально плотности воздуха следует ожидать, что при реализации устройства, позволяющего провести этот нагрев, дальность стрельбы из артиллерийских орудий можно также увеличить более чем на 30%.

Приведенный выше анализ и расчеты позволяют сформулировать требования на создание установок по снижению сопротивления движению снарядов в нижних слоях атмосферы. Техническая реализуемость предложения не вызывает сомнений.

Реализация способа осуществляется следующим образом. С помощью мощного лазера, направление излучения энергии которого совпадает с осью ствола орудия, перед выстрелом из этого орудия излучают несколько импульсов энергии. Луч лазера, отдавая энергию излучения, будет нагревать воздух в зоне луча (примерно в течение 2-4 секунд). Луч представляет собой усеченный конус. Нагретый воздух в узком тоннеле будет иметь плотность ниже, чем в окружающем этот тоннель пространстве. После этого лазер убирается, и производится выстрел из орудия, так чтобы снаряд на начальном участке траектории двигался в этом тоннеле. За счет того, что плотность воздуха на начальном этапе движения снаряда будет меньше, сила сопротивления движению снаряда будет также меньше. А это условие позволяет снаряду дольше двигаться с максимальной скоростью, и тем самым будет обеспечена большая дальность стрельбы.

Изложенные сведения о заявленном изобретении, охарактеризованном в независимом пункте формулы, свидетельствуют о возможности его осуществления с помощью описанных в заявке и известных средств и методов. Следовательно, заявленный способ соответствует условию промышленной применимости.

Способ стрельбы артиллерийскими снарядами на дальние расстояния, заключающийся в том, что перед выстрелом уменьшают сопротивление движению снаряда, отличающийся тем, что перед выстрелом с помощью лазера в диапазоне длин волн 5,5-7,5 мкм излучают несколько импульсов энергии с направлением излучения, совпадающим с осью ствола орудия, с помощью этого излучения нагревают воздух в зоне луча - тоннеле в течение нескольких секунд, после чего лазер убирают и производят выстрел из орудия так, чтобы артиллерийский снаряд на начальном участке траектории двигался в упомянутом тоннеле.



 

Похожие патенты:

Изобретение относится к гранатам для гранатомета и, в основном, - к надкалиберным гранатам. Технический результат – увеличение дальности и повышение точности стрельбы.

Изобретение относится к области вооружения, а именно к гранатам для гранатомета бокового поражения. Граната для гранатомета бокового поражения содержит заряд взрывчатого вещества, осколкообразующий элемент, ракетный двигатель и таймер.

Изобретение относится к области вооружения, а именно к разработке боевых частей для боеприпасов (снарядов, гранат, мин) и ракет. Боевая часть состоит из корпуса, взрывателя, заряда и поражающих элементов, расположенных между корпусом и зарядом.

Изобретение относится к области вооружений, в частности к неконтактным взрывателям боеприпасов, и может быть использовано в боеприпасах ствольной нарезной артиллерии для определения оптимального момента подрыва боеприпаса.

Изобретение относится к ракетам с динамическими помехами для различных их классов. Технический результат – повышение эффективности создания радиолокационных помех радиолокатору оборонительной системы объекта.

Группа изобретений относится к гранатам для ручным гранатометов. Технический результат – повышение надежности поражения противника за препятствием - укрытием.

Изобретение относится к устройству «батарея фейерверков», усовершенствованному для выполнения технологической задачи по точечной доставке красителей (или коагулянтов, или химических реактивов) и эффективной обработки заданного участка водной или земной поверхности, воздушного пространства, нуждающихся в немедленном воздействии человека для уменьшения, либо предотвращения последствий создавшейся критической ситуации.

Группа изобретений относится к ракетной технике, а именно к сверхзвуковым крылатым ракетам, предназначенным для поражения наземных целей, включая легкоуязвимые площадные наземные объекты, в том числе критичные по времени мобильные цели.

Группа изобретений относится к военной технике, а именно к активно-реактивным снарядам. Технический результат - увеличение высоты и вероятности поражения быстролетящей цели средствами противовоздушной и противоракетной обороны за счет улучшения полноты сгорания топлива, топливной эффективности и массо-габаритных характеристик высотного активно-реактивного снаряда.

Изобретение относится к боеприпасам, а именно к осколочно-фугасным снарядам. Технический результат – повышение эффективности действия снаряда.
Наверх